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Preface

The use of functionals in the quantisation of relativistic local field theories
has a long history, going back to the work of Schwinger and Symanzik in
the 1950s. As exemplified by the generating functionals for Green
functions, they can embody the canonical Hamiltonian results in a very
convenient way (the Dyson-Schwinger equations). By the end of the 1960s
the use of functionals had become standard practice (see Fried’s book of
1972 with essentially the same title as this) but it was by no means
obligatory. Straightforward manipulation of Feynman diagrams was often
sufficient.

The renaissance of field theory in the 1970s after the failure of the pure
S-matrix approach was based on models that were much more com-
plicated than those used hitherto. Non-Abelian gauge theories, sponta-
neous symmetry breaking, supersymmetry (to name but three essential
steps) required a reappraisal of tactics. At the same time the quantities that
needed to be calculated changed in character. Rather than S-matrix
elements it was important to determine free energies, tunnelling decay-
rates, critical temperatures, Wilson loops, etc.

These quantities, with a natural definition via the standard functionals
of the theory, required an approach based on them. The ingredient
that gave the functional approach the additional power to cope with the
new complexity was the side-stepping of canonical Hamiltonian methods
by the use of path integrals to represent the functionals.

Path integrals (the terminology for functional integrals, derived from
their quantum mechanical origin) had been introduced by Dirac in the
1930s. However, their mathematical fuzziness (in contrast to the precise
Euclidean Wiener integrals) had discouraged their serious application in
quantum theory. Nonetheless, despite the absence of a mathematical
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X Prefuace

definition it became apparent that path integrals in field theory were
ideally suited to

(1) implement the symmetries of the theory directly,

(1) incorporate constraints simply,

(ii1) explore field topology,
(iv) isolate relevant dynamical variables,

(v) describe non-zero temperature.

These were key ingredients in model-making for unified theories, and by
the late 1970s a working knowledge of functional integrals had become
extremely useful for most ficld theorists.

At the same time a further boost to path integrals arrived with the
availability of large main-frame computers to perform numerical simulat-
ions of them. By successfully approximating infinite-dimensional funct-
ional integrals by mathematically run-of-the-mill finite-dimensional ones
they reinforced the feeling that mathematical impreciseness was not a
serious problem.

The cumulative effect has been to make some understanding of
functional integrals essential for field theorists. In this monograph I aim to
show that despite the lack of mathematical foundations the path integral
functionals provide, in their simplest expression as ‘integrals’ over field
configurations, a ready tool for analytic approximations. In particular, by
working with the naive formalism, we are able to preserve the classical
intuition that is often the starting-point for model-making, and which is
lost if we attempt to enforce mathematical probity from the beginning.
This viewpoint was stressed in the formulation of path integrals and is the
most compelling reason for evading mathematical nicety.

Most of the simple applications discussed in the text only involve the
ability to perform a generalised Gaussian integral. (Some only require an
identification of a Gaussian.) Despite this we can attack problems ranging
from the existence of phase transitions in the early universe to the nature of
the divergence of the series expansion of quantum electrodynamics in the
fine-structure constant.

Nonetheless, some caution is required. For all the plausibility of the
formalism, cavalier mathematical manipulations can let us down.
However, forewarned is largely forearmed. The largest individual chapter
(chapter 6) tries to provide a simple idea of the main hazards when writing
down expressions that portray more how we would like the theory to be,
rather than how it is. The reader only interested in applications can bypass
this self-contained discussion.

An abiding problem in weiting a methods book is that of maintaining
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sufficient brevity for the diversity not to become ponderous. Even then the
list of applications is nowhere near exhaustive (e.g. supersymmetry is
hardly considered). In general each chapter describes a particular analytic
application of functional integrals with, wherever possible, a non-trivial
application. Necessarily these examples, to be tractable, contain over-
stmplifications. In the sense of real physics (i.e. numbers) I shall often get
no further than the foothiils. To continue the analogy the aim has been to
provide a route map, rather than a detailed description of the topography.
Such details are best provided by review articles, to which this book is a
preparatory course. This does lead 1o a problem with references. Since the
number of physicists involved in way-marking a particular trail is large - a
review article can easily have more than a hundred references- the
simplest approach would be to reference the most appropriate review and
leave it at that. 1 have tried to strike a balance between this minimal
approach and the impossible task of quoting all significant papers.
Inevitably, many authors who have made significant contributions to
particular topics have not been quoted explicitly, and will only appear as
references of references. To these I apologise.

