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Preface .

This textbook is based on a three-semester course of lectures given by the
author in recent years in the Mechanics-Mathematies Faculty of Moscow
State University and issued, in part, in mimeographed form under the title
Probability, Statistics, Stochastic Processes, I, Il by the Moscow State
University Press.

We folow tradition by devoting the first part of the course (roughly one
semester) to the elementary theory of probability (Chapter I). This begins
with the construction of probabilistic models with finitely many outcomes
and introduces such fundamental probabilistic concepts as sample spaces,
events, probability, independence, random variables, expectation, corre-
lation, conditional probabilities, and so on. '

Many probabilistic and statistical regularities are effectively illustrated
even by the simplest random walk generated by Bernoulli trials. In this
connection we study both classical results (law of large aumbers, local and
integral De Moivre and Laplace theorems) and more modern results (for
example, the arc sine law).

The first chapter concludes with a discussion of dependent random vari-
ables generated by martingales and by Markov chains.

Chapters II-1V form an expanded version of the second part of the course
(second semester). Here we present (Chapter II) Kolmogorov’s generally
accepted axiomatization of probability theory and the mathematical methods
that constitute the tools of modern probability theory (g-algebras, measurcs
and their representations, the Lebesgue integral, random variables and
random elements, characteristic functions, conditional expectation with
respect to a g-algebra, Gaussian systems, and so on). Note that two measure-
theoretical results—Carathéodory’s theorem on the extension of measures
anu the Radon-Nikodym theorem—are quoted without proof.
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The third chapter is devoted to problems about weak convergence of
probability distributions and the method of characteristic functions for -
proving limit theorems. We introduce the concepts of relative compactness
and tightness of families of probability distributions, and prove (for the
real line) Prohorov’s theorem on the equivalence of these concepts.

The same part of the course discusses properties “ with probability 1
for sequences and sums of intdependent random variables (Chapter IV). We
give proofs of the ‘““zero or one laws” of Kolmogorov and of Hewitt and
Savage, tests for the convergence of series, and conditions for the strong law
of large numbers. The law of the iterated logarithm is stated for arbitrary
sequences of independent identically distributed random variables with
finite second moments, ar.d proved under the assumption that the variables
have Gaussian distributions.

Finally, the third part of the book (Chapters V-VIII) is devoted to random
processes with discrete parameters (random sequences). Chapters V and VI
are devoted to the theory of stationary random sequences, where *‘station-
ary’’ is interpreted either in the strict or the wide sense. The theory of random
sequences that are stationary in the strict sense is based on the ideas of
ergodic theory: measure preserving transformations, ergodicity, mixing, etc.
We reproduce a simple proof (by A. Garsia) of the maximal ergodic theorem;
this also lets us give a simple proof of the Birkhoff-K hinchin ergodic theorem.

The discussion of sequences of random variables that are stationary in
the wide sense begins with a proof of the spectral representation of the
covariance fuction. Then we introduce orthogonal stochastic measures, and
integrals with respect to these, and establish the spectral representation of
the sequences themselves. We also discuss a number of statistical problems:
estlmptmg the covariance function and the spectral density, extrapolation,
mterpolatlon and filtering. The chapter mcludes material on the Kalman-
Buicy filter and its generalizations.

The seventh chapter discusses the basic results of the theory of martingales
and related ideas. This material has only rarely been included in traditional
courses in probability theory. In the last chapter, which is devoted to Markov
chains, the greatest attention is given to problems on the asymptotic behavior
of Markov chains with countably many states.

Each section ends with problems of various kinds: some of them ask for
proofs of statements made but not proved in the text, some consist of
propositions that will be used later, some are intended to give additional
information about the circle of ideas that is under discussion, and finally,
some are simple exercises.

In designing the course and preparing this text, the author has used a
variety of sources on probability theory. The Historical and Bibliographical
Notes indicate both the historical sources of the results, and supplementary
references for the material under consideration.

