RESEARCH MONOGRAPHS IN PARALLEL AND DISTRIBUTED COMPUTING

Péter Kacsuk
Multilogic Computing

Execution Models
of Prolog for
Parallel Computers

RESEARCH MONOGRAPHS IN PARALLEL AND DISTRIBUTED COMPUTING * . .

Péter Kacsuk
Multilogic Computing

Execution Models
of Prolog for
Parallel Computers

Pitman, London

The MIT Press, Cambridge, Massachusetts

PITMAN PUBLISHING
128 Long Acre, London WC2E 9AN

© P. Kacsuk 1990
First published 1990

Available in the Western Hemisphere and Israel from
The MIT Press
Cambridge, Massachusetts (and London, England)

ISSN 0953-7767

British Library Cataloguing in Publication Data
Kacsuk, Péter
Execution models of Prolog for parallel computers.
(Research monographs in parallel and distributed
computing, ISSN 0953-7767) i
1. Computer systems. Parallel programming
I. Title 1II. Series ,
004'.35

ISBN 0-273-08806-8

a-

Library of Congress Cataloging-in-Publication Data
Kacsuk, Péter.
Execution models of Prolog for parallel computers / Péter Kacsuk.
p. cm.—(Research monographs in parallel and distributed

computing)
Includes bibliographical references.
ISBN 0-262-11149-7 .

1. Prolog (Computer program language) 2. Parallel processing

(Electronic computers) 1. Title. 1II. Series.

QAT76.73.P76K33 1990

005.13'3—dc20
All rights reserved; no part of this publication may be reprbdul;ed,
stored in a retrieval system, or transmitted in any forg or by any
means, electronic, mechanical, photocopying, reoory?;ng or
otherwise without the prior written permission of tlje publishers or
a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licencing Agency Ltd, 33-34 Alfred Place,
London WC1E 7DP. This book may not be lent, res6ld, hired out or
otherwise disposed of by way of trade in any form of bifidigg or cover
other than that in which it is published, without the prior consent of
the publishers.

Reproduced and printed by photolithography
in Great Britain by Biddles Ltd, Guildford

FOREWORD

I am pleased to be able to write a preface to this monograph, as it represents two mile-
stones in this series. On the one hand it is the first manuscript we have published from an
Eastern European source, and with the opening up that has occurred through the recent
initiatives in perestroika, 1 hope that it will be the first of many. As this monograph
demonstrates and as I have discovered myself through recent travels to Eastern Europe,
research in parallel processing there is very strong since it is quite rightly considered a
growth area in computing technology.

The volume itself considers the area of parallel implementation of logic programming
languages through Prolog, another first in this series, with some previous and forthcoming
volumes showing a western preference for a functional style of declarative parallel
programming.

The text itself is easily read and introduces parallel implementations of Prolog including
some novel schemes developed by Kacsuk himself. These include an SIMD style
implementation based on sets of solutions, and, more importantly, at least so far as [am
concerned, the ECDAM model of Prolog interpretation, which is truly distributed. The
latter was proposed as a means of distributing a Prolog search space over a set of
homogeneous processors and was implemented in occam 1.

More recently we have extended this model at Southampton University in occam 2, so
that it now handles recursion and cut in a fully distributed manner. We have also made
proposals for optimising communication through the use of structure stores. However, our
primary interest in this model is in implementing Prolog over the VSA virtual machine
architecture, which provides code generation for SIMD and MIMD architectures using
data parallelism. The ECDAM model is well suited to this implementation paradigm as
the search tree and structure store can both be considered as distributed or parallel data-
structures, and load balancing—a critical requirement for this model—comes for free with
a good implementation of the VSA.

For those interested, I will be happy to disseminate our further developments to the
ECDAM model, and finally, something to watch out for . . . details of the VSA standard
definition will soon be published as a monograph in this series.

Chris Jesshope
Southampton University

ACKNOWLEDGEMENT

The research presented in this book was done in the Theoretical Laboratory of the
Computer Research Institute and Innovation Center (SZKI) led by Bélint Domolki
and in the DAP Support Unit (DAPSU) of the Queen Mary College of the University
of London led by Dennis Parkinson.

I owe a special debt to Bélint Domolki who has supported my research and made it
possible for me to make contact with researchers outside of Hungary.

