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0  PREFACE

Research on causal modeling has received strong attention in the last two
years. Johan de Kleer received the ‘““Computers and Thought Award’’ at the
IICAI-87 in Milan for his work on qualitative physics, and the Special Volume
on Qualitative Reasoning about Physical Systems of the Artificial Intelligence
journal has become a ‘“‘classic.” Qualitative physics—describing function and
behavior of technical systems in a qualitative way—is only one area of the causal
modeling field. Reasoning from firsi principles, reasoning from structure and
behavior, and causal reasoning are often associated with the term ‘‘causal mod-
eling.” In addition, second-generation expert systems arc trying to integrate
associative ‘‘surface’’-levei reasoning with causal ‘‘decp”’-level reasoning. This
“deepening’’ of systems has stimulated a great amount of discussion regarding
the “‘deepness’ of systems and the interrelations between causal models and
deep systcms.

Seeing this enormous interest in research on building Al programs with an
adequate understanding of the systems they are modeling—both for technical
and for biological systems—we decided to coilect articies from around the world
into a single volume. This book should report how far research efforts have
brought us towards causal AI models in practice. In the past, great emphasis has
been put on basic methods of causal modeling. Causal Al Models should demon-
strate how 1o extend and utilize these methods to build applied systems. It should
give us examples from the application of the technology, with first insights
drawn from these applications. Naturally, the applied systems will bring up new
problems which will lead us to improve theoretical results and to obtain new
ones. In July 1988, I started inviting researchers to contribute to this collection.
The response was very positive. I am now able to present Causal Al Models:
Steps Toward Applications, which gives an excellent view on research results in
the field. \

Causal modeling is a rich field with many dimensions, as demonstrated by
the many aspects addressed by the papers collected herein. All these aspects,
and perhaps others, must be explored if we want to arrive at a full picture of the
capabilities and implications of causal models. I hope this book will help to

broaden our view and, finally, will help us to build applied systems with greatly
increased power and competence.

Werner Horn
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[ INTRODUCING META-LEVELS
TO QUALITATIVE REASONING

BERT BREDEWEG
Department of Social Science Informatics, University
of Amsterdam, 1016 BS Amsterdam, The Netherlands

Current approaches 0 qualitative reasoning are largely based on a fixed framework for
modrling the physical world and concentrate on the reasoning methods that support qualita-
tive reasoning. This paper argues thar we need several levels of abstraction and different
viewpoints on how to model the physical world, in order to create systems that reason about
the physical world in a flexible way. We present a framework that integrates the three basic
approaches to qualitative reasoning and show how this framework can be used as a basis for
a flexible qualitative reasoning system.

INTRODUCTION

Despite the fast growth of research in qualitative reasoning (Bobrow, 1984),
building qualitative models of systems from the physical world is still a major
bottleneck. Problems such as finding the right level of abstraction and the appro-
priate set of modeling primitives are largely left up to the creativity of the
designer. In fact, it is often the case that the resulting model is quite trivial,
whereas the process of arriving at a particular model is highly complex. It is this
modeling process that we want to support and to make more flexible and more
closely related to commonsense reasoning. With this long-term perspective in
mind, in this paper we address the question of how a system can perform quali-
tative reasoning with a variety of ontological models of the physical world.

The contents of this paper are structured as follows. In the next section we
describe a number of problems, arising from building qualitative models; that
we would want our qualitative reasoning approach to be able to deal with. In the
third section we describe the framework that we have developed for qualitative
prediction of behavior. This framework integrates the three best known ap-
proaches to qualitative reasoning. In the fourth section we explain how different
operationalizations of domain knowledge within this framework allow us to
solve the problems mentioned in the second section. Finally, in the conclusions

Bob Wiclinga, Martin Reinders, Zeger Karssen, Huub van der Wouden, and Paul de Greef provided
helpful discussions and obscrvations on the research reported here,

This decument i part of a research project funded by the Esprit Programme of the Commission of the
European Communitics as preject number 1098 and of a research project funded by the Foundation of Knowl-
edge Based Systems (SKBS), which is suppoited by the Dutch Government through the SPIN program.

