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INTRODUCTION

For the past seven years, the authors have conducted a one-year M.Sc.
programme in mathematical logic and foundations of mathematics at

London University. The present book developed from our lecture notes
" for this programme, and the student should therefore be able to work
through the text in (roughly) one academic year. The main problem that
we faced in constructing the programme was the following. First, we
wanted it to be an integrated and balanced account of the most important
aspects of logic and foundations. But secondly, since parts of our programme
are taken by mdthematics and philosophy of science students who for
one reason or another do not want to cover all the topics we discuss, we
were led to arrange it in such a way that parts could be taken as separate
smaller courses. Accordingly, the book itself falls naturally into several
units:

1. Chapters 1-3. These together constitute an elementary introduction
to mathematical logic up to the Godel-Henkin completeness theorem.
We teach this part in a fairly leisurely “}ay (four hours per week for ten
weeks, including problem classes), and accordingly the pace of the text
here is rather gentle. There is one feature which deserves special mention
and that is the use of Smullyan’s tableau method. This method serves
a dual purpose. First, it is a proof-theoretic instrument that allows us
to obtain constructive proofs of various results. In this respect it is equi-
valent to Gentzen’s calculus and to various systems of natural deduction.
Secondly, our teaching experience shows ‘that Smullyan’s method has
the great advantage of being a practical tool — after.a little practice,
it furnishes a quick, efficient and almost computational method of actually
detecting the truth or falsehood of formulas. (This efficiency stems in
part from -the fact that, unlike Gentzen’s calculus, it does not require
the same formula to be copied again and again.) However, the material




XVI . INTRODUCTION

on tableaux has in fact been isolated in separate (starred) sections so

that the reader-who does not want to use this material can simply ignoreit;
what remains is a self-contained standard account of first-order logic. -
" A middle cougse is also possible: a reader wishing to enjoy the practical
_ advantages of tableaux but who lacks the time or patience for the somewhat
complex constructive proofs of elimination theorems (Ch. 1, §8, and Ch. 2,
§§5, 6) can skip the latter because the same results are also obtained in
an easier but non-constructive way elsewhere (Ch. 1, §9 and Ch. 2, §8).
We should like to point out that the somewhat rebarbative complexities
of Ch. 2, §5 could-have been avoided by using different symbols for free
and bound variables (as is often done in texts devoted mainly to proof
theory). This, however, would detract slightly from the practical utility

of the method and in any case would be cOntrary to accepted usage in
most other branches of logic. :

2. Chapters 4 and 5. The contents of Chapter 4 are taught for 1 hour
a week over 10 weeks, concurrently with the material in Chapters. 1-3
(of which it is totally independent). It in fact constitutes a separate short
course on Boolean algebras. The material in Chapter 5 — model theory —
is taught over the following 10 weeks for 2 hours a week. It depends heavily
on Chapter 4 but only slightly on Chapters 1-3 inasmuch as it can be read

by anyone having modest acquamtance with the notation and main results
of first-order logic.

3. Chapters 6 and 8. These two chapters constitute a self-contained
" course on recursion- theory. The material in Chapter 6 is taught for 2 hours
a week over 10 weeks, concurrently with Chs. 1-4, of which it is totally
independent. ‘There are two points here which call for comment. First, )
we employ register machines instead of Turing machines, because the
former are much closer in spirit to actual digital computers, and are also
smoother theoretically. Secondly, this chapter includes a full proof of
the Matiyasevich-Robinson-Davis—Putnam (MRDP) theorem that every
recursively enumerable relation is diophantine. We believe that — despite
the length and tedium of the proof — this result is of such importance
‘that no modern account of récursion- theory can afford to omit it. In
teaching this part of the chapter, we have found that some of the material
in §§13, 14, and the first half of §15 can be omitted in class and given to the
student to study at home. As for Chapter 8, it is taught for the following
eight weeks at a rate of 2 hours per week._ The material here of course
depends entirely on Chapter 6, but in this book it appears after Chapter 7,
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beeause it is motivated by and illaminates the results contained there.
However, no detailed knowledge of Chapter 7 is required to understand
Chapter 8. In Chapters 6 and 8 we have adopted a somewhat formal
approach: in proving that such-and-such a function is recursive, we employ
the precise apparatus furnished by the recursion theorem, rather than
_the intuitive “proof by Church’s thesis”. We have chosen this course
because we believe' that the beginning student. has not yet developed
sufficient experience in the subject to be totally convinced by intuitive
proofs which employ Church’s thesis.

