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Preface

Tms text, an introduction to applied mathematics, is concerned with the
construction, analysis, and interpretation of mathematical models that shed
light on significant problems in the natural sciences. It is intended to provide
material of interest to students in mathematics, science, and engineering at
the upper undergraduate and graduate level. Classroom testing of preliminary
versions indicates that many such students do in fact find the material in-
teresting and worthy of study.

There is little doubt that a course such as one based on this text should
form part of the core curriculum for applied mathematicians. Moreover,
in the last few years the professional mathematical community in the United
States has emphasized the importance of some exposure to applied mathe-
matics for all mathematics students. This exposure is recommended because
of its broadening influence, and (for future university. mathematicians) be-
cause of the benefits it affords in preparing for the teaching of nonspecialists.
As for scientists and engineers, there is often little difference in their theoretical
work and that of an applied mathematician, so they should find something
of value in the approaches to problems that we espouse.

There are many books that present collections of useful mathematical
techniques and illustrate the various techniques by solving classical problems
of mathematical physics. Our approach is different. Typically, we select an -
important scientific problem whose solution will involve some useful mathe-
matics. After briefly discussing the required scientific background, we for-
mulate a relevant mathematical problem with some care. (The formulation
step is often difficult. Not many books actually demonstrate this, but we
try to give due weight to the challenges involved in constructing our mathe-
matical models.) A new technique may then be introduced to solve the
mathematical problem, or a technique known in simpler contexts may be
generalized. In most instances we take care to determine what the mathe- .
matical results tell us about the scientific processes that motivated the prob-
lem in the first place. ' : ,

We use a “case study™ approach by and large. Such an approach is not -
without disadvantages. No strict logical framework girds the discussion,
and the range of applicability of the methods is not precisely delineated.

'Heuristic and nonrigorous reasoning is often employed, so there is room for

. doubt concerning the results obtained. But realistic problems often require

techniques that cannot at the moment be rigorously justified. There is a

stimulating sense of excitement -in tackling such problems. Furthermore,

mathematicians and scientists frequently use heuristic reasoning and are
v
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frequently called upon to determine for themselves whether a method used
to solve one problem can be adapted to solve another. Some such experience
should be part of each student’s education.

This. work was given a lengthy title because we wished to make its limita-
tions clear at the outset. A completely balanced introduction to applied
mathematics should contain material from the social and managerial sciences,
but we have restricted ourselves to the natural sciences. In rough proportion
to applied mathematical research, the topics in this volume are drawn mainly
from the physical sciences, but there is representation from chemistry and
biology. We treat probabilistic models to a lesser extent than would be
required in a balanced presentation, and our treatment emphasizes the
relationship between probabilistic and deterministic points of view. Qur work
is also limited in its almost exclusive use of analytical methods; numerical
methods are mentioned many times but are treated only briefly.

One reason for restricting the topics covered is the authors’ hesitation
to tread outside their areas of expertise. Another is the fact that the work
is already lengthy, so a wider purview would necessarily be either overlong
or superficial. In any case, much further study is required of the aspiring
mathematician or scientist—we hope that our work will form a foundation and
motivation for some of that study.

" STYLE AND CONTENT

In our writing we have striven in most places for careful and detailed
exposition, even at the risk of wordiness; for a rigorous proof can be built
from its skeleton, but the reasoning of the applied mathematician often can
only be mastered if it is fully described.

The nature of applied mathematics preciudes an approach that is organized
in a tight linear fashion. This has_ certain disadvantages. But among the
compensations is a high degree of flexibility in.a book such as this. In par-
ticular, there is a large measure of independence among the three partsof the .
present volume, which are the following: -

PART A. An overview of the interaction of mathematics and natural

science.
PART B. Some fundamental procedures—illustrated on ordmary differen-

tial equations.

PArT C. Introduction to theories of continuous fields.

There is considerable further independence within each part—which we
have tried to enhance, even at the expense of repetition.

Two volumes have been planned. This first volume provides ample material
for a balanced and self-contained introduction to a major part of applied
mathematics. The succeeding volume, described briefly in Section 1.1, pene-
trates further into the subject, particularly in the classical areas of fluid
mechanics and elasticity.



Preface ‘ vii

The chapter titles, section titles, and subheadings in the table of contents
give a good outline of this volume. It is not necessary to read the chapters
in the given order. In Part A, for example, the only sequence which must be
kept is that of the two chapters on Fourier series. It would be helpful to
begin Part B by obtaining some understanding of nondimensionalization
and scaling as treated in Chapter 6, but this is not strictly necessary. Chapter 8
can only be appreciated if the preceding two chapters have been covered,
but this chapter can be omitted if relatively simple examples of the techniques
are deemed sufficient. Chapter 9 is a prerequisite for Chapter 10, but each
of the three sections of Chapter 11 is largely independent of the others and
of earlier material.

Part C, too, offers various postibilities. For example, one can skip much
of the material if one’s goal is to obtain just enough understanding of the
basic equations to permit formulation of specific problems in one-dimensional
elasticity, inviscid flow, and potential theory. Or one can just study the first
two sections of Chapter 12, to gain a glimpse of continuum mechanics.
(Note: Section 12.1 contains many new ideas in a few.pages.)

Some features of our approach are the following.

(a) We proceed from the particular to the general.