Copyright © 1988 by Hemisphere Publishing Corporation 1(85]
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we summarize the results and point out some of the research issues that are still
open.

OBJECTIVES TO BE ADDRESSED

While going through a number of modeling exercises, we formulated the
following conclusions:

1. When a system can be modeled with one particular approach to qualita-
tive reasoning, it can also be modeled with another approach to qualitative rea-
soning (multiple models).

2. It is sometimes desirable to use modeling primitives from different ap-
proaches to qualitative reasoning within one model (integrated models).

3. It is sometimes desirable to use different levels of detail within one
model (levels of abstraction).

Each of these issues is described in more detail in one of the following
sections.

Multiple Models

The multiple models issue can be illustrated by the two-tanks problem (Fig.
1). A process-centered model for this system has been described by Forbus
(1984) and a constraint-centered model has been described by Kuipers (1986).
We assume that the reader is familiar with these models. In Bredeweg (1989) we
have, among others, déscribed a component-centered model (de Kleer and
Brown, 1984)-for the two-tanks system. In this component-centered model two
containers and a valvelike connector are distinguished. Each of them has four
qualitative states. For the containers they are given in Fig. 2. A container can be
steady; which means that the total amount of liquid remains constant;* the total
amount can be decreasing or increasing; and the container can be empty, which
means that there is no liquid present in the container. Each of these behaviors

*To keep the model simple we assume that no liquid flows in or out at the top of the container.

FIGURE 1. Two connected tanks.
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Steady Decreasing Increasing Empty

FIGURE 2. A component miode! for the two-tanks system—part 1.

has been modeled with a separate qualitative state. Note that in this model the
amount of liquid, and how it changes, has been the guideline for defining the
qualitative states. Other parameters might have been used, which would prob-
ably have resulted in a different model.

For the valvelike connector a sinilar set of gualitative states has been de-
fined (Fig. 3). The amount of liquid is steudy, flows from left 10 rigin, flows
from right to left, or there is no liquid (einpry). 1t is easy to see how the cross-
product of these qualitative states vesults in 64 overall state descriptions (most of
thern inconsistent, of course) and how the final behavior can be derived from
this as a sequence of valid state descriptions.

Obviously, the three models nentioned above (process, constraint, and
component-centered) differ and can be classified as being good, bad, or some-
where in between. However, this classification can be done only by using the
criteria provided by a particular approach. A liguid flow process 1s an incorrect
model when judged by the no furnction in structure principle, but it is a very
attractive model from a cognitive modeling point of view. Note that there are no
fundamental arguments to favor a particular model.

Apparently none of the approaches models qualitative reasoning in its full
extent: that is, there are qualitative models, based on the ontology provided by
one approach, that cannot be reasoned about by another approach. Moreover,
humans can reason with models based on different ontologies. If an approach to
qualitative reasoning is to be more than just a special-purpose tool. it shouid be
able to support this reasoning. It should have knowledge about these different

models. It should know how these models are related to each other and know how
they can be used.

Integrated Models

The second issue, the use of integrated models, can be illustrated by a model

of the refrigerator (Fig. 4). The behavior description that goes along with this
model is the following:*

*This Jescription is taken from Sesam Technische Encyclopedie by T. Bosch and G. Keuring (1979). We
translated the Dutch description inte the English one given here.
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Steady Left-to-right Right-to-faft Empty

FIGURE 3. A component model for the two-tanks system—part 2.

By a refrigerator based on the compression principle, gas is sucked out of the
evaporator and compressed by the compressor. The compressed gas is then trans-
formed into liquid in the condenser by cooling it with air or water, Next, the liquid
goes through the throttle valve, which decteases its pressure, and arrives in the
evaporator. In the evaporator the liquid evaporates as a result of this low pressure
and, by doing so, withdraws heat. This is where the actual cooling takes place.