4. Chapter 7. This chapter contains an account of the limitative results
.about formal mathematical systems. Reliance on the MRDP theorems
has enabled us to simplify some of the proofs and obtain somewhat sharper
results than usual. The chapter presupposes a good knowledge of first-
order logic and some knowledge of recursion theory. However, it can be
and is taken by students who have no detailed acquaintance with the
latter. We have found it feasible to develop all the requisite results from
recursion theory — except the MRDP theorem — using Church’s thesis,
the MRDP theorem itself being stated without proof. This approach
enables us to teach the material in this chapter intelligibly to students
who do not want take a fuli-fledged vourse in recursion theory. (The
material here is in fact taught concurrently with Chapter 5 for 10 weeks
at 2 hours per week.)

5. -Chapter 9. Here we have an elémentary introduction to first-order
" intuitionistic logic. While neither of the authors claim to be an expert
‘on intuitionism, we nevertheless believe that the constructivist approach
to mathematics is of such great importance that some discussion of it is
essential. (The material in this chapter is taught concurrently with Chapters
5, 7 and 8 for 10 weeks at 1 hour per week.)

6. Chapter 10. This is devoted to an axiomatic investigation of Zermelo—
Fraenkel set theory, up to the relative consistency of the axiom of choice
and the generalized continuum hypothesis. It requires modest familiarity
with first-order logic and. with the Lowenheim-Skolem theorem in Chapter 5.
SThis material is taught over roughly 10 weeks at 2 hours per week at the
end of the second term and the beginning of the final term.)

7. Chapter 11. This chapter contains an introduction to nonstandard
analysis, which is an important method of applying model theory to
mathematics. The material here is taught over 10 weeks at 2 hours per week,

2



XVIII ‘ INTRODUCTION

during the latter part of the year. Although this chapter presupposes a few
results of model theory, these results can be stated concisely without proof
for the benefit of those students who wish to study the subject without doing
a special course on model theory. In fact it is possible to teach nonstandard
analysis to students who have only a slender acquaintance with logic.

As can be seen from the foregqing synopsis, the material in the book
can be regarded as forming several relatively independent units. However,
the book has been conceived as an organic whole, and provides what is
in our view a ‘‘balanced diet”. We have striven to reveal the interplay
between *‘structural™ (i.e. set-thcoretical) ideas and “constructive” methods.
The latter play a particularly prominent role in mathematical logic, and
we have therefore stressed the constructive approach where appropriate
but without, we hope, undue fanaticism. .

The problems constitute an essential part of the book. They are not
mere brainteasers, nor should they be too difficult for the student to solve,
given the hints that are provided. Many of them contain results which
are later employed in proofs of theorems. Accordingly. no unstarred
problem should be skipped! : ‘

Certain sections and problems are starred. This does not necessarily
indicate that they are more difficult, but rather that they may be omitted
at a first rcading. Some problems have been starred because they require
more knowledge or skill than is needed for understanding the text in
the same section,

Each chapter is divided into sections. When we want to refer to a theorem,
problem, definition, etc., within the same chapter. we give the number
of the section in which it occurs, followed by its number in that section.
Thus, e.g., Def. 2.10.1 is the first numbered statement in §10 of Ch. 2 and
within Ch. 2 it is refeired to as “‘Def. 10.1."" (or simply *“10.17). ‘

We use the convenient abbreviation “iff™ for “if and only if”. The
mark [ is used either to signify the end of a proof or, when it appeafs
immediately after the statement of a result, to indicate that the proof is
immediate and is accordingly omitted.

References to the bibliography are given thus: Keitey [1955]). The
overwhelming majority of references to the bibliography are given in
a separate section at the end of each chapter.
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CHAPTER 0
PREREQUISITES

In this book we assume that the reader is familiar with the basic facts of
naive set theory (including the fundamentals of cardinal and ordinal
arithmetic) as presented, e.g., in FRAENKEL [1961], Harmos [1960) or
KuUratowski-Mostowskl [1968]. Facts about cardinals and ordinals
are used at the end of Ch. 3, occasionally in Chs. 4 and 9, and throughout
Chs. 5 and 10. In some places (especially in Chs. 4 and 11), we assume
a slender acquaintance with the basic notions of general topology as
presented, e.g., in Ch. 1 of BOURBAK'I [1961} or the first few chapters of
KELLEY [1955).