The numbering system and form of references is the following. Each
section has its own enumeration of theorems, lemmas and formulas (with



Preface vii
no indication of chapter or section). For a reference to a result from a
different section of the same chapter, we use double numbering, with the
first number indicating the number of the section (thus (2.10) means formula
(10) of §2). For references to a different chapter we use triple numbering
(thus formula (11.4.3) means formula (3) of §4 of Chapter ). Works listed
in the References at the end of the book have the form [L#], where Lisa
letter and n is a numeral.

The author takes this opportunity to thank his teacher A. N. Kolmogorov,
and B. V. Gnedenko and Yu. V. Prohorov, from whom he learned probability
theory and under whose direction he had the opportunity of using it. For
discussions and advice, the author also thanks his colleagues in the Depart-
ments of Probability Theory and Mathematical Statistics at the Moscow
State University. and his colleagues in the Section on probability theory of the
Steklov Mathematical Institute of the Academy of Sciences of the U.SS.R.

Moscow A. N. SHIRYAYEV
Steklov Mathematical Institute

Translator’s acknowledgement. 1 am grateful both to the author and to
my colleague C. T. Jonescu Tulcea for advice about terminology.
R. P. B.
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Introduction

The subjéct matter of probability theory is the mathematical analysis of
random events, i.e. of those empirical phenomena which—under certain
circumstances —can be described by saying that:

They do not have determinisfic regularity (observations of them do not
yield the same outcome) whereas at the same time;

They possess some statistical regularity (indicated by the statxsucal
stability of their frequency).

We illustrate with the ¢lassical example of a “fair” toss of an “unbiased”
cein. It is clearly impossible to predict with certainty the outcome of each
toss. The results of successive experiments are very irregular (now “head,”
now “tail”) and we seem to have no possibility of discovering any regularity
in such experiments. However, if we carry out a large number of “indepen-
dent™ experiments with an “unbiased” coin we can observe a very definite
statistical regu]arlty namely that "head” appears with a frequency that is

“close™ to 3.

Statistical stability of a frequency is very likely to suggest a hypothesis
about a possible quantitative estimate of the “randomness” of some event A
connected with the results of the experiments. With this starting point,
probability theory postulates that corresponding to an event A there is a
definite number P(A), called the probability of the event, whose intrinsic -
property is that as the number ¢ “independent” trials (experiments) in-
creases the frequency of event A is approximated by P(A).

Applied to our example, this means that it is natural to assign the proba-
bility 4 to the event A that consists of obtaining “head” in a toss of an
“unbiased” coin. . '



2 Introduction

There is no difficulty in multiplying examples in which it is very easy to
obtain numerical values intuitively for the probabilities of one or another
cvent. However, these examples are all of a similar nature and involve (so far)
undefined concepts such as “fair” toss, “unbiased” coin,.“independence,”
etc.

Having been invented to investigate the quantitative aspects of “random-
ness,” prebability theory, like every exact science, became such a science
only at the point when the concept of a probabilistic model had been clearly
formulated and axtomatized. In this connection it is natural for us to discuss,
although only briefly, the fundamental steps in the developmerf of proba-
bility theory.

Probability theory, as a science, originated in the mldgle of the seventeenth
century with Pascal (1623-1662), Fermat (1601< “1655) and Huygens
(1629-1695). Although special calculations ofprohzibilities in games of chance
had been made earlier, in the fifteenth and~ Sixteenth centuries, by Italian
mathematicians (Cardano, Pacioli, Tartagha etc.), the first general methods
for solving such problems were apparently given in the famous correspon-
dence between Pascal and Fermat, begun in 1654, and in the first book on
probability theory, De Ratiociniis in Aleae Ludo (On Calculations in Games of
Chance), published by Huygens in 1657. It was at this time that the funda-
mental concept of “mathematical expectation” was developed and theorems
on the addition and multiplication of probabilities were established.

The real history of probability theory begins with the work of James
Bernoulli (1654-1705), Ars Conjectandi (The Art of Guessing) published in
1713, in which he proved (quite rigorously) the first limit theorem of prob-
ability theory, the law of large numbers; and of De Moivre (1667-1754),
Miscellanea Analytica Supplementum (a rough translation might be The
Analytic Method or Analytic Miscellany, 1730), in which the central limit
theorem was stated and proved for the first time (for symmetric Bernoulli
trials).