The genesis of this book was as a lecture course given to first-year
postgraduate students of mathematical physics at Imperial College. The
course was given in the second half of the year, parallel with an advanced
course in quantum field theory. I make two assumptions of the reader. The
first is a rudimentary understanding of Feynman diagrams in relativistic
quantum field theory, and the need for renormalisation. (However, the
most difficult calculations will only involve a single loop.) The second is a
familiarity with the basic ideas of realistic field theories, unified at the
electroweak level at least. The applications will be sufficiently simple that
no knowledge of group theory is required beyond the simplest represen-
tation theory.

Beyond that, no prior knowledge of functional integration is necessary.
This is developed as required from a very primitive level (and usually stays
that way). Occasionally it will be necessary to sidestep solved problems so
as to keep the discussion succinct, but all crucial points will be covered.

Finally, my views have been shaped by contact with many physicists. In
particular I must thank Eduardo Caianiello of Salerno, John Klauder of
Bell Laboratories, and my colleagues at Imperial College for helping me
acquire such insights as I possess. My especial thanks go to Chris Isham
for his helpful and constructive comments on the manuscript of this book.

R. J. R. 1987
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Scalar Green functions and their
perturbative solutions

In this book we shall be almost exclusively concerned with the interactions
of relativistic particles that are the quanta of elementary fields. There is
some ambiguity in the definition of ‘clementary’, but by it we mean local
fields whose propagation and interactions can be described by a local
Hamiltonian, or Lagrangian, density. Individual terms in these densitics
describe the basic transformations that the quanta can undergo. For
example. if the classical Lagrangian density for a field 4 has a quartic g 4*
interaction we assume that, quantum mechanically, one A-particle can
turn directly into three (virtual) A-particles. The way in which these virtual
particles further split or recombine determines the way in which A-particle
interactions take place.

The aim of this first chapter is to indicate how canonical quantisation
(ie. the Hamiltonian formulation) can be reformulated as statements
about how particles interact. The quantification of the qualitative state-
ment that onc A-particle can turn into three, or whatever, will occur
through a set of relations termed the Dyson—Schwinger equations. In our
approach these equations will play a critical role in formulating an
alternative quantisation of field theory through path integrals. The path
integral formulation, rather than the canonical approach, will be at the
centre of all our calculational methods.

This will come later. First. we must derive the Dyson-Schwinger
equations. Their content is essentially combinatoric, by which we mean
that it concerns the structure of the interactions, the book-keeping of
particle creation and annihilation. This can be seen most simply in the
theory of a neutral scalar field A(x) like the one mentioned above.
Although such a theory has no physical significance its combinatoric
structure, as expressed through its Green functions, is exemplary of more

1



2 Scalar Green functions

realistic theories. For this reason, in this and the next several chapters we
shail examine the properties of scalar fields alone.

By and large the tactics that we develop can, and will, be extended to
more realistic theories containing leptons. quarks. gluons, etc. There is
just one initial problem to be sidestepped. Surprisingly. for the relevant
case of n = 4 space-time dimensions the prototypical g4* theory is most
likely to be trivial (Frolich 1982). That is, after taking self-interactions into
account, A-particles do not interact. This screening of the A-field ‘charge’ y
by quantum fluctuations fortunately does not spill over to realistic models.
Nonetheless, it is something of an embarrassment to the perturbative
tactics that we shall adopt initially. We shall avoid the problem by
restricting ourselves to known non-trivial theories (e.g. gA* in n < 4
dimensions).

1.1 Quantisation of a scalar field

With the above caveat in mind, consider the theory of a single classical -
number scalar field 4 in n space-time dimensions with Lagrangian density

LA A) =30, A"A — tm? 4% — U(A) (1.1

U(A) describes the field self-interaction (usually gA*/4!).

We have adopted a contravariant - covariant Lorentz-vector notation in
which x* = (1. x) or, more conveniently, x* = (xo.x) and ¢, = /éx*. The
contravariant co-ordinate vector x, =(x,, —X) =¢,,X". where ¢, =
diag(l, — 1, — 1, — 1) is the Minkowski metric.

The classical Hamiltonian density is constructed from & as

H(m, A) = nég A — L(n.VA. A) (1.2)
with
n= LA A) = G A (1.3)

the conjugate field variable. The Hamiltonian for the theory is thus
H = j dx# = J dx[3m® + (VAP + tmiA? + UA)] (1.4)

We wish to quantise this classical system in the Heisenberg representation,
generalising the results of quantum mechanics in the simplest possible
way. The dynamics are determined from the canonical Heisenberg
equations of motion

GoA(x) = ih 1[H. A(x)], éoiix) =ik~ '[H, 7(x)] (1.5)



1.1 Quantisation of a scalar field 3

The circumflexes denote operators acting on the Hilbert space of the
theory. These equations are augmented by the equal-time commutation
relations {(ETCRs)

[A(xg. X), 7t(xg, ¥)] = 1hd(x — ¥),
[A(xq. X} A(xo. ¥)] = 0 = [7(xq. X). 7xg. V)] (1.6}

that are the causal generalisation of the canonical commutation relations
[d:. p;]1 = ihd,;. etc. of quantum mechanics. If the ETCRs are true at onc
time they are true at all times because of the Heisenberg equations (1.5)
and so play the role of boundary conditions.

