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Preface

The Harish-Chandra homomorphism, between the centers of the universal
enveloping algebras of a reductive Lie algebra and the Levi component of a
parabolic subalgebra, plays a key role in representation theory of semisimple Lie
groups. It is used in the study of asymptotics of matrix coefficients, the study of
Lie algebra cohomology, the study of characters and the classification schemes of
Langlands and of Vogan. In the context of real Lie groups, a particularly useful
feature of the Harish-Chandra homomorphism is that, since it is purely algebraic
in nature, it can be defined for #-stable parabolics as well as for real ones, and
thus can be used to control cohomological induction as well as ordinary induction
from parabolics.

There are many parallels between representation theory on real reductive
groups and p-adic groups, and cach theory has illuminated the other. In particu-
lar, Harish-Chandra’s philosophy of cusp forms has been basic for both theories.
However, so far there has been no analog of the Harish-Chandra homomorphism
in the p-adic case. To some extent the Jacquet functor has substituted for it. But
the Jacquet functor makes sense only for rational parabolic subgroups, so it
passes over supercuspidal representations in silence. And it is a construction on
modules, not directly on convolution algebras, so it is not so organically a part of
harmonic analysis as is the Harish-Chandra homomorphism.

The purpose of these notes is to propose a partial analogue for p- -adic groups of
the Harish-Chandra homomorphism. The overall form of the construction pre-
sented here is as follows. Let G be a reductive p-adic algebraic group, and let
G’ C G be the centralizer of a semisimple element in G. (If the program begun
here gets carried far enough, G’ may become an endoscoplc” group and not
actually contained in G; but the present formulation suffices’for our purposes
here.) In favorable cases, one has an intuition that certain representations of G
are related to certain corresponding representations of G’. If G’ is the Levi
component of a parabolic subgroup P, then the desired'corfcspondence is realized
by taking a representation of G’, extending it to P by letfing the‘umpotent radical
of P act trivially, then mducmg the extended representation from P to G. (For
real groups, this construction can be augmented by cohomqloglcal mduc_txon to
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x ' PREFACE

cover a more or less general G, but for p-adic groups such a construction is
currently unavailable.)

What is shown here (for the case G = GL, and suitable G’) is that one can
find certain convolution algebras #°C C*(G) and >#’ € C2(G’) which are
isomorphic in a straightforward and natural way. This allows one to transfer
whole the subset of the representations of G “seen” by J# (i.e., in which J is
represented nontrivially) to the subset of the representations of G’ seen by #’.
When G’ is the Levi component of a parabolic subgroup, the correspondence
between representations of G’ ‘and of G is just that given by extending to a
parabolic containing G’ and inducing (using normalized induction to preserve
unitarity). However, the same phenomenon holds for G’ which are not Levi
components of parabolic subgroups (more properly, they are Levi components of
parabolic subgroups defined only over some extension of the ground field). From
such G’ there is the possibility of constructing supercuspidal representations of G.
In fact most of the constructions of supercuspidal representations in the literature
rely on essentially the phenomenon under study here, though not in an explicit
fashion.

Some convenient features of the construction given here are listed.

. (1) Since the correspondences of representations it yields arise from identifica-
tions of Hecke algebras, there is an obvious sense in which they are canonical.

(ii) The isomorphisms constructed are very simple-minded and obviously allow
transfer of important properties of representations expressible in terms of matrix
coefficients: rates of decay, supercuspidality, square-integrability, temperedness,
etc. (However, it is not obvious whether unitarity is always preserved, though
there is some positive evidence.)

(iif) The correspondence preserves Plancherel measure. Thus, in particular, it
provides an inductive computation of Plancherel measure and, especially, a
method for finding the formal degrees of discrete series representations.

