Lecture Notes in

Mathematics

A collection of informal reports and seminars

Edited by A. Dold, Heidelberg and B. Eckmann, Ziirich

233

Chris P. Tsokos
W. J. Padgett

Random Integral Equations
with Applications to
Stochastic Systems

Springer-Verlag
Berlin - Heidelberg - New York



Lecture Notes in
Mathematics

A collection of informal reports and seminars
Edited by A. Dold, Heidelberg and B. Eckmann, Ziirich

233

Chris P. Tsokos

Virginia Polytechnic Institute and State University,
Blacksburg, VA/USA

W. J. Padgett

University of South Carolina, Columbia, SC/USA

Random Integral Equations
with Applications to
Stochastic Systems

o

Springer-Veriag,
Berlin - Heidelberg - New York 1971



AMS Subject Classifications (1970): 60 H 20, 93E99

ISBN 3-540-05660-2 Springer-Verlag Berlin - Heidelberg - New York
ISBN 0-387-05660-2 Springer-Verlag New York - Heidelberg - Berlin

This wotk is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,

specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine
or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher,
the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Betlin : Heidelberg 1971. Library of Congress Catalog Card Number 74-179437. Printed in Germany.
Offsetdruck: Julius Beltz, Hemsbach /Bergstr.



PREFACE

Over the past few years we have been engaged in research
concerning random or stochastic integral equations and their
applications. A general theory of random integral equations
of the Volterra and Fredholm types has been developed utilizing
the theory of "admissibility" of spaces of functions and fixed-
point methods of probabilistic functional analysis. We have
two main objectives in these notes. First, we wish to give a
complete presentation of the theory of existence and uniqueness
of random solutions of the most general random Volterra and
Fredholm equations which have been studied heretofore. The
second objective is to emphasize the application of our theory
to stochastic systems which have not been extensively studied
before this time due to the mathematical difficulties that arise.

These notes will be of value to mathematicians, probabilists,
and engineers who are working in the area of systems theory or
to those who are merely interested in the theory of random equa-
tions.

It is anticipated that we will expand these notes to include
other types of stochastic integral equations, such as the Hammerstein
type and Ito's equation, along with many other applications in
the general areas of engineering, biology, chemistry, and physics.

We hope to reach this goal by 1972.

Chris P. Tsokos W. J. Padgett

Blacksburg, Va. Columbia, South Carolina

June, 1971 June, 1971
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GENERAL INTRODUCTION

The aim of these notes is to introduce the theory of random or

stochastic integral equations of the Volterra and Fredholm types and

to apply the results to certain general problems in systems theory.
We hope to convey the manner in which such equations arise and to
develop some general theory using as tools the methods of probability
theory, functional analysis, and topology.

Due to the nondeterministic nature of phenomena in the general
areas of the engineering, biological, oceanographic, and physical
sciences, the mathematical descriptions of such phenomena frequently
result in random or stochastic equations. These equations arise in
various ways, and in order to understand better the importance of
developing the theory of such equations and its application, it is
of interest to consider how they arise.

Usually the mathematical models or equations that describe
physical phenomena contain parameters or coefficients which have
specific physical interpretations, but whose values are unknown. As
examples, we have the volume-scattering coefficient in underwater
acoustics, the coefficient of viscosity in fluid mechanics, the
coefficient of diffusion in the theory of diffusion, and the modulus
of elasticity in the theory of elasticity. Many times this unknown
value is regarded as the true state of nature and is estimated by
using the mean value of a set of observations obtained experimental-
ly. The equations in the mathematical model are then solved in terms

of the estimate of the unknown parameter or coefficient. If several



sets of observations are obtained and the mean value is computed
for each, then the mean values will most likely differ, and the
particular mean value used as an estimate of the parameter may be
quite unsatisfactory due to this random variation. Therefore, the
parameter may be thought of as a random variable whose behavior is
governed by some probability distribution function. Then, realis-
tically, the equation must be viewed as a random equation, and its

random solution must be obtained. Once such a solution is obtained

its statistical properties should be studied.

