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Preface

In the preface to our work “Qualitative Theorie nichtlinearer Differen-
tialgleichungen” (Edizioni Cremonese, Rome 1963) we have sketched the
genesis of this theory and have mentioned some basic text-books and
monographs. It is a sign of the steadily growing importance and rapidly
progressing development of the theory of non-linear differential equations
that in the few years that have lapsed again quite a number of excellent
books on important branches have been published. As examples we
mention:

A. A. ANDRONOV, E. A. LEONTOVICH, I. I. GORDON and A. G. MAYER,
Qualitative theory of dynamical systems of the second order, 1zdat. Nauka,
Moscow (1966).

A. A. ANDRONOV, A. A. VitT and S. E. KHAIKIN,
Theory of oscillators, Fizmatgiz., Moscow (1959). Translation: Pergamon
Press, Oxford-New York (1966).

A. BLAQUIERE,
Non-linear system analysis, New York (1966).

W. HaHN,

Stability of motion, Springer Verlag, Berlin-Géttingen-Heidelberg-New
York (1967).

A. HALANAY,

Qualitative theory of differential equations: Lyapunov stability, oscillations,
systems with deviating argument (Roumanian), Ed. Acad. RPR, Bucha-
rest (1963). Translation: Academic Press, New York-London (1966).

J. K. HALE,

Oscillations in nonlinear systems, McGraw-Hill, New York-London
(1963).
PH. HARTMAN,
Ordinary differential equations, John Wiley & Sons, New York-London
(1964).
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M. A. KRASNOSELSKII,
The operator of translation along trajectories of differential cquations,
Izdat. Nauka, Moscow (1966). Translation: Amer. Math. Soc., Provi-
dence, R. I. (1968).

S. LEFSCHETZ,
Stability of nonlinear control systems, Academic Press, New York-London
(1965).

I. G. MALKIN,
Theory of stability of motion, second ed., Izdat. Nauka, Moscow
(1966).

J. L. MAsSerA and J. J. SCHAEFFER,
Linear differential equations and function spaces, Academic Press, New
York-London (1966).

Yu. A. MITROPOLSKII,
Problems of the asymptotic theory of non-stationary oscillations, {zdat.
Nauka, Moscow (1964). Translation: Problémes de la théoric 1sympto-
tique des oscillations non stationnaires, Gauthier-Villars, Paris (1966).

V. A. PLiss,
Non-local problems of the theory of oscillations, 1zdat. Nauka, Moscow
(1964). Translation: Academic Press, New York-London {1966).

T. YOSHIZAWA,
Stability theory by Lyapunov’s second method, Math. Soc. Japan, Tokyo
(1966).

In addition, numerous papers on the behaviour of the soluticns of more
or less special systems of non-linear differential equations or the propet-
ties of general dynamical systems have appeared in the various periodicals
or Academy publications. The lion’s share of these research results
belongs to the USA and USSR, where several new journals have been
founded to foster the theory and its applications, journals which now
play an important role in the international specialized literature.

A significant part of the publications is concerned with systems of non-
linear differential equations of the third and fourth order or certain
systems of arbitrary order that are of importance for diverse technical
problems. This was already pointed out by G. SANSCNE in his survey
lecture **Non-linear differential equations of the third and fourth order”
at the “Equadiff”-Congress (Prague 1962). It was on this occasion that
we decided to continue our collaboration and to draw up jointly a report
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on non-linear differential equations of higher order, and so to close what
we felt to be a gap in the literature.

Subsequently we worked out a detailed plan in which we envisaged
eight chapters of partly general, partly special nature. True, at the time
we did not anticipate that the research on this range of problems would
take such a stormy course, which forced us all the time, right to the end
of our work, to amplify and bring to the latest state completed parts of
the manuscript. Even so we must emphasize that we have not striven for
a complete survey of the literature. :

In Chapter 1 we treat some ideas and methods of the qualitative theory
that are suitable for the study of stability and boundedness of the solutions
of ordinary differential equations; here Lyapunov’s direct method stands
in the forefront. We have refrained on purpose from providing well-
known results that are easily accessible in text books or to repeat the
presentation in our earlier monograph (which is not assumed to be
known, but may be rather useful). Instead we discuss some contributions
in the modern specialized literature, which we regard as noteworthy for
theoretical or practical reasons and which provide a good insight into
the trend of arguments of the direct method. In addition, those theorems
that can be counted among the classical content of the theory and are
applied time and again in specific investigations are quoted explicitly and
explained in detail where necessary.