(b) For our major examples we attempt to choose physical problems that
are important in their own right and also permit the illustration of major
mgthematical techniques. Thus the Michaelis—-Menten kinetics discussed in
Chapter 10 are repeatedly referred to in biochemistry, and a full treatment

- of the relevant mathematical problem provides an excellent illustration of
singular perturbation theory. To give another example, we discuss the staBility
of a stratified fluid in Chapter 15—both as an illustration of inviscid flow
and as a motivation for studying stability theory for a system of partial
differential equations. T

(c) We make a serious effort to examine the processes- of deriving the
equations that model certain basic scientific phenomens, rather than merely
give plausibility arguments for using such equations. As an illustration of
this spirit, we mention that the differential equation which governs mass
conservation in a continuum is derived in four different ways in Section 14.1,
and several alternative approaches are examined in the exercises of that
section. One purpose of such an effort is to engender a secure understanding of
the equation in question. Another is to help those readers who might some
day wish to derive equations that model a phenomenon which had never
before-been subjecttd to mathematical analysis.

(d) New ideas are frequently introduced in extremely simple physical
contexts. In Part B, for example, dimensional analysis, scaling, and regular
perturbation theory are first met in the context of the problem of a point
mass shot vertically from the surface of the earth. The qualitative features of
the phenomenon are correctly guessed by most people, and the relevant
differential equation is solved exactly in eler;lentary courses. Yet, considerable
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effort is required to obtain a deep understanding of the problem. This effort
is worthwhile because it generates a grasp of concepts that are useful in faf
more difficult situations. .

(e) We try to make explicit various concepts and approaches that are
often mastered only by inference over a period of years. Examples are pro-
vided by our discussions of the basic simplification procedure and of scaling,
in Chapter 6.

(f) In historical remarks we have focused attention on humanistic aspects
of science, by emphasizing-that the great structures of scientific theories
are gradually built by the strivings of many people. To illustrate the ongoing
nature of science, we have presented certain plausible theories which are
either incorrect (Newton’s isothermal speed of sound—Section 15.3) or not
fully in accord with observation (the galactic model of Section 1.2), or highly
regarded but not yet fully accepted (as in the physiological flow problem
discussed in Chapter 8).

(g) Some rather lengthy examples are worked out in detail, e.g.,, the
perturbation calculations in Section 7.2, in response to student objections
that they are often asked in exercises and in examinations to solve much harder
~ problems than they have ever seen done in the text.

(h) We have provided a number of exercises to reinforce, test, and extend
the reader’s understanding. Noteworthy are multipart exercises, often based
on a relatively recent journal article, which develop a major point in a step-
by-step manner. (An example is Exercise- 15.2.10.) Even if a student cannotdo
one part of the exercise, he can take its result for granted and proceed. Such
exercises have been successfullv used as the central part of final examinations.

PREREQUISITES Ty

We have assumed that the potential reader has had an introductory college
course in physics and is familiar with.calculus and differential equations.
Only a few exercises require knowledge of complex analysis. We make
considerable use of such topics as directional derivatives, change of variables
in multiple integrals, line and surface integrals, and the divergence thegrem.
Often mathematics majors will have taken an advanced calculus cour - that|
omits some. of these topics, but we have found that such students are suffi-
ciently sophisticated mathematically to be able readily to pick up by them-
selves what is required. [Potential readers who feel inadequacies in vector
calculus and physical reasoning would profit from studying Div, Grad, Curl,
and All That by H. M. Schey (N.Y., Norton, 1973).]

RELATIONSHIPS BETWEEN THIS TEXT AND VARIOUS COURSES

Historically, this book grew out of the union of two courses. The first
was Foundations of Applied Mathematics introduced by G. H. Handelman
at Rensselaer around 1957.Auprecursor of this course wastaughtby A. Schild
and Handelman at Carnegie Institute of Technology, now Carnegie-Mellon
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University.) A second course, Introduction to Applied Mathematics, was
. introduced by C. C. Lin at Massachusetts Institute of Technology around
1960. These courses ‘have been taught annually, many times, by the present
authors in their respective institutions. In recent years preliminary drafts
of the present work have been used as text material. Such drafts have also
been used in applied mathematics courses taught by P. Davis at Worcester
Polytechnic Institute, D. Drew at New York University, and D. Wollkind
at Washington State University. Considerable improvements in the draft
text have resulted ; the authors welcome further suggestions from users. of the
printed work.
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Conventions

EACH chapter is divided into several sections (e.g., Section 5.2 is the second
section of Chapter 5). Equations are numbered consecutively within each
section. Figures and tables are numbered consecutively within each chapter.

When an equation outside a given section is referred to, the section num-
ber precedes the equation number. Thus ‘“ Equation (6.3.2)” [or (6.3.2)] refers
to the second numbered equation of Section 6.3. But if this equation were
referred to within Section 1 of Chapter 6, then the chapter number would be
assumed and the reference would be to ‘“ Equation (3.2)" [or (3.2)]. The
fourth numbered equation in Appendix 3.1 is denoted by (A3.1.4).

A double dagger} preceding an Exercise, or a part thereof, signifies that a
hint or an answer will be found in the back of this volume.

The symbol ] signifies that the proof of a theorem has concluded.

The succeeding volume is referred to as “I1.”

A brief bibliography of books useful to beginning applied mathematicians
can be found at the end of this volume. When reference is made to one of
these books, the style *“Smith (1970)’’ is employed.

xix
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