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Preface

The continuing worldwide search for new and useful materials has ensured
that the solid state is one of the major growth areas of chemistry and there
is a2 widely perceived need for good, up-to-date textbooks in the area. This
hook, like the previous volume which dealt with Techniques, is aimed at
final-year honours and postgraduate students who may be planning a career
in the field. As with Volume 1, we chose a multiauthor approach in order
that our account should be more authoritative, and we are delighted and
encouraged by the very positive response from colleagues who were invited
to contribute. The book deals first with bonding in solids, and then focuses
on severa! classes of important inorganic materials. Whilst we have been
able to cover many key areas, including superconductors and zeolite
catalysts, cur coverage is not as comprehensive as this wide-ranging subject
dessrves. Significant omissions that we hope to fill in a subsequent edition
inciude optoelectronic and magnetic materials and solid electrolytes. Never-
theless, we hope that readers will find this a useful and interesting book, and
that it will be perceived as a valuabie completnent to Volume 1.

Oxford . AK.C.
ccember 1091 F.D.
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1 Synthesis of solid-state
materialst

J. D. Corbett

1.1 Introduction

The fields of solid-state chemistry and physics are important because the
chemical and physical properties of infinite non-molecular solids are so
different from those associated with discrete molecules in solids or, as more
frequently studied, molecules or small ions in solution. Likewise, the first
requirement for a solid-state study, the synthesis and some characterization
of the material of interest, usually involves techniques and concepts that are
very different from those conventionally applied in molecular studies. The
preparation of ‘pure’ and well-defined, and perhaps even novel, inorganic
phases is the subject of this chapter. Some of the needs and opportunities in
solid state synthesis have been outlined by Warren and Geballe.'

Our approach will be to describe the classes of reactions possible, the
difficulties which are characteristically associated with each (and the means
for avoiding some of these), and some bases for the selection of a synthetic
method; although clearly we cannot go further than to categorize com-
pounds and reactions with a few examples. Many properties of solid
materials will be important in these considerations, but none will be more
significant than the rate of diffusion or mass transfer within, and between,
solid particles. Solid-state reactions and the successful synthesis of single-
phase, homogeneous products are often very much at the mercy of these
intrinsically slow (but still highly variable) processes. The use of high
temperatures in synthesis is a common means of improving these rates, but a
consequence of this is that much solid-state chemistry at lower temperatures
is lost. One may to some extent alleviate these restrictions on reactivity
through the use of liquid- or gas-phase materials with their intrinsically much
higher mobilities and shorter effective path lengths, but sometimes only with
some sacrifices. Vaporization equilibria which allow the transfer of solid
phases through the vapour state will be especially useful here. Other means of

‘ t This resecarch was supported by the Office of Basic Energy Sciences, Materials Sciences
Division, US Department of Energy.



2 Solid state chemistry. techniques

achieving reactivity as well as factors in the choice of reactants will also be
considered.

Some mechanistic aspects of reactions between real solids are important
for understanding later considerations. For more details the reader should
see Steele (Vol. 2),7 or the more extensive Hannay® or Schmalzried* volumes.
The relevant process is the so-called chemical diffusion, that of a substitu-
tional component under composition gradient which takes place via vacant
lattice and interstitial sites. As a reaction this is strictly only pertinent to solid
solutions, in exchange reactions, for example. A simple but informative
description by which a third phase is formed by diffusion can be visualized as
follows. For a reaction of the type M,Y(s) + LY(s)=>M,LY (s), presume that
the diffusion of M and L are responsible for the mass transfer, the common
anion serving as a fixed reference matrix. An interface between M,Y and LY
would be transformed to the intervening product M,LY, by the scheme

M,Y M,LY, LY

2MH+
PUSSEERE. N

L2n+
<

the indicated fluxes being fixed by electroneutrality. This reaction now
includes the transfer of M and L across the phase boundaries together with
the chemical diffusion of M and L as shown through the product phase to the
opposite boundary. Unfortunately real synthetic reactions of this character
are even more complicated, and c¢onsequently are less well studied and
understood, so that making new phases in all-solid reactions is in practice
more empirical. Because material transfer is facilitated by large areas of
interphase contact, small diffusion pathlengths and minimum pore volume, it
is customary to employ powdered reactants, usually in a compressed form.
But real systems also involve the generally much more rapid diffusion on
surfaces and along dislocations, and both of these also become more
important in powdered samples. Of course the product is also apt to be
defect-laden, which will increase reactant mobilities therein, and changes in
grain boundary area and free volume usually also occur during the reaction.
On the other hand, some products may form a compact and cohesive layer
through which there is negligible reactant diffusion so the reaction virtually
stops (tarnishing or surface blockage).