In this chapter we also deal with the existence of periodic solutions of
autonomous and non-autonomous systems. We concern ourselves ex-
tensively with the second case, because here recent years have seen the
growth of interesting methods of functional analysis for existence proofs,
which are capable of further development.

Chapter 2 is also devoted to the general theory; we begin with com-
parison theorems whose purpose it is to reduce the study of the global
behaviour of the solutions to the treatment of a simpler type of differential
equations. Then we turn to the problem of judging stability on the basis
of the system of first (or m-th) approximation, and we give the classical
results of LYAPUNOV and MALKIN in the most important critical cases.

A multitude of contributions to this theme published in recent years
can be found in the list of references at the end of the chapter. A discussion
of these works was not possible within the framework we have set for the
book.

Chapter 3 contains qualitative studies of the trajectories of autonnmous
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systems in the neighbourhood of an isolated singular point; some more
detailed investigations concern systems of the third order.

The next three chapters-are of a more specialized character: here we
prove theorems on stability and boundedness as well as theorems on the
existence of periodic solutions for certain non-linear differential equations
of the third and fourth order which one meets frequently in the
recent literature; we have given an account of the works of numerous
authors, and we are of the opinion that these chapters can claim com-
pleteness. :

In Chapter 7 we consider autonomous systems with non-linearities in
which the variables occur separated, and we state Aizerman’s problem;
then we follow the arguments set forth by Krasovskir, MALKIN, Tuzov,
Priss and others, to solve the problem for certain systems of the second
and third order. We believe that the chapter can be very instructive and
useful owing to the uniform presentation of these studies.

Chapter 8 turns to systems of Lur’e’s type, which play a role in control
theory. The importance of such systems was pointed out by MINORSKY
on several occasions, and was also emphasized by LEFSCHETZ in his book
quoted above. We throw light on the connection between the systems of
direct and of indirect control, we then derive some sufficient criteria for
stability, and above all we deal with the celebrated theorems of Porov;
we prove them in detail, following ideas of Popov, AIZERMAN and
GANTMAKHER, and CORDUNEANU, and we show to what extent the con-
ditions contained in them are decisive for the existence of certain Lyapu-
nov functions solving the problem of stability.

We have drawn this chapter on a wide canvas, so that readers interested
in automatic control but without predilection for mathematical proofs
can also follow easily the arguments and calculations.

At the end of each chapter there is a comprehensive list of references.
Almost all chapters also contain, apart from numerous results of other
authors on which we report in a free presentation and which occasionally
we modify to suit our requirements, our own investigations on the subject
in question. Besides, we have been able to simplify many a proof or to
shorten it on the basis of preceding discussions.

We hope that we have succeeded in giving a well-rounded report with
a distinctive flavour, of interest not only to the mathematician occupied
with non-linear differential equations, but appealing also to wider circles,
for example, applied mathematicians, physicists and engineers who deal
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with questions of control or with problems of non-linear mechanics and
have to rely on the mathematical theory.

We should be pleased if incidentally we have helped in giving their due
attention to some papers that for linguistic or other reasons have so far
not become known sufficiently well.

Finally, it is our wish that this volume achieves its proper aim of
coordinating and describing numerous results spread over the literature
under a uniform point of view, of helping the reader in his orientation,
and on top of this, of providing stimuli and thereby contributing to the
pursuit of pure and applied mathematics.

R. Reissig -~ G. Sansone - R. Conti
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CHAPTER 1

General methods of the qualitative
theory

In recent years numerous methods have been developed to investigate
the qualitative behaviour of solutions of ordinary differential equations;
here we discuss in the first instance some particularly interesting methods
which are not generally known, and (for the sake of completeness) those
main theorems of the qualitative theory that are applied in subsequent
chapters in the treatment of special systems (for a more detailed study
see, for example, Reissig-Sansone-Conti [1]). We are interested in the
stability and boundedness problem as well as the question of the existence
of periodic solutions. A number of comparison theorems will be set forth
in Chapter 2.

