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PREFACE

HE idea that each individual has something to gain by acquiring

a knowledge of mathematics is not new. According to Plato,* “the

art of calculation (logistika) and arithmetic are both concerned
with number; those who have a natural gift for calculating have, generally
speaking, a talent for learning of all kinds, and even those who are slow
are, by practice in it, made smarter. But the art of calculation is only
preparatory to the true science; those who are to govern the city are to
get a grasp of logistika, not in the popular sense with a view to use in
trade, but only for the purpose of knowledge, until they are able to con-
template the nature of number in itself by thought alone.”

The college curriculum of the University of Chicago, adopted in 1930,
includes a course of three lectures per week for one year in the physical
sciences, paralleled with small-group discussions. The conduct and con-
tent of this course, which is required of all college students, are motivated
by the knowledge that many persons pass through youth, adulthood, and
old age with no understanding of, or interest in, the operation of natu-
ral laws.

This course, planned for the student who has no native interest in
the physical sciences, is perforce entirely different from a course which
might be designed for a student who has a definite interest in this field.
Its aim is to provide explanations for what is happening about us and to
show with some detail how the human race through the ages has arrived

*Adapted from Plato, The Republic, pp. 525-26.




vi PREFACE
at the explanations here presented. In this development mathematic‘s
plays a twofold role, viz., the unfolding and attaining of pure mathemati-
cal theory and the invention of mathematical processes as aids to as-
tronomy, physics, geology, and chemistry. In ancient times the latter was
the predominating function of the science called “exact’; in modern times
the former aspect of mathematics has become of ever increasing im-
portance.

The attempt to give in a few lectures a vivid picture of the historical
development of the mathematics of classical times with a description of
the types of problems which led to the growth of elementary concepts of
arithmetic, algebra, geometry, and trigonometry, and to give something
of the purport and processes of the modern subjects, analytical geometry
and the calculus, to the end that the student may obtain fairly definite
ideas of their meanings and uses in modern life and of their relations to
the various fields of the physical sciences, has been rendered more difficult
than pleasant by the lack of satisfactory references for extensive reading;
and it is to meet that need that this book has been written. In it the sub-
jects which may be considered important for the general education of
a person who is not a specialist in a physical science have a more com-
plete treatment than can be given in a few lectures, but at the same time
the text does not go so far afield as to confuse with new ideas or with
technical notions. It does not take the place of any one or more texts in
the standard courses in college mathematics, but its sponsors believe that
it will prove to be of use along the following lines:

(1) To provide the mathematics for general physical science courses,
as at the University of Chicago.

(2) To serve as a text for a one-hour or a two-hour orientation course
in college, junior college, or senior high school.

(8) To serve as a reading reference for first-vear and second-year
mathematical courses in college or junior college.

(4) To serve as a supplementary text for courses in the teaching of
mathematics in normal schools and teachers colleges.

(6) To serve as an eve-opener for the adult who knows no mathe-
matics beyond elementary algebra and geometry but who has a healthy
curiosity concerning the science whose development has made possible
this age of the machine.

et et et e oo
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CHAPTER 1

NATURE OF MATHEMATICS

“What advantage shall I get by learning these things?” Euclid
called a slave and said, “Give him a sixpence, since he must
needs gain by what he learns.”

It is not the purpose of this book to attempt to give to the reader a
knowledge and skill in the use of mathematics which will make of him a
better money-gatherer, but rather to come to the aid of the many who*
reach adult years with a distaste for mathematics and a pronounced in-
feriority complex with regard to it, and who at the same time suffer an
occasional feeling of embarrassment at their inability to understand some
apparently simple natural or mechanical law. Most of these persons have
more or less curiosity concerning the science of which they know little and
would gladly undertake to acquire an understanding of the origins and
uses of mathematics if they were convinced that this could be done in an
informal way without the necessity of drawing on a supposed-known-but-
long-since-forgotten secondary-school mathematical training.

!I PUPIL of Euclid, when he had learned a proposition, inquired:

Elementary mathematics includes arithmetic, algebra, geometry,
trigonometry, analytical geometry, and the calculus. We shall try to trace
some of the important steps in the development of these subjects from
their beginnings, showing that an advance in the growth of the science
was the direct or indirect attempt to satisfy a definite human need.

A second objective is to show something of the importance of mathe-
matics and the mathematical sciences in enriching the intellectual life of the

b
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twentieth century, as well as in contributing to the physical comfort and
the recreational pleasures. '

A third objective is to look carefully into the nature of the science
which is commonly labeled “abstract” and “deductive,” and show that
these descriptive terms need not imply that behind them lie mystery and
difficulty of comprehension. but rather beauty, elegance, and, above all,
orderliness and simplicity.