There are many other ways in which random or stochastic
equations arise. Stochastic differential equations appear in the
study of diffusion processes and Brownian motion, Gikhmann and
Skorokhod [1]. The classical Ito random integral equation (Ito [1]),
which is a Stieltjes integral with respect to the Brownian motion
process, may be found in many texts, for example, in Doob [1].
Integral equations with random kernels arise in random eigenvalue
problems, Bharucha-Reid [6]. Stochastic integral equations describe
wave propagation in random media, Bharucha-Reid [6], [7], and the
total number of conversations held at a given time in telephone
traffic theory, Fortet [1], Padgett and Tsokos [4]. In the theory
of statistical turbulence, stochastic integral equations arise in
describing the motion of a point in a continuous fluid in turbulent
motion, Lumley [l], Padgett and Tsokos (3], Bharucha-Reid [7].
Integral equations were used by Bellman, Jacquez, and Kalaba (1],
(2], [3] in a deterministic sense in the development of mathematical
models for chemotherapy. However, due to the random nature of
diffusion processes from the blood plasma into the body tissue, the
stochastic versions of these equations are more realistic and should
be used, Padgett and Tsokos [1], [2]. Stochastic or random equations
also arise in systems theory, for example, Morozan (1], [2], [3],

[4] and Tsokos [1]1, (2], (3], (4], [51].



Begun by A. Spacek in Czechoslovakia, there have been recent
attempts by many scientists and mathematicians to develop and
unify the theory of random equations utilizing the concepts and
methods of probability theory and functional analysis, Adomian I[1],
Ahmed [1], Anderson (1], Bharucha-Reid (1], (21, (31, 1[4}, I[51,
61, (7)1, Bharucha-Reid and Arnold ([1], Hans [l1], Tsokos (41,

Dawson [1]. Bharucha-Reid I[5] refers to probabilistic functional

analysis as being concerned with the application of the concepts and
methods of functional analysis to the study of the various processes
and structures which arise in the theory of probability and its
applications.

Random or stochastic equations as described above may be
categorized into four main classes as follows:

(1) Random or stochastic algebraic equations;

(ii) Random differential equations;

(iii) Random difference equations;

(iv) Random or stochastic integral equations.
In these notes we will be concerned with some classes of random or
stochastic integral equations. In particular, we will be concerned
with classes of stochastic integral equations of the Volterra type
and of the Fredholm type. Specifically, we will investigate certain

aspects of stochastic integral equations of the Volterra type of

the form
x(t;0) = h(tsw) + S5 k(t,T;0)£(1,x(t;0))dr (0.1)
and stochastic integral equations of the Fredholm type of the form
x(t;w) = h{t;w) + f; kyltetiw)e(r, x(t;w))dr. (0.2)

We also will consider a discrete version of the stochastic integral

equation (0.2) of the form



g

xn(w) = hn(w) +

; cn'j(w) ej(xj(w)).

1

The discrete version of equation (0.1l) is then obtained as a special
case of the above random discrete equation whenever
'c;;'j(w), j =1,2,...,n

cn,j(w) =

0 , otherwise.

That is, the discrete version of the random integral equation (0.1)
is

n
z

xn(w) = hn(w) + c;’j(w)fj(xj(w)) .

j=1

In these notes we will be concerned primarily with the

existence, uniqueness, and asymptotic behavior of random solutions of

the equations (0.1l) and (0.2) and their discrete analogs. We also

will consider the approximation of the random solution of equation

(0.1).

Equations (0.1) and (0.2) are more general than any random
Volterra or Fredholm integral equations of these forms that have
been considered to date. The generality consists primarily in the
choice of the stochastic kernel and the nonlinearity of the
equations. We also present the results for the random integral
equations on a noncompact interval, whereas Anderson [l1] was con-
cerned only with equations whose functions were defined on compact
intervals. These notes include the recent work of the authors,
Padgett and Tsokos (51, (61, (7}, (81, (91, Tsokos (3], [4], (51,
and generalize the work of O. Hans [l], A. T. Bharucha-Reid (1],
2], 31, H#l1, and M. V. Anderson [1].