The main drawbacks of the construction are that it involves quite a lot of work,
and that it is not clear how general it can be. Some remarks can be offered in
partial amelioration of these points. First, the reader will be pleased to know that
the preséntation of the main results is considerably streamlined over the original
tréatment, given in the lectures to which these are the notes, and the results are
improved. Second,” the results given here can be extended with relatively little
extra effort to cover centralizers of tamely ramified tori. They have also been
extended to centralizers of unramified tori in other classical groups than GL,.
Third, though the details of proofs given here are rather painstaking, the formal
scheme of the results has a robust simplicity to it that gives one hope that,
properly formulated, they are quite general. It seems reasonable to hope that

_these methods could lead to an explicit Plancherel formula for groups with only
tamely ramified tori. There is even some slight evidence that they remain valid for
wildly ramified tori. But that is work for the future.
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The notes follow more or less the outline of the lectures (given in Chicago,
August 1983). In Chapter 1, the basic phenomena are illustrated in the case of
GL,(F,), where F, is the finite field with g elements, and they are applied to give
an efficient sketch of the representation theory of GL,(F,). In Chapter 2, the
transition is made to local fields, and the basic result is formulated and proved in
the case of the Levi component of a (rational) parabolic. Chapter 3 then
completes the proof of the main theorem by treating the case G’ = GL_(F’) ¢
GL,(F) = G, where F’ is an unramified extension of degree n/m of the ground
field F. The results of Chapter 1 have been known to me for a long time; Allan
Silberger and I discussed these questions at the Institute for Advanced Study in
1972. A treatment of such results for general Chevalley groups aver finite fields,
not quite from the same point of view, was given by Howlett and Lehrer [HL]. A
more or less definitive discussion has been given by Lusztig in his recent book
[L2]. By contrast, the results of Chapters 2 and 3 are recent and are the fruits of
joint work with Allen Moy. ’

I would like to thank Paul Sally for his interest in these results and for
organizing the CBMS conference where I reported on them. I would also like to
thank him for preparing a preliminary draft of Chapter 1 and David Manderscheid
for a preliminary draft of Chapter 2. I am pleased to recognize Ms. Donna Belli
and Mrs. Mel DelVecchio for their rapid, accurate production of the typescript. I
am very appreciative to the Guggenheim Foundation whose support gave me time
to finish this and other writing projects. But, especially, I gladly yield a debt of
thanks to Allen Moy, without whose aid, both mathematical and logistical, these
notes would still be in limbo. Working with Allen has been a pleasure.

New Haven, CT
February, 1985
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1. A Hecke Algebra Approach
to the Representations of GL, (F,)

1. Introduction. Let F, be the finite field with g elements, and let GL,,(F,) be
the general linear group of n by n invertible matrices with coefficients in F,. The
irreducible characters of GL,(F,) were described by Green in [Gr]. Much more
recently, Lusztig [L1] gave a description of some of the cuspidal representations
of GL,(F,). Using l-adic cohomology, Deligne-Lusztig [DL] then gave a construc-
tion of a large family of cuspidal representations of general reductive algebra
groups over F_. Lusztig followed this, in a tour de force, by classifying the
irreducible representations of more or less general reductive groups [L2].

In this chapter, we consider GL,(F,) and give a rough description of the set
(GL,(F,)) " of irreducible representations. We will not describe the characters or
cxplicit modules for the representations. What we gain in exchange for setting .
such a modest goal is a fairly self-contained account, which uses only the most
standard tools of representation thery, along with Harish-Chandra’s “philosophy
of cusp forms”. The main observation underlying this account is that there is a
natural isomorphism between certain spherical function algebras associated to
different groups. The account of GL,(F,) given in this chapter is introductory to
the discussion of GL, over p-adic fields given in Chapters 2 and 3. Certain results
needed to eomplete the story for GL,(F,) but not needed later are treated in
appendices. This account may be regarded as introductory to the elegant treat-
ment of GL,,(F,) by A. Zelevinski [Z1].

2. Notation and G/B. We will abbreviate GL,,(F,) = G when there is no need
for more specific notation. The group G acts naturally on Fj' = V¥, the space of
column. vectors of length n over F,, by matrix multiplication. For m < n, we
identify F" = V,, with the subspace of ¥, whose elements have their last n — m
coordinates equal to zero. Let ¥,/_,, be the subspace of V, whose elements have
their first m coordinates equal to zero. Then ¥/, is a complement to ¥, in V,,
and we have the direct sum decomposition ‘

(21) I/n = Vm ® an—m



2 A HECKE ALGEBRA APPROACH

Let A = {0=ay<a, <a,< -+ <a,= n) be an increasing subsequence of
the nonnegative integers up to n. We define the set of subspaces