With no problems of ordering 4 and 7 because of the simple choice of
Hamiltonian, equations (1.5) become (on using (1.6))

CoA =(CH PM) 54 Cot = —(CHCA) i (1.7)

That is, the Heisenberg fields formally satisfy Hamilton’s equations. (The
suffix A denotes the replacement of the c-number field A by the operator-
valued A in the c-number bracket. The suffix # has a similar meaning.
Although a little cumbersome, variants on this notation will prove very
economical.) Combining equations (1.7) shows them to be equivalent to
the operator-valued Euler—Lagrange equations

0 =[dS[A)/0A(X)]j = [ L CAX) — CCL A0 LA 4

fl

= — ([, + mH)A(x) — U'(A(x)) (1.8)

obtained by variation of the classical action functional
S[A] = fd.\‘ F(0,A.A4) (1.9)

(1 is shorthand for &,¢* and dx shorthand for d"x).

To clarify the notation of (1.8) some comment on functionals and their
differentiation is necessary. A functional F[ A] of a real classical field A(x) is
a rule that associates a number (generally complex) to each real con-
figuration A(x). At their simplest, like the action functional, functionals arc
integrals of functions, for example

F[A] = J dx f(A(x) (1.10)

(although we shall develop more complicated ones). We adopt the
convention of using square brackcts to enclose the arguments of func-
tionals, curved brackets the arguments of functions. The operation of
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functional differentiation, denoted dF[ A)/dA(y), is constructed to do the
obvious: for F{ 4] of (1.10), just depending on A and not its derivatives,

SFLA13A(Y) = f'(A(y)) (1.1

where f'(4) =df/dA. This can be understood as arising from the
definition

[0/0A( ), A(x)] = d(x — V) (1.12)

on taking the differentiation through the integral.
Alternatively, again assuming that dF/JdA exists, we can generalise the
lay definition of the derivative of a function to a functional derivative as

OF[A]/0A(y) = 11m [F[A 1 — F[A]] (1.13)
£-0 €
where A'(x) = A(x) + ¢5(x — y). The result (1.11) for F of (1.10) follows
equally easily.

Returning to the problem of quantisation we have seen that the
quantised theory is formulated by the classical action equation (1.8) for the
Heisenberg fields, plus the ETCRs (1.6). (In fact, both these ingredients can
be derived from a single action principle (Schwinger, 1951).) However,
these operator equations are not convenient for calculational purposes as
they stand. In order to turn them into statements about observables for the
A-field they need to be sandwiched between suitable states. The equations
then become relations between transition elements, the most useful of
which are the Green functions of the theory.

1.2 Green functions

The m-leg scalar Green function G, (x,x, ...x,,) is defined as
Gl X; .. Xp) = COIT(A(x, JAxy) ... A, IO (1.14)

where |0) is the ground state of H and T denotes time-ordering of the A-
fields. This ordering arranges the fields in decreasing time, reading from
left to right (remember that A commutes with itself at equal times). We
assume for the moment that |0 is the unique ground state of H, a property
that is inevitable in quantum mechanics but not in field theory.

We represent G, (x;x; ... x,) diagrammatically as

Go(x,x,. .. x,
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The Green functions themselves are not measurable quantities and our
organisation of them will be geared to the physical observables that we
wish to evaluate. Fifteen years ago there would have been no doubt that
the relevant quantities were cross-sections, particle multiplicities, etc. As a
result we would have used so-called reduction formulae (Lehmann.
Symanzik & Zimmermann, 1955) to turn the G,, into physical transition
elements (S-matrix elements) of the A-particles. For example, G,, can be
transmuted into a scattering amplitude for two A-particles colliding to
produce {m — 2) A-particles in the final state. See the standard texts (e.g..
Itzykson & Zuber (1980)), for details.

The developments in quantum ficld theory over the last decade have
given us an additional set of quantities to calculate, and our interests will
lie with these. As examples for our simple scalar theory, we might wish to
caiculate energy densities (for determining the existence of symmetry
breaking), critical temperatures (should there be a finite temperature phase
transition) and metastable vacuum decay rates (as an aid to early-universe
calculations). In fact, in later chapters we shall calculate all three. As will be
seen, the most useful combination of Green functions in handling
problems of this type is their ‘generating functional’, which we will now
construct.