I am gratetful to Dennis Parkinson who invited me to Queen Mary College and
ensured all the conditions needed for fruitful research work.

Both institutes were very generous with their resources, human and otherwise. The
members of my department, Péter Garami, Tamds Dénes, Andrds Domdn, Istvdn
Marosi and many members of the Prolog staff of SZKI, Péter Szeredi, Péter Koves,
Zsuzsa Farkas, Edit Sdntdné-Téth, Ivdn Futd, all gave me a great deal of help. Péter
Garami provided constructive critisism, which often forced me to search for better
solutions.

The whole staff of DAPSU helped me to adapt myself to a perfectly new
environment. Special thanks are due to Andrew Bale who assisted me in the
implementation of DAP Prolog on the DAP.

I am grateful to Maarten van Emden and Mantis Cheng who invited me to the
University of Waterloo so that I could implement my ideas on their iPSC computer. I
would also like 10 thank AL Sary and Lindsay Errington who cooperated with me in
the implementation of the Extended Cellular Dataflow model on the iPSC, and Niel
Ostlund who made it possible for us to use the iPSC.

T also benefited by being in continuous correspondence with Andrzej Ciepielewski
of the Royal Institute of Technology, Stockholm and Michael Ratcliffe of European
Computer-Industry Research Centre, Munich.

My deepest thanks are due to my wife Livia and children Zs6fia, Zolt4n and Déniel
for having put up with the occasional disadvantage of my research.

GLOSSARY

Al
DAP
DST
ECDAM
ETF
FIN
GDM
GGF
HPS
ILN
LRDF
MCU

PE-
PPAM
RDBS
SIMD
SPP

Artificial Intelligence

- Distributed Array Processor

Dataflow Search Tree

Extended Cellular Dataflow Model
Extended Transition Function

Fast Interconnection Network

Generalized Dataflow Model

Guarded Goal Form

Homogeneous Processor Spaces

Intelligent [',ogic Network

Left-Right selection strategy, Depth First search strategy
Master Control Unit

Multiple Instruction Multiple Data computer
Processing Element

Parallel Prolog Abstract Machine

Relational Data Base Systems

Single Instruction Multiple Data computer
Sequential Processor Pool

"ONTENTS

ACKNOWLEDGEMENT

GLOSSARY

INTRODUCTION 1

I PARALLEL PROCESSING 7

1.1

1.2

1.3

Classification of Parallel Computers 7

1.1.1 SIMD Computers 9

1.1.2 MIMD Computers 10

1.1.3 Homogeneous Processor Spaces 13
Classification of Parallel Programming Languages 14
1.2.1 Implicit Parallelism 15

1.2.2 Explicit Parallelism 16

Problems with Parallel Computers 19

LOGIC PROGRAMMING AND PROLOG 23

2.1

2.2
23
2.4

© 2.5

Semantics of Logic Programs 23
2.1.1 Declarative Semantics 23
2.1.2 Operational Semantics 24
Prolog 26

Pure Prolog 28

Sequential Prolog Interpreters 28
2.4.1 Static Data Structures 29
2.4.2 Dynamic Data Structures 31
2.4.3 Structure Handling Methods 32
2.4.4 Interpretation Process 33
2.4.5 Unification Algorithm 34
Sequential Prolog Compilers 37

PARALLEL PROCESSING OF LOGIC PROGRAMS 41

31

3.2

33
3.4

Classification of Parallel Prolog Interpreters 41

3.1.1 Level of Parallelism 41

3.1.2 Type of Tree Representing the Search 44

3.1.3 The Control Strategy 48

Memory Management of Parallel Prolog Interpreters 62
3.2.1 Organization of Binding Environments 62

3.2.2 Structure Handling Methods 67

Classification of Logic Programming Languages 68

Parallel Architectures for Implementing Logic Programs 70

4 A PARALLEL PROLOG ABSTRACT MACHINE 73
4.1 The Extended Cellular-Dataflow Model (ECDAM) 73
4.2 The Parallel Prolog Abstract Machine (PPAM) 80
4.3 OR-Parallel Execution 85
4.3.1 Lazy OR-Process Control Strategy 87
4.3.2 Eager OR-Process Control Strategy 94
4.4 AND-Parallel Execution 96
4.4.1 Ordering of Goals 97
4.4.2 Forward Execution 98
4.4.3 Backward Execution 99