Nucleation of the new phase in most systems is not at all well understood.
Nucleation in simple decomposition reactions is well known to be favoured
at dislocation and defect sites. But in some oxide systems, anion defects are
highly organized into crystallographic shear planes, and oxidation or reduc-



Synthesis of solid-state materials 3

tion by H,/H,O mixtures occur by motion of these planes, with the reactant
and product phases growing in fixed orientation (topotaxy).’

1.1.1 Reaction types

Our discussion of the many aspects of synthesis will be helped if we first
identify classes of possible reactions and their individual advantages and
problems. One common group of reactions involve gases except for one solid
reactant and the desired product D(s). The most common is the metathetical
or exchange reaction (1.1)

A(g)+ B(s)-C(g) + D(s) [e.g. CO+MnO,—»CO,+MnO] (L.1)

while the related combination and decomposition reactions (1.2) and (1.3),
which lack C or A, are also useful,

A(g) + B(s)-D(s) (1.2)
B(s)-C(g) + D(s). (1.3)

The use of gaseous reactants naturally facilitates the conversions, while
problems may arise with these routes from the dynamic (non-equilibrium)
nature of processes (as usually carried out) as well as diffusion limitations as
D forms on the surface of particles of B. Some mechanistic details of
nucleation and growth of D have received substgntial attention in reaction
(1.2) for the oxidation of metals and for (1.3), in decomposition reactions.?
Synthesis with condensed phases may sometimes be conveniently per-
formed ‘neat’ (i.e. on stoichiometry to yield a single phase) if one reactant is
liquid,
A+ B(s,h—-DXs) [e.g. 2NdCl, + Nd—3NdCl,]. 1.4)
Not only does liquid A provide greater contact and mobility but it may also
dissolve some D and prevent blockage. A particularly facile reaction occurs if
the reaction can be run above the congruent melting point of D (see Section
1.2.3). Otherwise, diffusion limitations may again appear when the amount -
of A(l) becomes small or an intermediate solid forms, particularly if it occurs
along the B—»D or A—D pathway.
A more conventional solvent may also be employed to give a different
version of (1.4), namely

A(l,s)+B(l, 5) sobvent D(s). (1.9

Use of a molecular or melt solvent, sometimes at elevated temperatures,
speeds the reaction by bringing A and B together, presuming the solvent can
be removed subsequently. Solvent-assisted reactions that are run very much
below the melting point of the product will often yield a very finely divided,
even amorphous material, which may be an advantage or a disadvantage
depending on the intended use.
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A few possibilities remain if the above reaction types are not feasible or
suffer from incomplete conversions, side reactions, or contamination.
Obviously, volatility of the product allows a simple separation from the
contaminants. Thus the complex and incomplete reaction

A1,O4(s) + 3C(s) + 3CL(g)— 2AICI(s) + 3CO(g) (1.6)

and its various analogues present few complications because the product

AICI, is volatile at the reaction temperature (and much below), and re-

sublimation if necessary gives a very pure product. On the other hand, an all-
solid reaction

A(s) + B(s) »C(s), [e.g. CaO + TiO,-CaTiO,] (.7

will in the absence of any volatility probably be orders of magnitude slower
and thence will present greater difficulty in achieving a respectable yield and
purity. Reactions of this character are avoided whenever possible and (if not
avoided) may utilize some combination of intimate mixing, even on the
atomic scale, high temperature or high pressure or an added flux. Of course
the flux remains as an impurity if not later dissolved or volatilized.

A second means of facilitating both a reaction as well as phase separation
and purification amounts to the use of ‘gaseous solvent’, a reagent that
reversibly converts a non-volatile reactant or product to a gaseous species.
This process goes under the general name chemical or vapour phase transport
(VPT) (see Section 1.3). Thus an all-solid reaction would be facilitated by
any reagent X which carries otherwise non-volatile A to B or vice versa, that
is

A(s)+ X(g)=AX(g) (1.8)
followed by
AX(g) + B(s)—~C(s) + X(g). (1.9)
An example is the formation of the spinel MgCr,O, according to - B '
MgO(s) + Cr,0(s) B MgCr,0,(s) (1.10)

where added O, literally carries Cr,0, to MgO through the reversible
formation of gaseous CrO,. Diffusion of this Cr,0, into the MgQ and
nucleation of the product are still required. Obviously this process provides a
means for purifying Cr,0, alone by taking advantage of the temperature
dependence of the last reaction, a process which would probably provide
excellent single crystals of Cr,0, as well.

The foregoing presentation implies that only reactions that give single-
phase products, or fearly so, are found or need be considered. Though this is
desired for most subsequent characterizatjon measurements it is unfortuna-
tely often far from practice. The investigator sometimes must settle for a
product that is far from ideal. Although some needs can probably be met