The history of mathematics dates back to the beginning of civiliza-
tion, and there is a remarkable parallelism between the various stages of
its development and the mathematical experiences of each reader of these
pages through his childhood, his youth, and his adult years. By constantly
keeping this parallelism in evidence, by giving numerous specific examples
and outlining their methods of attack, by keeping the language as non-
technical as is consistent with accuracy and clear thinking, and by show-
ing many connections of mathematics with everyday life, the author hopes
to give to the general reader a picture of what mathematics is, what it
does, and (a very little of) how it does it.

Indeed, a little attention leads to the feeling that this science, though
rightly called “abstract,” is, in reality, deeply human and alive and that it
is not impossible to inform one’s self concerning the why’s and how’s
without actually acquiring the technique of the doing; for, let it be
definitely understood that this book is a book of information, not a
teaching book. In the presentation of scientific facts, however, it is in-
evitable that enough of method must be given to enable the reader
to follow a succession of steps to a logical conclusion. Hence it is hoped
that an important by-product of the
reading of this book will be the intellec.
tual appreciation of the power and the
elegance of deductive reasoning.

1. Mathematics an abstract science.
It is certain that primitive man,

POy 2
$4“\4\'\3’:\ , /
IV
- of whatever race, had a manner of
designating two sheep, three horses,

- /K— e
S
(\ij ; - ten warriors, long before he had a

( “, concept of, and words or symbols for,

¢
I
¢
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NATURE OF MATHEMATICS 3

the abstract numbers 2, 3, 10. The small child has an understanding of
what is meant by two apples, two chairs, five marbles, before he is able to
abstract the numeral from its noun. Early problems in the kindergarten
and elementary grades are concrete:

Tom has 10 cents and spends 2 cents for a pencil. How many cents has he left?
John has three apples and his brother has three apples. How many apples do the
two boys have?

How much will five books cost at 50 cents each?

A little thought convinces that the intellectual processes involved in
solving these “story” problems are simpler in the beginning than those
needed for the comprehension and solution of

10—-2="? 3+8=" 5X560="

When we contemplate the nature of mathematics, we are struck by

very significant facts. For example, 3+4 =7 may be thought of as relating
to dollars or leaves or stars or what you will, but the sentence 3+4="7 is
the statement of a mathematical fact which is not necessarily thought of
as associated with any physical object or even idea. Indeed, as the study
of arithmetic progresses, there seems to be a definite and conscious effort
to detach the arithmetical operations from human experiences. The rela-
tive number of concrete problems, as compared with the number of ab-
stract computational problems, decreases. It is not surprising that many
young people early acquire the pronounced feeling that there is no especial
human significance in the science of mathematics.

Let us see if, by looking at particular instances, we can comprehend
the reason for the apparent divorcing of mathematics from human ex-
perience. We all know more or less precisely what the Law of Gravitation
is. We understand that this law explains many phenomena of our every-
day life. For example, an apple falls to the earth, the moon does not fall
to the earth but revolves around the earth, water runs down hill, a ball
when thrown into the air falls back to the earth, the moon produces tides
on the earth’s surface—these are facts of observation explained by the
Law of Gravitation. But the mathematical explanation of these phenome-
na makes no mention of the apple, ball, moon, etc. It may be written

mM N

f:k?,
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where m and M are the masses of two bodies, d is the distance between
them,* and k is a constant depending on the units of measure, of mass,
and of distance. The force f gives the magnitude of the attraction exerted
by each body upon the other. Its direction is along the line which joins
their centers of gravity.

In equation (1) we have a statement which, assuming an understand-
ing of the laws of motion, not only explains the motion of the apple, the
ball, and the other objects mentioned above and of all other earthly ob-
jects which have moved, are moving, or will in the future move subject
only to the attraction of gravitation, but which also explains the motions
of the planets around the sun, of the stars in their courses, of bodies in
this universe or in any hypothetical universe in which are being considered
the motions of bodies which are subject to no force other than that of the
attraction of gravitation.

Newton could never have obtained his Law of Gravitation if he had
not noted that which is common to a great number of apparently unre-
lated natural phenomena; and his statement of this law, in which, by ig-
noring specific examples, he appears to remove it from the realm of every-
day experience, actually leaves it free for an unlimited scope of applica-
tion. Only by an abstract statement can the Sield of application be completely
unrestricted.

It is neither possible nor desirable here to attempt to show how the
foregoing formula (it is called the Law of Inverse Squares) solves all of the
problems mentioned, but in the next paragraphs we shall look more closely
at the problem of the falling apple. The apple falls to the ground because
of the attraction of the earth for it. As long as the stem is green and strong,
it can resist the pull of the earth on the apple, although that pull is by no
means a slight pull; but when the apple is ripe, the stem becomes more
brittle and there comes a time when the pull of the earth (the attraction
of gravitation) is strong enough to break the stem, and the apple falls. Tt
is inevitable that there should be motion when a force is acting unless the
force is neutralized by a second force. The magnitude of the force, as we
learn from equation (1), depends on the mass of the earth, the mass of the
apple, and the distance between them; the amount of motion depends on
the magnitude of the force.