The second part of these notes is concerned with the application

of the general results which are presented for the integral



equation (0.1l) to certain recently solved problems in stochastic
differential systems, Morozan ([1] and Tsokos [l1], (2], [5]. These

problems are as follows:

x(t;0) = Alw)x(t;w) + blw)é (o (t;w))

with (0.3)
o(tiw) = <c(tjw), x(t;u)> ;
x(tjw) = Alw)x(t;w) + blw)é(o(t;w))

with (0.4)
glt;w) = flt;w) + fg<c(t—1;w), x(1;w)>dT;
x(t;w) = Afw)x(tjw) + fg b(t-t;w)¢ (o (T;w))ar

with (0.5)
o(t;w) = £(t;w) + fg <c({t-T;w), x(t;w)>dT;
X(t;w) = A()x(t;w) + S§ blt-T;0)¢ (0 (1;0))dr

+ IE clt-tiw) o (t;w)dr

with (0.6)

oltiw) = £(t;w) + f§<d(t-1;w), x(T;w)>dT;

x(tiw) = A(w)x(t;w) + Blw)x(t-t;0) + blw)é(o(t;w))
with (0.7)

g(t;w)

ft;w) + f§<c(t—s;w), x(s;w)>ds;
and

x(t;w)

Alw)x(t;w) + Blw)x(t-T;w)

S§ n(t-usw) (o (u;w))du + blw) (o (t;w))

+



with (0.8)
o(t;w) = £(t;uw) + fg <c(u;w), x(t-uiw)>du.

These nonlinear stochastic differential systems will be reduced in
a unified way to nonlinear stochastic integral equations of the
Volterra type which are special cases of the random integral
equation (0.1). In addition to the existence theory presented in

these notes we will investigate the concept of stochastic absolute

stability and give conditions which imply that the nonlinear
stochastic systems (0.3) through (0.8) are stochastically absolutely
stable. This type of stability has been studied by many scientists
with respect to differential control systems in the nonstochastic
case, but until recently had not been utilized for random systens.
The concept of absolute stability arose in the context of
differential control systems and the general theory of stability of
motion. The primary tool which was used until the late 1950's was
Lyapunov's direct method. Then V. M. Popov developed a new approach
which was called Popov's frequency response method. In these notes
we successfully utilize the frequency response method with a random
parameter to investigate the stochastic absolute stability of the
stochastic differential systems (0.3), (0.4), (0.5), (0.6), and the
systems (0.7) and (0.8) with lag time. System (0.3) was quite
recently investigated by Morozan [l]. He reduced the system into a
special case of the Volterra equation (0.1) and considered only a
stochastic kernel in the exponential form. We will present a
generalization of his results by considering the stochastic kernel
in its most general form, Tsokos [5]. Stochastic differential
systems of the remaining forms (0.4), (0.5), (0.6), (0.7), and (0.8)
were open problems until solved recently by Tsokos [1], [2], (31,

(41, (51, (61, (71, [(8].



In Chapter I we shall present the preliminary mathematical
and probabilistic definitions, notations, lemmas, and theorems
which will be essential to the development of the theoretical
results. Also, we shall formulate the stochastic integral equations
(0.1) and (0.2). 1In Chapter II we will consider the random integral
equation of the Volterra type with respect to the existence, unique-
ness, and asymptotic properties of a random solution. Also, the
results will be applied to a generalization of the Poincaré—Lyapunov
stability theorem. Chapter III will be concerned with the theoreti-
cal approximation of the random solution of the Volterra equation
(0.1). The random Fredholm integral equation (0.2) will be studied
in Chapter IV with respect to the existence, uniqueness, and
asymptotic properties of a random solution, and the results will be
applied to a stochastic system. In Chapter V we will present the
results concerning the random discrete Fredholm and Volterra systems,
that is, the discrete versions of equations (0.1) and (0.2), and
apply the results to some discrete stochastic systems. Chapters
VI, VII, and VIII will be concerned with the stochastic absolute
stability of the systems (0.3)-(0.8).

