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CuArPTER 1

ELEMENTARY OPERATIONS .

1. Definitions. Quantities which have magnitude only are called
scalars. The following are examples: mass, distance, area, volume. A
" scalar ean be represented by a number with an associated sign, which
indicates its magnitude to some convenient scale. ° ‘
There are quantities which have not only magnitude but also direc-
tion. The following are examples: force, displacement of a point, velocity
of a point, acceleration of a point. Such quantities are called vectors if
. they obey a certain law of addmon set forth in § 2 below A vector can ,
be represented by an arrow. The' direction of the arrow indicates the
direction of the Vcctor, and the length of the arrow md:cates the
magnitude of the vector o some convenient scale. .
Let us consider a vector represented by an arrow running from a
- point P to a point Q, as shown in Figure 1. The straight line through
P and Q is called the line of action of the vector, the point P is called the
origin of the vector, and the point Q is called the ferminxs of the vector.
To denote a vector we write the letter indicating its origin followed
by the letter indicating its terminus, and place a bar over the two let-
ters. The vector represented in Figure 1 is then represented by the
symbols PQ. In this book the superimposed bar will not be used in
any capacity other than the above, and hgéxcc its presence can always




be interpreted as denoting vector character. This notation for vectors
is somewhat cumbersome. Hence when convenient we shall use a
nmplcr notation which consists in denotmg a vector by a single symbol
in bold-faced type. Thus, the vector in Figure 1 might be denoted by
the symbol a. In this book no mathematical symbols will be pnnted
in bold-faced type except those denoting vectors.*

The magnitude of a vector is a scalar which is never negative. The
magnitude of a vector PQ will be denoted by either PQ or |PQ|. Simi-
larly, the magnitude of a vector a will be denoted by either a or |a]y

Two vectors are said to be equal if they have the same magnitudes
. and the same directions. To denote the equality of two vectors the
usual sign is employed. Hence, if & and b are equal vectors, we write

) ‘ a=h ’

A vector a is said to be equal to zero if its magnitude a is equal to

- zero. Thus a'=0 if a = 0. Such'a vector is called a zero vector.

2. Addition of vectors. In § 1 it was sfatcd that vectors are ‘quanti-
ties with magnitude and direction, and which obey a certain law of
addition. This law, which is called the law of vector addition, is as follows. -

Figure 2

Letmand b be two vectors, as shown in Figure 2. The origin and
termmus of & are P and Q. A yector equal to b is constructed with

* Itisdifficult to write bold-faced symbols on the blackboard or in the exercise
book. When it is desired to write a single symbol denoting a. vector, the reader -
will find it convenient to write the symbol in the ordinary manner, and to place
a bar over it to indicate vector character.

2 \ .



mongmatQ Its terminus falls atapomtR. Thesuma+buthc
vector PR, and we write .

a+b = PR.
77mmm 1. Vectors satisfy the commutative law of addition ; that is,
-a+b = b4a. \
Proof. Let a and b be the two vectors shown in Figure 2. Then
(2.1) - at+b=PFR

We now construct a vector equal to b, with its origin at P. Its ter-
nunusfallsatapomts A vector equal to a is then constructed with
_ its origin at §. The terminus oftlnsvectorwxllfall at R, and ngre

3 results. Hence -

Figurs 3

22 . - b4a=FR
From (2.1) and (2.2) it follows that a+b = b+..
Theorem 2. Vectors satisfy the associative law of addmon, that is,
" (a+B)+c = a+(b+c).

Proof. Let us construct the polygon in Figure 4 havmg the vccton
a, b, c as consecutive sides. The corners of this polygen are labelled P,
QR and §. It then appears that

(a+b)+e¢ = PR+c
= F.,-S', .
a+t(btc)=a+0§ . '
= I—ih_?l . . -

“ Hence the theorem is true.
According to Theorem 2 the sum of three vectors a,. b, and c is

-~ \ E 3



mdependentoftheordermwhlchtheyareadded Hence we can
write a+b+-¢ without ambtguxty

Figurs 4

Figure 4 shows the construction of the vector u+b+¢ The sum
of a larger number of vectors can be constructed similarly. Thus, to

find the vector a+b+c+d it is only necessary to construct the '

polygon having a, b, ¢ and d as consecutive sides. The required vector
is then the vector with its origin at the ongm of a, and its terminus
at the terminus of d.