1.1. Some stability theorems

The study of automatic control processes was the starting point for the
notion of asymptotic stability “in the large” (or globally) of the zero
solution of a differential equation

x = £, %) (1.1)
LA, 0) = 0).

Let ¢ denote a real variable in the interval E',: 0 £ t < + oo, where x
is a point in E", the Euclidean space of real n-vectors

)

n
with the norm [x] = (T x)t.
i=1



1; General methods of the qualitative theory

Here flt, x) is a function in E" with arguments in E', x E”; it is
assumed to be sufficiently regular so that for every point (o, xo)€ E! , x E*
the existence and local uniqueness (to the right) of the solution x(t) of
(1.1) with the initial condition x(fp) = x, is _guaranteed. If necessary,
we denote this solution by x(z; t5, xo); even if x-for every initial point
(f0, xo) is only defined for ¢ 2 ¢, as a single-valued function of .

We say that the zero solution of (1.1) is attractive in the Iarge if -

lim x(¢; to, xo) =0, (to, x,) € E', x E™. (1.2)
t=* + 00 :
We call it asymptotically stable in the large (or globally asymptotically
stable) if it is attractive in the large and, in addition, stable in the sense
of Lyapunov (weakly stable), that is,

%(t; tor Xo)l S & for 12 1o, in case Ixol S 3, to).

This definition was introduced by Barbashin-Krasovskii [1]; the same
authors (f2], see also Massera f1D have formed the followmg narrower
notion:

The zero solution ‘of (1.1) is called unifbrm!y asymptotically stable in
the large if there exist a function ¢(r) defined for 7 = 0, continuous and
increasing, with 6(0) = 0, and a function T(r, ¢) defined for r g 0,e >0,
continuous and positive, so that

[x(t; 1o, X0)| S o(rg) for 15 S ¢, |xol S 7

(that is, uniform stability)
and

Ix(2; 20, x0)l S & for 1o + T(ro, &) S 1, X0l S Fo.
Massera ([1], Theorem 21) has proved:

THEOREM 1.1. Ifflt, x) = g(x) is independent of t, then global asymptotic ‘
stability of the zero solution of the autonomous equation

x =g(x) [g(0)=0] (1.3)

implies uniform global asymptotic stability of this solution.

For uniform asymptotic stability in the large there is the following
criterion (Barbashin-Krasovskii [2]; Massera [1], Theorem 22; an ex-
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tension of the criterion to differential equations in a Banach space was
given recently by Conti [4]).

THEOREM 1.2. The zero solution of (1.1) is uniformly asymptotically
stable in the large if there exists a real function V(i, x) defined in E* , x E"
with V(t, 0) = O and with the properties a) to €):

a) V(i, x) satisfies a local Lipschitz condition;

b) V(1 x) is positive-definite, that is,

M, x) 2 a(|x])

Jor a function a(r) defined in the interval r 0, continuous and strictly
increasing, with the initial value a(0) = 0,
c) Vi, x) is infinitely large, that is,

lim a(r) = + o0:

r=+o

d) U1, x) is umforml} small (or ‘“‘admits an infinitely small upper
bound™), that is,

W, x) £ b(|x]),

where the function b(r) has the same properties as a(r);
e) the function

lim sup {V(t + A, x + hf(1, x)) — V¢, x)}/h

h—=+0
is negative-definite, that is,

lim sup {M(t + h, x + hf(t, x)) — V(t, x)}/h £ —c(|x]), (1.9

h—++0
where c(r) is continuous and strictly increasing, with c(0) = 0.
Note If the function V{1, x) satisfies the conditions a), b), d), ), but

only for + 2 0, |x|] < H, then (uniform) asymptotic stability holds
locally, namely for

[xol < ho = b~ "(a(H)).
If then (1.4) holds only with c(r) = 0, we obtain uniform stability, that is,
|x(2; to, Xo)l S & for 1 2 to, in case |xo| S 8(e);

if the condition d) also fails to hold. then we have weak stability.