5 ENHANCEMENT OF PARALLELISM 103
5.1 Full OR-Parallelism 103
5.1.1 UNIFY Operator 104
UNIT Operator 105
OR Operator 106
AND Operator 106
BUILTIN Operator 109
5.1.6 Example 109
5.2 AND-Parallelism 110
5.2.1 Ordering of Goals 111
5.2.2 Forward Execution 114
5.2.3 Backward Execution 116
5.2.4 Example 118
5.3 Review of the Extended Cellular-Dataflow Method 119

(BRSSO)

1.
1.
1.
1.

W hh i

6 MAPPING OF PPAM CCGDE ON PROCESSOR ARRAYS 121
6.1 Static versus Dynamic Mapping 121

6.2 Folding Mapping of PPAM Code on Transputer-Arrays 126

6.3 Mapping of Recursive Procedures 130

6.4 Decrease of the Communication 131
6.4.1 Partitioning Mapping of PPAM Code 131
6.4.2 Scaling the Model 133

6.5 Implementations of ECDAM 135
6.5.1 T-Prolog Implementation 135
6.5.2 The Occam Implementation 136
6.5.3 The iPSC Implementation 137
6.5.4 The DAP Implementation 137

6.6 LOGFLOW: A Parallel Logic Machine 138
6.6.1 The Architecture of LOGFLOW 138
6.6.2 The Mapping Algorithm for LOGFLOW 140
6.6.3 Distribution of Work in LOGFLOW 140
6.6.4 Memory Management in LOGFLOW 141

7 DAP PROLOG 143

7.1 The Architecture of the DAP 143

7.2 The General Concept of DAP Prolog 145

7.3 SetMcde 148
7.3.1 Principles of Set Mode 148
7.3.2 Set Operations 149
7.3.3 Defining Sets and Using Set Mode 154
7.3.4 Programming Style 155

7.4 Array Mode 161
7.4.1 Principles of Array Mode 161
7.4.2 Array Expressions 163
7.4.3 Dimension Transformation 163
7.4.4 Assigament in Array Mode 165
7.4.5 Unification in Array Mode 167
7.4.6 Communication with the Normal Mode 167
7.4.7 Access to Array Elements 168
7.4.8 Transformation of DAP FORTRAN Programs into DAP Prolog 169

8 IMPLEMENTATION PRINCIPLES OF DAP PROLOG 171
8.1 Ordinary Prolog Implementation 171
8.1.1 Static Data Structures 173
8.1.2 Dynamic Data Structures 173
8.1.3 Interpretation Process 174
8.2 Implementation of Set Mode 175
8.2.1 Static Data Structures 175
8.2.2 Dynamic Data Structures 176
8.2.3 Interpretation Process 180
8.3 Implementation of Array Mode 182

9 CONCLUSION AND FUTURE WORK 185
9.1 HPS and ECDAM 185
9.1.1 OR-Parallelism 185 °
9.1.2 AND-Parallelism 186
9.1.3 Implementations 187
9.1.4 New Developments 188
9.2 DAP and DAP Prolog 189
9.2.1 Prolog and DAP Prolog 190
9.2.2 RDQLs and DAP Prolog 190
9.2.3 DAP FORTRAN and DAP Prolog 191
9.3 Combined Use of ECDAM and DAP Prolog 192

REFERENCES 195

APPENDIX 1 T-Prolog Implementation of ECDAM 205
APPENDIX 2 Occam Implementation of ECDAM 233
APPENDIX 3 DAP Implementation of ECDAM 255

APPENDIX 4 Exaniples for Array Mode of DAP Prolog 269

INTRODUCTION

In the field of artificial intelligence and particularly in programming expert systems,
Prolog and other logic programming languages have become widely accepted and
popular tools. On the other hand some weaknesses of Prolog became evident when it

was used for solving large practical problems:

o Due to the recursive programming style of Prolog the size of memory required to
solve a problem rapidly increases with the search space. |

o The resolution mechanism of Prolog requires a long search time in case of large
data bases which results in an unacceptable response time.

o The efficiency of solving numerical subproblems within the framework of logic

programs is extremely low.