Some very recent results on the subject area have been obtained
by C. P. Tsokos and A. N. V. Rao, [1], S. J. Milton and C. P. Tsokos,

{11, [21, 3], [4) and s. J. Milton, W. J. Padgett and C. P. Tsokos,
[1].



CHAPTER I

PRELIMINARIES

1.0 INTRODUCTION

In an attempt to make these notes somewhat self-contained, one
of the purposes of this chapter is to present some of the basic
definitions and theorems from functional analysis which will be
often used. This will enable the reader to review quickly the
material involved. The second aim of this chapter is to formulate
the general stochastic integral equations of the Volterra and
Fredholm types to be studied and to give the probabilistic defini-
tions and spaces of functions which will be needed. Some of the
probabilistic definitions and spaces of functions are being intro-

duced here for the first time.

1.1 BASIC MATHEMATICAL CONCEPTS

We now state the following basic definitions and theorems.

Definition 1.1.1 A real-valued measurable function f (x)

defined on an interval [a,b] is called a square-summable function if

RIEx | %ax < w.

We will designate the class of all square-summable functions by L,.

Definition 1.1.2 A real number associated with feLz, denoted

by ||£]|, is defined by



[

Hell = (2lee0 |2 ax)?
and is called the norm of f.

Definition 1.1.3 A sequence fl' f2,... of functions in L2 is

said to converge to an element feLz, called the limit of the
sequence, if for every & > 0, there exists a positive integer N such

that n > N implies that
g, - €11 < e.

Definition 1.1.4 A nonempty set H is called a metric space

if to any pair of elements x,y of H there corresponds a real
number p(x,y) with the following properties:

(i) p(x,y) > 0 and p(x,y) = 0 if and only if x = y;

(i1)  e(x,y) Py ,x};
(iii) p(x,2) < p(x,y) + ply,2) for any x, ¥y, 2 € H (triangle
inequality).

The real number p(x,y) is called the distance from x to y.

Definition 1.1.5 A seguence {xn} of elements of a metric

space is a Cauchy sequence if for every € > 0 there exists an N > 0

such that whenever n > N and m > N, we have
p(xn, xm) < €.

Definition 1.1.6 A metric space H is called complete if every

Cauchy sequence in H converges to an element of H.

Definition 1.1.7 A nonempty set H is a linear space if

(i) to every pair of elements x and y of H there corresponds
a third element z € H such that z = x + y, called the sum

of x and y;

(ii) to every x ¢ H and every scalar a, there corresponds an



-10-

element ax ¢ H, called the product of o and x;
(iii) the operations described in (i) and (ii) have the
following properties for every x, y, z € H and scalars a
and R:
(1) x+y = y+x (commutative);
(2) (x+y)+z = x+(y+z) (associative);
(3) x+y = x+z implies y = 2z;
(4) 1x = x;
(5) o(Bx) = (aB)x;
(6) (o+B)x

ox+ Bx;

(7)  alxty)

aXtoy .

The concept of a semi-norm of an element of a linear space is

sometimes used to introduce a topology in a linear space of

infinite dimension. A complete discussion of semi-norms may be

found in Yosida [1]. We will give the definition here.

Definition 1.1.8 A real-valued function 7 (x) defined on a

linear space H is called a semi~-norm if it satisfies the following

conditions:
(i) T(x) > 0 for all x ¢ H;
(ii) 7w(x+y) < w(x) + w(y) (subadditivity);

(iii) w(ax) = |a|w(x), where o is any scalar.

Definition 1.1.9

A linear space H is said to be normed if to
each x € H there corresponds a real number ||x||, called the norm

of the element x, which has the following properties for each y ¢ H

and every scalar o:

(1) I1%]] > 0, and ||{x|| = 0 if and only if x is the zero

element of H;
(1) [lox|| = Ja|-||x[]:

(iii) Jx+y|| < Vx| + |y}

-