At first glance the refrigerator seems typically something to model with the
component-centered approach, in particular the behavior of the compressor and
the throttle valve. However, modeling the behavior of the evaporator and the
condenser is not that straightforward. First, the behavior of these components
depends on the interaction with the environments in which they operate. As a
result, additional components and conduits must be defined in order to model
their behavior. Second, the notion of transforming a gas into a liquid, and the
other way around, cannot be modeled explicitly with the component-centered
approach. Both these objections disappear when a process definition is used to
describe the behavior taking place between the components and their environ-
ments. Therefore, although in this particular example it is possible to model the

Surrounding area

Condensor
I
Throttie-valve Compressor
Evaporator
Cooiing area

FIGURE 4. A model of the refrigerator.
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behavior of the condenser and the evaporator with the component-centered ap-
proach, it is rather counterintuitive, and from a modeling point of view it is
more convenient to use a process definition. Moreover, in some situations pro-
cess definitions are an ontological necessity. Some behaviors in the physical
world are not enforced by a component, but happen because objects, in a partic-
ular configuration, interact and facilitate behavior. Examples are heat flow, lig-
uid flow, and gravity.

Levels of Abstraction

The final issue, the use of different levels of abstraction, will be explained

with a model of a relay (Fig. 5). We came across the following description of a
relay:

If the input current is turned on, then the relay immediately produces an output
current cqual to the input current. This output current lasts for a particular time and
is then turned off by the relay. The output current remains off until the input current
is turned off and on again. After the input current has been turned on again the
process repeats itself. )

This behavior description cannot be modeled properly with one of the pre-
vailing approaches to qualitative reasoning, because it uses both discrete and
continuous parameter values. The input and -output current are described as
having a discrete character, as they are either on or off, whereas the delay time
is described as having a continuous character; it starts increasing after the input
current is turned on. until it reaches a certain point, after which the output
current is turned off. To model this behavior description properly, an approach
should be able to handle both discrete and continuous descriptions of values
simultaneously. '

Summarizing the Cbjectives

Following the discussion above, we came to the conclusion that there is no
such thing as the ultimate model for a physical system, in particular not in
commonsense reasoning. An approach for reasoning about physical systems
should therefore be able to support reasoning with multiple inodels, based on
different ontologies, at different levels of abstraction and with different view-

" points within one level of abstraction. To address this objective, an approach
should have a meta-level understanding of the available modeling primitives
and reasoning processes. We have described a framework (Bredeweg and
Wielinga, 1988a. 1988b: Bredeweg, 1989) that integrates qualitative reasoning
approaches and provides the first input to meta-level reasoning in this field. In
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= controller

In / out
> >

Switch

Relay

FIGURE 5. A model of the reiay.

this paper we investigate how domain models can be operationalized within
this framework, which allows more flexible and intuitive modeling of the
physical world.

GARP: AN INTEGRATED APPRCACH

GARP (Bredeweg, 1989) is an acronym for General Architecture for Rea-
soning about Physics and refers to the program that has been implemented in
Prolog, based on the framework put forward in the generic task (see Breuker et
al., 1987; Chandrasekaran, 1987; Clancey, 1986; Wielinga and Breuker, 1986)
that we have described for qualitative prediction of behavior. GARP is able to
simulate qualitative reasoning as described by the original approaches. A de-
scription of the framework is given below.