Recent advances in micro-electronics, particularly in the area of VLSI fabrication,

has solved the first problem by offering large size memories at a reasonabg:pﬂ'c&and

- -
also made experimentation with mgassively parallel computers a reality. Parallelism is
seen in Artificial Intelligence as an absolute necessity, in order to solve the second.
problem, and consequently a lot of researchers are now focusing on the development
of these new architectures and the development of radically new computational
paradigms to utilize the parallelism inherent in the problems being solved and
~ available in the architecture level.

The main motivation of the research described in this book is derived from the
"semantic gap" between the logic programming languages and the architecture of the
parallel computers. On the one hand there is a widely accepted, popular programming
language for solving Artificial Intelligence problems and on the other hand there are
available parallel computers. The main question raised by the semantic gap is how to
implement logic programming languages on parallel computers in an effective way
capable of exploiting the inherent parallelism of logic programs and utilising the
parallel architecture offered by the parallel computers.

One of the main advantages of logic programming languages can be described by an
equation introduced by Kowalski {[Kowa79]:

algorithm = logic + control

expressing that in case of the logic prbgrémming languages the programmer should
not bother about the control of the prograrﬁ? it is sufficient to describe the logic of the
problem to be solved. Standard, sequential implementation techniques of Prolog rely
on the so-called LRCF (Lsft-to-Ri ght Depth-First) control. The objective of research

for parallel implementation of logic programs is to discover control strategies different.

from LRDF which allow the parallel execution of logic programs. .

The majority of proposals have been aimed at implementing logic programs on
shared memory multiprocessors where the number of processors is limited by the
access mechanism of the sharéd memory. Another large group of researchers has
been dealing with the question of how to implement 1dgic programs on computer
networks. A relatively small number of proposals have considered massively parallel
computers as the target architecture for logic programs. There have been no attempts
at all to exploit SIMD architectures for this purpose, though SIMD machines can help

*. to solve the third problem of logic programs, namely the numerical inefficiency.

In this book two research projects are described. The first was intended to explore
the possibilities of implementing logic programs on MIMD, non-shared memory type,
massively parallel computers containing 100-1000 processing elements, which are
identical and connected in a regular, neighbourhood oriented communication network.
For brevity this aggregate of processors will be called Homogeneous Processor Space

- (HPS) in the book. The second project investigates the possibility of implementing

Prolog on a typical SIMD machine, called Distributed Array Processor (DAP).
Considering the research for parallel implementation of logic programs three levels
of investigation can be distinguished [SyWe85]:

o The execution level which involves the underlying parallel computer architecture.

o The model level which describes how the parallel processes are created and how
their communication and synchronization is organized.

o The language level which decides whether explicit or implicit parallelism is
applied. . - "
The two research projects described in the book explore these levels in the

following way:
|

-

a) Parallel Prolog Abstract Machine (PPAM)

execution level: ~ Transputer-like arrays
model level: Extended Cellular-Dataflow Model (ECDAM_)

language level: Pure logic programs
b) DAP Prolog, a parallel variant of Prolog on the DAP

execution level: AMT"s Distributed Array Processor (DAP)
model level: * Set- and array-oriented execution models
language level: Parallel extension of Prolog called DAP Prolog

The objectives of the research described in this book are as follows:

o To define a parallel computational paradigm (Extended Cellular-Dataflow Model)
to overcome the semantic gap between the logic programming languages and the
architecture of massively parallel computers.

o Based on the parallel computational paradigm to create a Parallel Prolog Abstract
Machine (PPAM) as a general starting point for the implemengation of-logic
programming languages on parallel computers.

o To exploit the different types of parallelism (Search, OR and AND parallelism) of
logic programs on parallel computers by means of the Extended Cellular-Dataflow
Model.

o To define a parallel logic machine, which is efficient for executi ng in parallel logic
programs based on the Extended Cellular-Datafiow Model.

o To explore the possibilities of implementing logic programming languages on
array processors, like the DAP. To invent parallel implementation techniques for
the effective execution of Prolog on the DAP. |

o To define a parallel extension of Prolog which is able to utilize the processor
aggregate of the DAP for effective solution of numerical subproblems within logic
programs. '

The book is organized in three main parts. The first part is an overview of the -
results of other research projects. It encompasses Chapters 1, 2 and 3. Its purpose is
to give an overa!! presentation of the state of the art in parallel processing and in its

-

application for implementing logic programming languages on parallel computers.