We distinguish between classes and sets. Except in Chs. 10 and 11 (where
the terms “class” and “set” are assigned a more precise technical meaning),
a class is understood to be an arbitrary collection_of objects, whilé a set
is a class which can be a member of another class. (Another distinguishing
feature of sets is that only they have cardinalities.) -

Given an object x and a class X, we write as usual x€ X for “x is a member

(element, point) of X and say “X contains X or “x is in X”°. If X contains
every member of a class Y, we say “X includes ¥ and write Y< X. Two
classes are regarded as identical if they have the same members.

The set of natural .numbers (which contains 0) is denoted by N or w.
Except in Ch. 10, the empty set is denoted by 0. If 4 is a set, the power set
PA of A is the set of all subsets of 4.

Given n=1 objects x,...,x,, we write {x,... ,xn) for the ordered n- tuple
-of x,,...,x,. Thus (x,y) is the ordered pair of x and y. By convention, we
put (x)=x (the ordered singleton of x). .

The Cartesian product of a finite sequence of classes A,,... A, (with
n=1), denoted by A,X...X4,, is the collection of all n-tuples <a1, )
with a,€ 4,,...,a,€ 4,. If each A; is identical with a fixed class A4, we
write. A" for A;X...XA4,. By convention, we set A°={}; thus A° has
exactly one member, namely 0.



2 PREREQUISITES

For n>1, an n-ary relation on a class A is a collection of n-tuples of
members of A, i.e. a subclass of 4". A unary relation on A is called a
property; it is just a subclass of A. The identity (or diagonal) relation
on A is the binary relation

{(e,x): x€ 4}
The membership relation on A is the binary relation
{(x,»): x€4 and ycA4 and x€y).

If R is an n-ary relation on 4 and B< A, the restriction of R to B is defined
to be the n-ary relation RnB" on B. If Ris a binary relation, we often
-write xRy for {x,y)€ R. S

A function (map, mapping) is a class f of ordered pairs such that, whenever
(x,y)€f and (x,z)€ f, we have y=2z. The domain dom(f) of [ is the class

{x: for some y, {x,y)€f}

and the rgnge ran(f) of f is the class

{y: for some x, (x,p)¢cf).

. If fis a function, and x¢ dom(f), then the unique y for which {x,y)¢f

. is denoted (except in Ch. 10) by f(x), or sometimes Jx, etc., and is called
the value of f at'x. Sometimes we specify a function fin terms of its values:
under these conditions we write x— f(x). (Thus, for example, x—x+1
describes the successor function on N.) If fis a function such that dom(f)=A4
and ran(f) < B, we say that f is a_function from A to (into) B and write
f:A~B X f:A~B and X< 4, we define the restriction f|X: X B by

(F1X)x)=1(x) for xeX.
If Xc 4 and Y< B, we put

SIX1={f(¥): xeXx}, f"[Y]={x:f(X)€‘Y},
atid,‘ for yc Y, we put

FO)=1 )

A function f: A— B is one-one (an injection) if f(x)=f(») implies x= y
for all x,y€ 4; onto (a surjection) if f[A]=B; and a one-one correspondence
- {a bijection) between 4 and B if both of these conditions hold. 4 and B

id to be eguipolient if there is a bijection between 4 and B.If f : A~ B
and g : B~ C, the composition gof : A—C is defined by (go f)(x)=g(f(x))
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for xc 4. We sometimes omit the o and write simply gf instead of gof.
Observe that, for each class 4, the identity relation on A is a bijection
between A and A; for this reason it is also called the identity map on A.
If A< B, the natural injection of A into B is the map i : »B defined by
i(x)=x for x€ A.

If A is a class and I is a set, we write A for the collection of all functions
from I into A. (Notice that this definition implies 49 = {9} = 4°) If {4,: ic I}
i an indexed family, of sets, we write [],c;4; for the collection of al
functions f with domain I such that f(i)c 4; for all i€ 1. The axiom ol
choice asserts that, if each A0, then [];c,A,=0.