(2.2) F,={V,:a,€ 4}
to be the standard flag associated to 4. We define groups

() P,={ge6G:g(V,)=V,.q,€4);
(23) i) U={gePh:(-g)W,cV, a4}
(i) M,={geP,;:g(V.,)=V/ .. a4}

Then P, is a standard parabolic subgroup of G with ‘um'potent radical U, and
Levi component M,. We have

) = MAUA’
(24) M, =TI GL(V a V' ar)=TIGL, . (F).

i

In particular, if we take 4 = N = {0,1,2,...,n}, then P, = B is the standard
Borel subgroup of upper triangular matrices, Uy is a maximal unipotent subgroup
of G, and the group My = D = (GL\(F)))" = (F))" is the group of diagonal
matrices in G. ‘

If we take A = {0 < m < n}, then P, = P, is a maximal parabolic subgroup
of G. The unipotent radical U, of P, is abelian and isomorphic to Hom(¥,/_
and the Levi component of P,, is isomorphic to GL(V,,) X GL(V,’_,.).

Recall that two standard parabolics P, and P, are called associate if M, and
M. are conjugate in G. From (2.3)(iii), we sec that this is so if and only if the sets
of numbers {a; — q,_;} and {a; - a;_,}, counted with multiplicities, are the
same. Observe that the collection of numbers {a; - a,_,} forms a partition of n
which we call the partition associated to A. Thus, P, and P, are associate if and
only if their associated partitions are equal. ,

Let W denote the group of n by n permutation matrices. Any element of W
simply permutes the-coordiates of a vector in ¥,. We may identify W in a
canonical way with the symmetric group S, of permutations of (1,2,...,n}. We
may also identify W with the Weyl group NG( D)/D of D, the diagonal matrices
in G.

For A= {0=a,< al < +-+ <a;=n} as above, a nested sequence { X} of
subspaces of V¥, such that X, C X,,, and dim X, = a,, is called a flag of type A.
Every flag of type A may be moved by some g € G into the standard flag &, of
type A, so the space of flags of type 4 may be identified with the homogeneous
space G/P,, which is called the flag variety of type A.

For another 'set A’ = {0 =ag<a, < --+- <a; = n}, the orbits of P, in
G/P, may be identified with the double coset space P;\ G/P,. According to

m> m)’
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Bruhat’s lemma [Bb, p. 25], we have
. (a) B\G/B=W, or
(2.5) (b) 6= U Bwa,
w ’E w
where the union is disjoint.
More generally, given a parabolic subgroup P,, set

(2.6) W,=WnEP,
Then .
(2.7) Py\G/Py = W \W/W,.

3. The representation Ind$1 and the Hecke algebra »#(G//B). One can begin
to approach the study of the irreducible representations of G through considera-
tion of the induced representations

(3.1) py=Ind§ 1,

where 1 denotes the trivial representation of P,. It is well known from general
theory [CR] that the space Hom;(p,, p,-) of intertwining maps from p, to p,.
may be identified with the space of complex valued functions on G such that

(3.2) f(pgp,) = 1(28), plePA’éeG, P2 € P,

This space has an obvious basis—the characteristic functions of the (P,, P,)
double cosets. Using (2.7), we see that

(33 dim Homg(p,, pr) =4 (W \ W/W,.).

If 4 = A’, then Hom(p,, p,) = End ;(p,) is an algebra, and, under the above
identification, the algebra structure is convolution of functions on G.

In the particular case P, = B (A = N), the algebra End;(p;) may be identi-
fied with the algebra s¢(G//B) of B bi-invariant functions on G. In this section,
we give a fairly complete description of #°(G//B). This description is adapted
from {I. For a general semxsxmple group G over a finite field, with Borel
subgroup B and Weyl group W, it is known that dim #(G//B) =%, and, in
fact, ##(G//B) is isomorphic to the group algebra of W [l] For our group
G = GL,, this is proved in Appendix 2.

Now, let s, be the elementary transposition in W (= S,) whxch exchanges / and
i + 1. Let I(-) denote the standard length function on W. Thus, for w € W, the
length /(w) is the number of pairs (a,b) in N X N whose natural order is
reversed by w. Alternatively, /(w) is the smallest length of a product of elemen-
tary transpositions expressing w.