* By “distance between them” is meant distance between their centers of gravity.

ey
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Experiments are frequently performed in physics laboratories to defn-
onstrate the action of bodies free to move when acted upon by an exterior
force. Before the time of GaALILEO (1564-1642) neither the mathema-
ticians nor the philosophers could agree on whether distances traversed by
objects which were subjected to the same force depend on the action of the
force alone or on the time during which the force is acting, or on both, or
whether the masses of the objects are also effective in determining dis-
tances. This is not surprising; in fact, this question could not be answered
with precision until Galileo demonstrated that the size and mass of an
object falling freely or sliding (with negligible friction) down an inclined
plane have no effect on its velocity. Further experiments then and later
show that

a) The distance traversed the second second is three times that of the first second,
b) The distance traversed the third second is Jive times that of the first second,

¢) The distance traversed the fourth second is seven times that of the first second,
d) The distance traversed the fifth second is nine times that of the first second, etc.

It is merely repeating the information above, but from a slightly dif-
ferent point of view, if we say:

a) The distance traversed during the first 2 sec. is four times that of the Sirst second,
b) The distance traversed during the Jirst 3 sec. is nine times that of the first second,

¢) The distance traversed during the first } sec. is sizteen times that of the first second,
d) The distance traversed the first 5 sec. is twenty-five times that of the first second, etc.

Now, a mathematician examines four statements like the last four
and seeks for something common in them which he can express in a for-
mula—a formula which not only tells all that has been told in the four
statements but also tells what is concealed in the “ctc.” Without a formu-
la a reader would conclude that the experiments have been carried out
and data obtained for a longer interval than 5 sec. but that it is not neces-
sary to take up more space in writing it out, since further items are exactly
what one would expect them to be in the light of what has been displayed.

In order to tell all of this and more in a formula, obviously a number
symbol must be used to designate the number of seconds, a second symbol
is needed to denote the distance traversed during the first second, and a
third for the total distance from the beginning. Let us use ¢ for the number
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of seconds, d for the distance during the first second, and s for the total
distance. Let us then write the formula,

s=df,

and examine it to see if it gives all of the information which we expect of
it. First, put =1 and you see that s=d; put =2 and compute s=4d;
put 1=3 and get s=9d; it really is not necessary to go further except to
say that, if the data are correct and if we are really justified in believing
that the distance continues to behave even for large values of ¢ as it be-
haves for £ not greater than 5, we can use the formula to compute the dis-
tance traversed in the first 10 sec., in the first 80 sec., in any chosen num-
ber of seconds without writing down the intermediate distances for 6, 7,
8, 9, etc., sec., as would be necessary if we worked only from the informa-
tion in the form in which it was first given.
As a matter of fact, experience has shown that the formula

s=de

is correct for an object moving without friction near the surface of the
earth when there is no changing force acting on it except the attraction of
the earth. Hence, if we know the distance which a given object has moved
during the first second, its distance for any desired number of seconds
can be computed.

Now let us look into the possible values of d. Again we go to the labo-
ratory and devise the following experiment: A number of wires are set
up as in the drawing with varying slants or
slopes. On each wire is a bead, and at the be-
ginning of the experiment the heads are equal-

ly distant from the floor. They are automati-

cally released at a given instant, and pictures

are taken with a motion-picture camera until

\ the first bead reaches the floor. The pic-
- tures show that the greatest actual distance
(along its wire), as well as the greatest vertical distance, is traversed by
the bead on the vertical wire, and that, as the deviation of the wire fI'OI;l
the vertical increases, both the actual distance s and the vertical distance
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decrease. The distance for each bead can be measured, and from these
measurements can be determined the effect on the motion which is caused
by a given deviation from the vertical.

The distance which the bead on the vertical wire traverses during the
first second is, as Galileo’s experiment showed, equal to the distance
through which any other freely falling body falls during the first second
(when it falls from rest). This distance has been measured with great care
many times and found to be approximately 16.1 ft. This is a number
which occurs repeatedly in problems of motion, and for convenience is
usually denoted by 1g.* Its double, g, whose value is 32.2, is called the
acceleration of gravity, for reasons which will appear later. Hence the dis-
tance traversed by the vertical bead for any value of £ can be computed
from the equation

s=y98,

while for the beads on the slanting wires s =d®. The value of the symbol d
is never as large as g and diminishes?t as the deviation from the vertical
increases.