3. Multiplication of a vector by ¢ scalar. By deﬁnition, if m is a posi-
tive scalar and a is a vector, the expression ma is a vector with mag-
aitude ma and pointing in the same direction as &; and if m is nega-
Yive, ma isa vector with magnitude |m| a, and pointing in the du-ecuon :
»pposite to a.

We note in particular that -a-is a vector with the same magnitude
as & but pointing in the direction opposite to a. Figure 5 shows this
sector, and as further examples of the multxphcanon of a vector by a
icalar, the vectors 2a and —2a.

s

Theorem. The multiplication of a vector by a scalar satisfies the ’
iutnbutwe laws; that is,

4
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(3.1) ‘ | (m+4-n)a = ma+’;a, '
(32) m(a-+b) = ma-+mb.

Proof of (3.1). If m+n is pesitive, both sides of (3.1) represent

+ & vector with magnitude (m-n)a and pointing in the same dircction‘

as a. If m-}n is negative, both sides of (3.1).represent a vector with
magnitude |m-+r|a and pointing in the direction opposite to m.

Proof of (3.2). Let m be positive, and let =, b, ma and mb be as

shown in Figures 6 and 7. Then

~

i Figure 7

(3.3) m(a-+b) = mPR, ma-+mb = SU.
The two triangles PQR and STU are similar. Corresponding sides
are then proportional, the constant of proportionality being m. Thus
(3.9 - ) mPR=SU. - i
"Sinice PR and ST have the same directions, and since m is positive,
then mPR = SU. Substitution in both sides of this equation frotn
(3.3) yiclds (3.2). , .
Now, let m be negative. Then Figure 7 is.replaced by Figure 8.
Equations (3.3) apply ir. this case also. The triangles PQR and STU
--are again similar, but the constant of proportionality is |m|, so {m|PR
= SU. Since PR and ST have opposite directions and m is' negative,

-5
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Figure 8 o .
then mPR = SU. Substitution in both sides of this equauon from
.- (3.3) agaim yields (3.2).

4. Subtraction of vectors. If a and b are two vectors, their difference
a -~ b is defined by the relation
a-b = a-+(-b),

where the vector —b is as defined in the previous section. Figure 9
shows two vectors a and b, and also their difference a-b.

Figure 9

5. Linear functions. If a and b arc any two vectors, and m and #
arc any two scalars, the expression ma-nb is called a linear function
of & and b. Similarly, ma+nrb<fc is a linear function of a, b,
and c. The extensioh of this to the cases mvolvmg more than three
vectors follows the obvious lines.

Theorem 1. 1f a and b are any two nonparallel vectors in a plane,
and if c is any third vector in the plane of a and b, then ¢ can be
expressed as a linear function of & and b.
- Proof. Since a and b are not parallel, there exists a parallelogram
with ¢ as its diagonal and with edges parallel to a and b. Figure 10
shows this parallelogram. We note from this figure that

6



(5.1) ‘ c = PQ+QR. .
But PQ is parallel to a, and QR is parallel to b. Thus there exist
scalars m and n such that

PQ = ma, QR == nb. -
Subetitution from these relations in (5.1) yields
c = = ma+nb.

: Theorem 2. Ifa,bandcarcanythreevectotsnotallpatallelto
"> a single plane, and if d is any other vector, thtn d can be expmed
as a linear function of a, b and c.

Proof. This theorem is the extension of Theorem | to space. Smce
a, b and c are not parallel to a single plane, there exists a parallele-
piped with d as its diagonal and with edges parallel to a, b and c.
chcc there exist scalars m, n and p such that

d = ma+nb-pc.

N

6. Rectangular carte.mm wordmam -In much of the theory and appli-
cation of vectors it is convenient to introduce a set of rectangular
cartesian coordinates. We shall nof denote these by the, usual symbols
x, y and z, however, but shall use instead the symbols x,, x, and x,.