Given a sequence of numbers g,.¢,, ¢,, ... the most economical way to
encompass them is through their yenerating function

()=} guf"im! (1.15)
m=0

If we know z(j) the g follow directly as its derivatives at j = 0. Similarly.
the generating functional Z[ j ] for the scalar Green functions G,, is defined
by

X

Z[j1= % Gh'ymh !

m=0
X fdx1 e X (X)) (X)) Gl X5 L x,) (1.16)

where j(x) is an arbitrary c-number function. For each j(x), Z[j] is a
complex number.

(We have explicitly introduced a factor of ih ™! with each j(x). The
benefits of doing this are not yct clear, but it must be apparent that the
constraints imposed on Z[ j ] by the Heisenberg equations and the ETCRs
will contain factors of ih. The choice of coefficient in (1.16) makes for the
most concise formulation in the long run.)
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To extract the G,, we functionally differentiate with respect to j at
j(x) =0, whence

GlxXy +. . Xp) = (= iRV Z[j1/8j(x,) ... 8j (xm);=0 (1.17)

In particular, from the definition (1.14) for the G,,. Z can be summed to the
compact form

Z[j] = <0|T(cxp[ih ’fdx _i(xvi(x)D [0 (1.18)

That is, j(x) can be interpreted as a source coupled to the A-field.

If we know Z[ j ] we know everything about the quantum field theory.
We have already anticipated its role as a calculational tool. In addition we
shall find that it provides for an elegant method of quantisation.

The series (1.16) 1s represented diagrammatically in fig. 1.1, where the
cross-ended line———x corresponds to the multiplication by ih™j(y) of
——, followed by integration over y. That is, Z describes the way a source
can create particles from the vacuum and return them to it.

The normalisation <0|0> = | implies Z[0] = 1. The symmetry of the

source term j(x,)j(x,)...j(x,) in (1.17) under coordinate interchange
enforces the Bose symmetry

Goulxyx,...x,) = Gulx,x, .. x,) (1.19)

of the Green functions. Furthermore, from the translational invariance of
[0> it follows that, for arbitrary a*

Ga(Xyxy. .. X)) =Glxy +a,x, +a..... X, + d) (1.20)

Le. G, only depends on the differences x; — x; of co-ordinates.

Z[_,’]:@=1+-—©+%.—_O_..
1

+ 5 +....

Fig. 1.1

1.3 The Symanzik construction for Z|j]
As matrix elements of fields, the Green functions will be constrained by the
classical action principle plus the ETCRs. In turn Z[j] will also be
restricted. In order to construct Z[j] we follow Symanzik’s approach
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(Symanzik, 1954) for determining the equation enforced upon Z[;] by
canonical quantisation.
To simplify the notation we define E(x,, x,) by

E(x,, xo) = T[exp(ih ‘( dyo J dyj(yo,.vao,y))} (1.21)

Z[j] can be written as

Z[j1 = <0lE(oc, —x)I0> = COlE(a, xo)Elxg, — )0y (1.22)

for any given x,. It follows that, if x* = (x,, x),
(—1hd/8j(x)PZ] j] = <O|T(A(xV expih ! J dy j(»)A()0)

= OE(+, xg)A(xy E(xg. — 7|0 (1.23)

insofar as the right-hand side of (1.23) is defined. (This qualification reflects
the fact that the relations (1.6) show A4 to be an operator-valued
distribution. As a result A” is not defined, in general. However, in practice
a definition can be postponed until the last moment.)

Equation (1.23) enables us to rewrite the identity

0 = COlE(7 . xo) —3S/3 AN 1 E(xy. — % )]0D
= CO[E(o. xo)([(Ox + m*)A(x) + U (A(x)JE(xe. —x)0)  (1.24)
as
= [(O, + m*N—ihd/0j(x) + U'(—1hd/dj(x)]Z[j]
+ <O|E(oc Xy)¢ OA(Y)F X, — 20>
— PLCOIE(oc, xo)ALX)E 210> (1.25)

The difference of the last two terms is calculated trivially. Since A
commutes with itself at equal time

o <0[E(oc, xo)A(xq, X)E(xq, — %)|0)
= CO|E(x, xo)mxg, X)E(xg. — )]0 (1.26)
However, differentiating again gives
3501 E(oe, x0)Alxo. X)E(xo. — 2)|0>
= C01E(0, Xo)qft(xo, X)E(xq. — %)

—l'ffl(()lE(I, XO)[J dy j(xo,y)4 (XOaY) n(xo-x):l E(xg, —oc)|0)

= (O1E(00. X0)7G A0 E(xq. — 710> + jOE(%, — )0y (1.27)