For any n€ N, an n-ary operation on a class 4 is a function from 4" to A.
In particular, a 0-ary operation on 4 is a function from {8} to A, and
therefore has a unique value which we identify with the given O-ary operation.
Thus a 0-ary operation on A is Jjust a member of A. If fis an n-ary operation
on A, we write f(a,,...,a,) for f({a;.....,a,)). A subclass B of 4 is said to be
closed or stable under f if f(b,,...,b,)€ B whenever by,....b,€B. If Bis
~closed under f, we define the restriction fIB of fto B by

(f1BYbrs-. 5 =fbys...sby) for by,...b,€ B,

A binary relation R ona class A4 is called an eguivalence relation if it
satisfies :

(@) xRx forall x¢A,

(b) xRy implies yRx forall x,yc 4,

(© xRy and YRz implies - xRz .forall x,y,z¢ A.

If R is (qmvalence reldtion on A, for each x€A the set
Xg= { YEA: ny} called the R-class of x. Calling a family # of subsets
of A a partition of 4 if U&=4 and XN Y= for any distinct members
X,Y of B, we see immediately that, if R is an equivalence relation on A,
the family of all R-classes of members of 4 constitutes a partition of 4.

A partially ordered set is an ordered pair {4, <)-in which A4 is a set -
and < is a binary relation on 4 satisfying:

(@ x<x forall x€4,

(b) x<y and y<x implies x= =y - - for all X, yEA,

(© x<y and y<z implies x<z for all X, ,zEA

If x<y, we say that x is less than or equal to y or y is greater than or
equal to x. We also write “x<»” for “x<y and x=y”. If 4,<) is a
partially ordered set, < is called a partial ordering on A. A partially ordered
set is said to be totally (or linearly) ordered if in addition

(d x<y or y<x forall X, yEA.



4 PREREQUISITES

If A is any family of sets, the relation < of set inclusion is a partial
ordering on 4. We frequently identify a partially ordered set {4,<) with
its underlying set A. )

If (4,<) is a partially ordered set and X< 4, a-member a€ 4 is an
upper (lower) bound for X, if x<a (a<x) for every x€ X. An upper (lower)
bound a for X in A is called the supremum (infimum) of X if a is less than
(greater than) every other upper (lower) bound for X in 4. If X has a sup-
remum (infimum) in 4, we denote it by sup(X) (inf(X)). Notice that if
9 has a supremum (infimum) in 4, then sup(9) (inf(9)) is an elemen
a€ 4 such that a<x(x<a) for every xc 4. That is, if sup(9) (inf(9))
exists in A, then it must be the least (greatest) element of 4. '

" A chain in a partially ordered set (4,<) is a subset X of 4 such that
< totally orders X, i.e. such that x<y or y<x for all x,y€X. (4,<) is
said to be inductive if each chain in 4 has an upper bound in 4. An element
a< A is maximal if whenever x€A4 and a<x we have x=a. Zorn's lemma
(which is equivalent to the axiom of choice) asserts that for each element
x of an inductive set (4,<) there is a maximal element a€ A such that x<a.

A partially ordered set (4,<) is well-ordered if each non-empty subset
X of A contains an element x such that x<y for every y€ X. Assuming
the axiom of choice, a totally ordered set (4,<) is well-ordered iff A
contains no seqixence G9>8;,8,,... such that a,,,<a, for all n.

We conceive of ordinals in such a way that each ordinal is the set of
all smaller ordinals, and the finite ordinals as being identical with the
natural numbers. Each well-ordered set is order-isomorphic to a unique
ordinal. A cardinal is an ordinal -which is not equipollent with a smaller
ordinal. The cardinality of a sct X, denoted by |X|, is the unique cardinal
equipollent with X. (This needs the axiom of choice.) Notice that |X|=]¥]
iff X and Y are equipollent. If « and B are cardinals,- then of denotes the
result of cardinal exponentation, i.e. the product of « with itself B times.
Thus e.g. the cardinality of P4 is 24, for any set 4. -

A set A is said to be finite if it is equipollent with n for some neN,
denumerable if it is equipollent with N, and countable if it is finite or
denumerable. '