We have the formula

(3.4) HBuB) =3 (B)g"™, we W,

for the cardinality of a cell of the Bruhat decomposition of G ((2.5)(b)). Let
f., = 1/%(B) times the characteristic function of BwB.
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If we take counting measure on G so that each group element has mass equal to
1, then the functions f,, form an orthogonal basis for #(G//B) considered as a
subspace of L*(G). Moreover, f, is idempotent and is the identity for the
convolution structure on J#(G//B).

A basic fact about multiplication in 5#°(G//B) is expressed by the relation

(3'5) ' fwl*fwz =fwlw2 ifl(wl)+1(w2)=1(w1w2)‘

In particular, if w=ys;s; ---s,, where / = /(w) and the product is a shortest
possible expression for w in terms of the elementary transpositions s, then

(3.6) fo=f 2 fx ok,

Thus, the functions f, generate the Hecke algebra 5#(G/ /B).
Equation (3.6) also implies some relations among the f;, stemming from
relations among the elementary transpositions s,. For example, if |i — j | > 1, then

5.8 = 88, whence

(3.7) forty=fsh  li-jl> 1

The transpositions s, and s, generate an S, (symmetric group on 3 letters) in
W, and it is easy to see that s;s,,,5; = 5,,,5,5,,; is the third element of order 2 in
this §;. Hence, ‘

(38) f-’:‘f-‘l-u*f-’:=f-;,i+1*f-':*f:":+|'

To fully explicate the multiplication in #(G//B), we must also consider
/wl » fw2 when I(ww,) < I(w) + [ w,). To compute this, it is enough to consider
f;,* /- Itis easy to show that '

(39) Jo2f,=ah +(a-1)f,.

It is demonstrated in {I} (as a direct consequence of the analogous fact for W)
that 5°(G//B) is the algebra generated by the functions J;, subject to relations
(3.7-(3.9). .

By taking advantage of relations (3.3) and the reprasentation theory of the
symmetric group, one can completely decompose the representation Ind$1 and
show that 5#°(G//B)is isomorphic to the group algebra of W. Since this analysis
takes us slightly outside our main story line, we present it in Appendix 2,

4. The philosophy of cusp forms. Let o € G and consider a standard parabolic
subgroup P, of G. Suppose that o contains a vector invariant under U,, the
unipotent radical of P,. Then Frobenius reciprocity implies that there is a
representation o, of P,, trivial on U,, such that o is a éﬁbrepreserftation of
Ind§ o,. g ' ' :

Since a representation of P,, trivial on U, is a representation of M »and M, is
a product of GL,’s for m < n (2.4), the problem of determining the possibilities
for o, (i.e., determining (M,) ") is presumal?ly easier than that of determining G.
Thus, the problem of determining all 0 € G with U, fixed vectors is reduced to
the problems of determining (M,)” and decomposing induced representations.
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Evidently, we have here an inductive procedure for determining G, the building
blocks of which are those representations for which no such reduction is possible
—that is, those representations o which contain no Uj-invariant vectors for any
A. Following Harish-Chandra, we call such representations cuspidal.

Now, the problem of determining G may be broken into two parts: -

(4.1) (i) Determine the cuspidal representations of GL,(F,) for any m < n.
(i) Decompose the representations Ind$ 7,01 where o, is a cuspxdal
representation of M, = P, /U,.

This program is known as “the phjlosophy of cusp forms”. Problem (4.1)(ii) has a
quite satisfactory answer which was described by Harish-Chandra (for general
semisimple groups) in [HC1] and which we shall review here. Problem (4.1)(i) has
proved more difficult. The solution is provided in the papers of Green (for GL ),
Deligne-Lusztig, and Lusztig mentioned in the introduction to this chapter.

In approaching (4.1)(i1), we first recall some general facts about induced
representations [CR]. Let G be a group with subgroups H; and H,. Fori=1,2,
let 7, be a representation of H; on V,. Set p; = Ind§ #,T» 1 = 1,2. Then [CR] the
space End ;(p,, p,) of intertwining operators between p, and p, can be canoni-
cally identified with the space of functions f: G - Hom(V}, V;) satisfying

(4.2) f(haghy) = 1(h3) f(g)mi(hy), hi€eH,g8€G.