Bernoulli was probably the first to realize the importance of considering
infinite sequences of random trials and to make a clear distinction between
the probability of an event and- the frequency of its realization. De Moivre
deserves the credit for defining such concepts as independence, mathematical
expectation, and conditional probability.

In 1812 there appeared Laplace’s (1749-1827) great treatise Théorie
Analytique des Probabilitiés (Analytic Theory of Probability) in which he
presented his own results in probability theory as well as those of his pre-
decessors. In particular, he generalized De Moivre’s theorem to the general
(unsymmetric) case of Bernoulli trials, and at the same time presented De
Moivre’s results in a more complete form.

Laplace’s most important contribution was the application of proba-
bilistic methods to errors of observation. He formulated the idea of consider-
ing errors of observation as the cumulative results of adding a large number
of independent elementary errors. From this it followed that under rather

o
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general conditions the distribution of errors of observation must be at least
approximately normal.

The work of Poisson (1781-1840) and Gauss (1777-1855) belongs to the
same epoch in the development of probability theory, when the center of the
stage was held by limit theorems.

In contemporary probability theory we think of Poisson in connection
with the distribution and the process that bear his name. Gauss is credited
with originating the theory of errors and, in particular, with creating the
fundamental method of least squares.

The next important period in the development of probability theory is
connected with the names of P. L. Chebyshev (1821-1894), A. A. Markov
(1856-1922), and A. M. Lyapunov (1857-1918), who developed effective
methods for proving limit theorems for sums of independent but arbitrarily
distributed random variables.

The number of Chebyshev's publications in probability theory is not
large —four in all —but it would be hard to overestimate their role in proba-
bility theory and in tlie development of the classical Russian school of that
subject.

“On the methodological side, the revolution brought about by Chebyshev
was not only his insistence for the first time on complete rigor in the proofs of
limit theorems, . . . but also, and principally, that Chebyshev always tried to
obtain precise estimates for the deviations from the limiting regularities that are
available for large but finite numbers of trials, in the form of inequalities that are
valid unconditionally for any number of trials.”

(A. N. KoLmogorov [307])

Before Chebyshev the main interest in probability theory had been in the
calculation of the probabilities of random events. He, however, was the
first to realize clearly and exploit the full strength of the concepts of random
variables and their mathematical expectations.

The leading exponent of Chebyshev’s ideas was his devoted s‘udent
Markov, to whom there belongs the indisputable credit of presenting his
teacher’s results with complete clarity. Among Markov’s own significant
contributions to probability theory were his pioneering investigations of
limit theorems for sums of independent random variables and the creation
of a new branch of prabability theory, the theory of dependent random
variables that form what we now call a Markov chain.

... Markov’s classical course in the calculus of probability and his original
papers, which are models of precision and clarity, contributed to the greatest
extent to the transformation of probability theory into one of the most significant
branches of mathematics and to a wide extension of the ideas and methods of
Chebyshev.”

(S. N. BErnsTEIN [3])

To prove the central limit theorem of probability theory (the theorem
on convergence to the normal distribution), Chebyshev and Markov used
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what is known as the method of moments. With more general hypotheses
and a simpler method, the method of characteristic functions, the theorem
was obtained by Lyapunov. The subsequent development of the theory has
shown that the method of characteristic functions is a powerful analytic
tool for establishing the most diverse limit thedrems.

The modern period in the development of probability theory begins with
its axtomatization. The first work in this direction was done by S. N. Berns-
tein (1880-1968), R. von Mises (1883-19353), and E. Borel (1871-1956).
A. N. Kolmogorov’s book Foundations of the Theory of Probability appeared
in 1933, Here he presented the axiomatic theory that has become generally
accepted and is not only applicable to all the classical branches of probability
theory, but also provides a firm foundation for the development of new
branches that have arisen from questions in the sciences and involve infinite—
dimensional distributions.