Theory Underlying the m-amework

- The framework is based on the premise that knowledge used by people
during reasoning processes can be distinguished according to several types, cor-
responding to the different roles the knowledge plays in the reasoning process.
Wielinga and Breuker (1986) identify four types of knowledge—domain, infer-
ence, task, and strategy—and therefore describe models of expertise in four
layers. The first layer, the domain layer, describes the knowledge of a particular
domain. In the domain of electronics, for example, this layer might embody
knowledge about transistors, wires, switches, and so forth. The second layer,
the inference layer, describes the canonical inferences that can be made on the
basis of the first layer. Two.types of objects are used at the inference layer:
meta-classes and knowledge sources. Meta-classes represent the role domain
objects can play in the inference process. For example, a domain concept like
Jaulty transistor may play the role of a finding but may also play the role of a
hypothesis. Knowledge sources describe what kind of inferences can be made on
the basis of the relations in the domain layer. Examples of knowledge sources
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are specification and abstraction, which both might use the subsumption relation
in the domain. The third layer, the task layer, specifies task structures that are
typical for the domain. Task structures are sequences of knowledge sources and
meta-classes that can be used to achieve a particular goal. The fourth layer, the
strategic layer, contains knowledge to deal dynamically with the knowledge at
the other layers. It should, for instance, plan a particular task structure, monitor
its execution, and, if needed, diagnose, repair, or even replace the current task
structure with another tack structure, until the desired problem-solving goal is
reached.

Domain and Inference Layer

According to this four-layer model, the original approaches to qualitative
reasoning are domain theories. They provide ontological primitives to model
domain-specific knowledge, such as processes, component models, and con-
straints. The inference layer abstracts from these domain-specific modeling
primitives by (1) describing the canonical inferences used in the reasoning pro-
cess and (2) pointing out the role the modeling primitives play in this reasoning
process.

Objects of the Inference Process

The meta-classes (roles) that can be identified in qualitative prediction of
behavior are the following*:

System model description: Central to qualitative reasoning is the way in which a
system is describe during a period of time in which the behavior of the
system does not change. The notion of change is rather subtle because the
actual (real-world) system may change whereas from a qualitative point of
view its behavior remains constant. A constant state of behavior is therefore
characterized by parameters that describe the behavior of a particular system
qualitatively and that do not change within the time elapsed during the state.
In GARP such a description is called a system model description. A system
model description is a composition of one or more of the modeling primi-
tives referred to by the meta-classes described in this list.

System elements: System elements refer to entities from the real-world system
that are represented symbolically in the qualitative reasoning program. Ex-
amples are containers, components, and heat paths.

*Note that approaches do not necessarily use all the modeling primitives described here. Sometimes they
are implicit (like system clements in the constraint-centered approach) and sometimes tirey are not used at all
(like system structures in the constraint-centered approach).
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Parameters: Parameters are used to describe properties of system elements. Ex-
amples are temperature, amount-of, and pressure.

Parameter values: Parameter values represent the values parameters can take on.
Well-known examples are [+, 0, —].

Quantity spaces: To arrive at qualitative values, the quantitative values that a
parameter can have are divided into a small set of intervals with relevant
distinctive characteristics. Such a set is called a quantity space. .

Parameter relations: Parameter relations are used to describe dependencies be-
tween parameters. Examples are influences, arithmetic equations, and pro-
portional relations.

Qualitative calculi: Qualitative calculi are used to define the semantics of a
relation. They express how a relation should be interpreted.

Mathematical model: The relations that hold at a particular moment represent a
mathematical model of the behavior of the system in the real-world.

System structures: System structures are templates that are used to augment a
system model description. Examples are views and processes in the process-
centered approach and gualitative states in the component-centered ap-
proach. In order to apply system structures, the qualitative reasoning pro-
gram must know when a particular structure holds. System structures
thérefore have an if-then nature. The if part specifies the parts of the system
model description that must exist for the structure to be applicable, whereas
the then part specifies the new parts that must be added to the system mode}
description when the structure is applicable. Basically, system structures are
used to find mathematical models that represent the behavior of system
elements.

Transformation rules: Transformation rules are used to store knowledge about
identifying successive states of behavior.

Behavior descriptions: Finally, a behavior description is a set of system model
descriptions ordered in time. It represents the possible behavior of some
real-world system.

Some Examples

It is beyond the scope of this paper to give detailed -exarnples of how the’
meta-classes described in the prévious section are implemented. However, some
brief examples are listed below.

The first example illustrates a system structure that represents the process
liquid flow from the process-centered approach.

system_structures( liquid_flow( (Con1, Con2) ), type( process ),
conditions([
parameters([
pressure( Liquidl, Press1),