_ These coordinates are said to have “right-handed orientation” or to be
»“‘right-handed” if when the thumb of the right hand is made to point
i the direction of the positive x, axis, the fingers point in the direction
of the 90° rotation which carries the pesitive x, axis into coincidence

7



with the positive x; axis. Otherwise the coordinates are “left-handed””.
In Vector Analysis it is highly desirable to use the same orientation
always, for certain basic formulas are changed by a change in orien-
tation. In this book we shall follow the usual practise of using right- .
handed coordinates throughout. Figure I1 contains the axes of such -
a set of coordinates.

3

£y ) Figure 11

It is also convenient to introduce three vectors of unit magnitude,
one pointing in the direction of each of the three positive coordinate
axes. These vectors are denoted by 1, i, and i, and are shown i in
F:gure 11.

'Let us consider a vector a. It has orthogonal projections in the
directions of the positive coordinate axes. These are denoted by 4, a,
and as, as shown in Figure 11. They are called the components of a.
It should be noted that they can be positive or negative. Thus, for
example, a4, is posmve when the angle between a and the direction of
the positive x, axis (the angle QPS in the ﬁgure) is acute, and is nega- ,
tive when this angle is obtuse.

From Figure 11 it also appears that a is the diagbnal of a rectangular

8



parallelepiped whose edges have lengths |a, ], [as] and Ja,]. Hence the
magnitude a of the vector a is given by the relation

(6.1) | a=Valtaltel.
. From the figure it also appears that |
(6.2) - & =PO+RR+RS.

Now the vector P is parallel to1,. Because of the definitions of 4,
and of the product of a scalar by a vector, we then have the 1elation
PQ = ad,: Similarly QR =a,i, and RS = a,i. Substitution in (6.2)
from theae relations yields .

(63) & = o, +ogy +aydy.
This relation expresses the vector & as a linear function of the unit
vectorsi, i, and i;. We note that the cocfficients arc thc components
of a. '
Theorem. The components of the sum ofa number of vectois ar
equal to the sums of the components of the vectors. .
Proof. Weoonndertwovectonaandbmﬂx componecats i AR a,,
b, b, and b;. Then
. a= %+¢J.+¢;iu
b = bk, +byly+byd, .
Addition of both sides of these equations leads to the relation

b = odtalytadHih+bdgtbdy.

Now the sum of a number of vectors is independent of the order in
which the vectors are added, by Theorem 1 of § 2. Hmcewemay
write the above equation in the form

8+b = o+ by, +asdy +bela +aple+boly
By'the theorem in § 3 we may then write this in the form .

a+b = (a,-+b)k+ (a3 +y)ia -+ (Baty)iy.
- Hence the components of a-+b are a,45,, a,+5, and a,+5,. This_

-~ proves the theorem when two vectors are added. 'I‘heproofn similar
whenmomthantwovecmareadded

90



‘7. The scalar preduct. Let us consider two vectors a and b with
magnitudes a and b, respectively. Let « be the smallest nonnegative
angle between a and b, as shown ip Figure 12. Then 0° < a < 180°.

1] .

" Figure 12
The scalar ab cos a arises quite frequently, and hence it is convenient

to give it a name. It is called the scalar product of  and b. It is also
“denoted by the symbols a- b; and hence we have

(7.1) ( . a-b =abcosx, -

The scalar product is sometimes referred to as the dot product.
Ifthe components of a and b are denoted by 4,, ay, 45, b,, by and b,
in the usual manner, the direction cosines of the dlrccuons ofaand b
are respectively
G, Gy &, by by by
. a a a’> b b b
By a formula of analytic geometry, we then have

v - _ bl das bl as b’
cos o = + + 2 b
Substitution in (7.1) of this expression for cos « yields
(7.2) - a-b = aib;-+asby+asb,.

This relation expresses the scalar product of two vectors in terms of
the components of the vectors.
77uorem 1. The scalar product is commutative; that is, w

ab=Dhb-a.
Proof. Because of (7.2), we have

a-b = ab,+a,by+azby,
b ‘& = byay +-byty 4 byas .
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