The equations not only suffice for computing the distance when the time is
known but may be used to compute the time when the distance is known. We
then write, for the freely falling body,

I9tt=s, gi?=2s , ?=2s/g, t=12/yg .

For example, you could fall a mile in less than % min.—in fact, in less than
26 sec. This seems surprising, since the fall is only 16.1 ft. the first second. Again,
we can find the distance an object would fall the twentieth second by subtracting
the total distance the first 19 sec., 3g(19)? from the total distance the first 20 sec.,
39(20)2. This gives approximately 314 ft.

In a similar manner the mathematician is able to start with the Law
of Inverse Squares and describe the motion of the earth around the sun,
the motion of the moon around the earth, the tidal effect of the moon on

* Just as « is used for the ratio of the circumference of a circle to its diameter.

1 A bead on a slanting wire is subject to two forces, viz., the force of gravity which pulls down
and the push of the wire against the bead. The wire pushes in the direction perpendicular to it. The
effective force which produces the motion is the resultant of the two forces (see chap. 4, sec. 7).
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the earth, etc. He can show you how much higher vou could jump if you
were on the moon than you can jump on the earth, and can prove to you
that if you were on one of the little moons of

ﬁk:'/” % Mars you could jump high enough to keep on
N % going.
S
/ The preceding discussion of the motion of

-
% _Z/_///w an object which is acted upon by the force of

? gravity may seem to have led us far from the sub-
/ /Kl?{{’é ject of this section, “The Abstract Nature of
’ / d Mathematics™; but, indeed, we are still on the
(@ % subject. The object of these remarks is to em-
- phasize the fact already mentioned, viz., when the
Man jumps from small moon  1nathematician observes that a number of phe-
of Mars nomena have a common property, he tries to find

a symbolic expression for this common property which expresses the prop-
erty itself apart from any of the specific objects to which it is attached. He
then studies the formula as a purely mathematical product; he is in-
terested in the relation of the symbols which appear in it. He asks him-
self many questions concerning the mathematical (not the physical) im-
plications of the relationship. When he has a complete understanding of
his algebraic relations, he is able to make the objective applications to any
of the phenomena to which its origin was due; and moreover, he is quite

4

87

likely to discover that he is now able to explain, in whole or in part, other
phenomena not hitherto thought of as having anything in common with
the first group considered.

A second possible result of such a study of a formula or a set of for-
mulas as mathematical entities apart from any physical or geometrical
significance must not be overlooked. Not infrequently the development
of a purely mathematical theory leads on and on until mathematical situ-
ations are developed which have no apparent physical or geometrical ex-
planation. It may or it may not happen that within a decade or a lifetime
or a century this theory will be found to be of use in interpreting life
about us. An instance of such a situation which is of considerable impor-
tance is the development of Einstein’s theory of relativity. After plane
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and solid geometry had been developed, certain geometers went further
and developed in detail the geometry in a space of four dimensions and
even in a space whose dimension was designated by n, where n was sup-
posed to be an arbitrary positive integer. Now this geometry, when de-
veloped analytically (i.e., by means of algebraic formulas), without regard
to a visual or imaginative concept as to the makeup of a physical space of
four or more dimensions, offers no particular difficulties; and it was this
phase of it which interested the mathematician, though the non-mathema-
tician was considerably agitated by the fact that he could not visualize a
space of four dimensions and consequently he was certain that no such
space exists and that there is something very peculiar about mathemati-
cians who use their time developing theories about it.

Einstein’s theory uses the mathematical set-up which is called “the
geometry of a space of four dimensions,” and it is quite reasonable to be-
lieve that the study of the physical concepts involved in this theory
could not possibly have preceded the development of the mathematical
theory. Einstein, as well as Euclid and Newton, found the way prepared
before him.,

2. Deductive reasoning. To reason is to draw inferences or conclu-
sions from propositions (statements). The propositions on which the in-
ferences are based may be the result of observations or they may be prod-
ucts of the mind. In the former case, the reasoning is generally called
inductive; in the latter case, it is called deductive.

An excellent example of inductive reasoning is the already-mentioned
Law of Gravitation of Newton. From his observations, whether in the
open or in the laboratory, he concluded that there is always an attraction
between two objects, that the attraction results in motion if the objects
are free to move, that the attraction depends directly on the masses of the
two objects and inversely on the square of their distance apart, and that
motion takes place in the line joining the two centers of gravity. An in-
duction always adds something to the observations. Newton’s observa-
tions could not furnish him with such a precise statement as the inverse
square law. That was his own contribution, his guess. How fortunate for
him and for us that it turned out to be a satisfactory guess, because, of all
hypothetical laws of attraction which have been studied by the mathe-