Chapter 1 gives an overview of parallel computers, languages and computational

paradigms. Chapter 2 introduces the basic notions of logic programming and shows

the basic implementation techniques of Prolog for sequential computers. Chapter 3 is

a description of the parallel implementation techniques proposed so far for;
A imf;lementing logic programs on parallel computers.

The second part consists of Chapter 4, 5 and 6 and describes the results of the first
research project. Chapter 4 describes the Extended Cellular-Dataflow Model for
parallel interpretation of logic programs and the Parallel Prolog Abstract Machine for
implementing logic prograrﬁs on parallel computers. Restricted OR- and AND-parallel
interpretations of Prolog are shown in Chapter 4 based on ECDAM. Chapter 5
introduces some improvements into ECDAM for achieving higher level of parallelism.
Chapter 6 describes some mapping techniques of PPAM for transputer-like arrays and
proposes an HPS architecture, called LOGFLOW, for parallel implementation of

~ Prolog programs. Four different implementations of ECDAM are summarized in
Chapter 6 and three of them are described in detail in the Appendices. Appendix 1
describe the T-Prolog implementation of ECDAM for Prolog programmers who are
interested in making experiments with the model. Appendix 2 contains the Occam
source code of a restricted version of ECDAM for those interested in developing
Prolog on multi-transputers without shared memory. Finally Appendix 3
demonstrates how the same model can be implemented on an SIMD machine giving
the DAP FORTRAN code of the PPAM interpreter. ‘

The third part consists of Chapter 7 and 8, and presents the results of the second
research project. Chapter 7 defines DAP Prolog as a parallel extension of Prolog for
the Distributed Array Processpr and describes the set- and array-oriented execution
models of DAP Prolog. Chapter 8 presents the implementation techniques used for
DAP Prolog on the DAP. Appendix 4 contains a simple DAP Prolog program
demonstrating the anay-oriented execution mode of DAP Prolog.

This book is intended for advanced workers in parallel logic programming and for
those investigating parallel programming paradigms and symbolic programming on
novel computer architectures. It can also be recommended to those who are getting
started in parallel logic programming who have either a logic programming or parallel
computer background.

How to read the book? The reader is assumed to have a basic general knowledge of
Prolog though no particular Prolog programming experience is required. Advanced

s

workers in parallel logic programming can skip the first three chapters which are
written for beginners in the field. The second and third part of the book are
independent of each other so readers interested in only MIMD or SIMD machines can
read-only the relevant chapters. The book can be read without the appendices.
Jowever the appendices will assist those who found a particular part of the book
interesting and wish to gain a deeper knowledge about it.

A
1 PARALLEL PROCESSING

There are many application areas of computers such as artificial intelligence, neural
network simulation, meteorology, and image processing, that require a large amount
of processing power in order to obtain a usable result for the problem being solved. |
Though the speed of the conventional computers keeps increasing their architecture
limits them by a basically serial approach to computation based on the von Neumann

organization. These von Neumann principles include:

o A single computing element incorporating a processor, communications and
memory. ,

o Memory organized as a linear chain of fixed-size memory cells

o Data and instructions not distinguished in memory.

o Application of sequential, centralized control of computation

Advances in the design and fabrication of VLSI circuits has enabled one to build
computers consisting of hundreds or thousands of processing elements [Fahl83],
[StMi84], [Hill85]. The main novelty of these massively parallel computers is that the
processing elements (PEs) are able to work cooperatively on the solution to a single
problem. However this feature highlights a most difficult problem - how to organize
the computation so that the large number of processing elements can effectively be
utilized during computation. To help solve this problem many different computational
paradigms and novel computer architectures have been proposed or built which are
radically different from the von Neumann organization.

In this chapter a short overview of parailel computers is given, based on the three
main aspects of parallel processing :

o Parallel computational paradigms
o Parallel computer architectures
o Parallel programming languages

1.1 Classification of Parallel Computers

The most generally accepted classification of parallel computers was given by Flynn
[Flyn72], who introduced the distinction between parallel computers based on the

-