1. General methods of the qualitative theory

If V{1, x) is continuously differentiable in all arguments, then

limsup {V(t + h, x + hf(t, X)) — V(t, x)}h =V, + (V,, ) = V'(¢, x).

h=++0

If V(s, x) satisfies the conditions a), b) as well as d), ¢), then there exists
a continuous, strictly increasing function w(r) with w(0) = 0 such that

lim sup {W(t + h, x + A1, x)) — W1, x)}/h £ — o(VA1, X)). (1.5)
A= 40

For we have
x| 2 671 (W1, X)), c(lx]) 2 (b~ (W1, x)))

and we obtain the relation above with the function @ = ¢(b~"), which
obviously has the requisite properties (see Brauer [1]); conversely, (1.4)
follows from (1.5) if we set ¢ = w(a).

If there exists a continuously differentiable function V(z, x) satisfying
the conditions b) to d) and (1.5) (in place of (1.4)), then it is easy to
show that the zero solution of (1.1) is uniformly asymptotically stable
in the large; for we compute along an arbitrary non-trivial solution

X(l; ’o, xo):

v, ) bjxa)) Vo
d di d. d
?—' -— - l (p g J ‘—(P'-' g - '0)
w(¢) (¢) (@)
o(jx]) V(1. x)
that is,

lx(t; 10, Xo)| S & for t — 1y 2 T(Ix,l, €):

here we can set

b(jxo])
de
(p)

In accordance with the explanation given in Theorem 1.2 a continuous
function V(x) defined in the domain 0 < |x] < H (with W) = 0) is to
be regarded as positive-definite if it admits a continuous strictly in-
creasing function a(}x|) with a(0) = 0 as minorant; however, it is custom-
ary to regard the function V(x) already as positive-definite if Wx) > G
for x # 0.
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1.1. Some stability theorems

In order to show that the two explanations are equivalent, we have
to derive the first from the second.
For this purpose we set
o(r) = inf WV(x)
rsixlsH

{p(0) =0, o) >0 for r> 0]

and can first give a lower estimate of the function V in terms of the non-
decreasing continuous function ¢:

Mx) 2 o(|x)).
Mext we determine for0 £ r S H

and then we have for0 £+ <r" £ H

r’(P(r’)_ S rf(p(ruz - r"(P(r”) _

ar) =—4 H H

a(r’).

By Theorem 1.2, a function V(x) defined for all x and continuous, with

) = 0, is positive-definite and infinitely large if it admits an estimate
x) 2 a(lx),

where the function a(r), with a(0) = 0, is continuous for r 2 0 and

strictly increasing, with

lim a(r) = .
Ladk" o}

Equivalent to this definition is the following:

x) >0 for x#£0, lim V(x) = .

fxl— o0
Te prove this we have again to reduce the second definition to the first,
f-or this purpose we set, as hefore,

e{r) = inf N(x)

x]zr

and obtain a function, continuous for » 2 0 and non-decreasing, with

P} =0, o) >0 for » >0, lime(r) =

r—=x



1. General methods of the qualitative theory

and
W(x) 2 o(|x]) for all x.

We determine a strictly increasing divergent sequence of numbers
{p:} satisfying the condition:

o) =k, o) > @(py) for r>p, (k=0,1,2,..);
here Po ™= 0.

Finally, we define (for & 2 0)

ar) = p(p) + —L2— [0() — @A), PLST S Prss.

Pr+1 = Px

Then

a(r) s o(r)

[a(p) = @(py), a(pi+1) = P(Pr+4)}
andforp, S <7 S prsy

o) S 0(p) + ——L2 [0(") - a(p)] < alr);
Prx+1 — P
in addition we obtain
lim a(r) = lim ¢(p,) = oo.
k=

r-+aeo

Every function V(x), continuous for all x and positive for x # 0, is
uniformly small in the sense of Theorem 1.2; for if we set
¥(r) = sup Wx)

05 |=|sr
and

b(r) = u(r) e,
" then for all x
V() S b(lx]) (strictly increasing).

Consequently we can combine the conditions b) to d) in Theorem 1.2
into the following:

Vilx) 8 U1, x) S V(x)