The treatment in the present book is based on Kolmogorov’s axiomatic
approach. However, to prevent formalities and logical subtleties from obscur-
ing the intuitive ideas, our exposition begins with the elementary theory of
probability, whose elementariness is merely that in the corresponding
probabilistic models we consider only experiments with finitely many out-
comes. Thereafter we present the foundations of probability theory in their
most general form.

The 1920s and ’30s saw a rapid development of one of the new branches of
probability theory. the theory of stochastic processes, which studies families
of random variables that evolve with time. We have seen the creation of
theories of Markov processes, stationary processes, martingales, and limit
theorems for stochastic processes. Information theory is a recent addition.

The present book is principally concerned with stochastic processes with
discrete parameters: random sequences. However, the material presented
in the second chapter provides a solid foundation (particularly of a logical
nature) for the study of the general theory of stochastic processes.

It was also in the 1920s and *30s that mathematical statistics became a
separate mathematical discipline. In a certain sense mathematical statistics
deals with inverses of the problems of probability: If the basic aim of proba-
bility theory is to calculate the probabilities of complicated events under a
given probabilistic model, mathematical statistics sets itself the inverse
problem: to clarify the structure of probabilistic-statistical models by
means of observations of various complicated events.

Some of the problems and methods of mathematical statistics are also
discussed in this book. However, all that is presented in detail here is proba-
bility theory and the theory of stochastic processes with discrete parameters.



CHAPTER 1 |
Elementary Probability Theory

§1. Probabilistic Model of an Experiment with a
Finite Number of OQutcomes

1. Let us consider an experiment of which all possible results are included
in a finite number of outcomes w;, ..., wy. We do not need to know the
nature of these outcomes, only that there are a finite number N of them.

We call w,, ..., wy elementary events, or sample points, and the finite set
Q = {C!)l,...,wN},
the space of elementary events or the sample space.

The choice of the space of elementary events is the first step in formulating
a probabilistic model for an experiment. Let us consider some examples of
sample spaces.

ExampLE 1. For a single toss of a eoin the sample space  consists of two
points:

Q= {HT),

where H = “head” and T = “tail”. (We exclude possibilities like “the coin
stands on edge,” *“the coin disappears,” etc.)

ExAMPLE 2. For n tosses of a coin the sample space is
Q={w:ow=_(@,...,a,),a=HorT}

and the general number N(Q) of outcomes is 2",
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ExAMPLE 3. First toss a coin. If it falls “head” then toss a die (with six faces
numbered 1, 2, 3, 4, 5, 6); if it falls “tail”, toss the coin again. The sample
space for this experiment is ‘

Q = {H1, H2, H3, H4, H5, H6, TH, TT}.

We now consider some more complicated examples involving the selec-
tion of n balls from an urn containing M distinguishable balls.

2. ExaMmpPLE 4 (Sampling with replacement). This is an experiment in which
after each step the selected ball is returned again. In this case each sample of
n balls can be presented in the form (a,, ..., a,), where g, is the label of the
ball selected at the ith step. It is clear that in sampling with replacement
each a; can have any of the M values 1, 2,..., M. The description of the
sample space depends in an essential way on whether we consider samples
like, for example, (4, 1, 2, 1) and (1, 4, 2, 1) as different or the same. It is
customary to distinguish two cases: ordered samples and unordered samples.
In the first case samples containing the same elements, but arranged
differently, are considered to be different. In the second case the order of
the elements is disregarded and the two samples are considered to be the
same. To emphasize which kind of sample we are considering, we use the
notation (ay, ..., a,) for ordered samples and [a,,...,a,] for unordered
samples.
Thus for ordered samples the sample space has the form

Q={ww=_(a,...,a9,),a=1..., M}
and the number of (different) outcomes is
N ) = M". )]
If, however, we consider unordered samples, then
Q={wow=_[a,...,a,]a=1...,M}L

Clearly the number N(Q) of (different) unordered samples is smaller than
the number of ordered samples. Let us show that in the present case

NE) = Cyin-1s @

where C, = k!/[1!(k — [)!] is the number of combinations of | elements,
taken k at a time. .

We prove this by induction. Let N(M, n) be the number of outcomes of
interest. It is clear that when k £ M we have

N(k, 1) = k = CL.