Evidently f(g) determines f on the whole double coset H,gH,. We denote by
I(g, py, p,) the dimension of the space of functions satisfying (4.2) and supported
on H,gH,. We say that g intertwines p, and p, if I(g, p;, p;) > 0.

THEOREM 4.1 (HARISH-CHANDRA). Let P, and P,. be standard parabolic sub-
groups of G, and let o, and o] be cuspidal representations of P,/U, and P,./U,,
respectively.

(i) An element w € W intettwines o, and o] only if wMw™ = M.

(i1) Let w satisfy (i) and, for m € M,, write Ad*w(o{}(n) = ol(wmw'l) Then
w intertwines ¢, and of if and only if Ad* w(oy) is equivalent to o,.

(iil) If we intertwines o, and o{, then I(w, 0,,061{) = 1.

PROOF. Let A ={0=ay<a,< -+ <a;=n) and A'= {0 =a) <a] <

c<ap=n}SeY=V,NnV , ,and Y=V, NV , . Then wMmw™*
= M, if and only if the collections { w( Y)) and {y/ } of subspaces of V, are the
same. Suppose this is not the case. Then we can find i and j such that

w(Y,) ~dagfYoe &) o (w(¥) n V),

where neither summand is trivial. In this case, GL(Y;) N (w™U, w) is the (non-
trivial) unipotent radical of the parabolic subgroup of GL(Y,) whxch preserves
w i w(¥,)NV, ;) Since of is trivial on U, but o, contains no fixed vectprs for
GL(Y,)n (w”lU W), it is not possible for W o intertwine 0, and of. This proves
(i), which is the mam statement of the theorem. _ -
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Statement (ii) now follows more or less immediately from equation (4.2). Thus,
for m € M, and f satisfying (4.2) with 7, = 0, and 7, = o}, we have
f(w) = f(wmw™'wm™) = Ad*w(o])(m)f(w)a,(m™?).
This implies that f(w) € Hom,, (¢;, Ad* w(s})), and, if f(w) is nonzero, it must
be an isomorphism by Schur’s lemma, since o1 and Ad*w(e;) are irreducible

representations of M.
Statement (iii) also follows from Schur’s lemma. O

COROLLARY 4.2. If P, and P, are not associate, then Ind§, o, and Ind$, o,
have no components in common.

ProoE. This is immediate from Theorem 4.1()). O

COROLLARY 4.3. If P, and P,. are associate, then Ind"' , 0, and Ind§_of are
equivalent, or they have no components in common.

PROOF. Let 4 = (0 =4g,<a, < --- <ag;=n}. Fix an index j and define
A={0=agy<aj< --- <a;=n}by
a/=a, ifi+j; a;=a, +a,, —a;

Choose w € W such that w acts as the identity on V and on V’ , and such
that w(Y)) = Y}, and w(Y),,) = Y. This is possible by the construcnon of A'.
Now, given a cuspidal rcpresentauon o, of P,/U, = M,, define o{ on M,. by

" of(wmw1) = oy(m), meM,.
Extend o to P, by letting it be trivial on U,.. To prove the corollary, it will
suffice to prove that Ind§, o, and Ind§_oj are equivalent.

Define 4 = {0==ao< d < o <a, 1 = n} by the rule

a=a, i<j; di=a;., izj.
Then, P; is a parabolic subgroup containing P, and P, and, it is enough to
show that Ind,/ o, and Ind% ¥ o] are equivalent. Thus, it suffices to consider the
case [ = 2; that i is, P, (and hence P,y are maximal parabolic subgroups.

There are two possibilities. Either Ind§ o, is irreducible, or P, = P,. and
 Ad*w(0;) = 0;. In the first case, Ind§, o/ is also irreducible, and w intertwines
the two representations, which are therefore equivalent. In the second case,
Theorem 4.1(iii) tells us that

dim Endc(lnd(};», oy, Ind§, "1) = dim Hom (Indg4 0y, Ind§ o] ) .
| - i BSGMNS, of, 1a65, of) = 2.

Hence, each of Ind§, o, and Ind§ of consists of a direct sum of the same two
irreducible representations, so the two induced representations are equivalent,. O

From Theorem 4.1 and its corollaries, we see that the process of forming
induced representations from cuspidal representations of parabolic subgroups
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divides G into disjoint subsets parametrized by (associate classes of) Levi compo-
nents of parabolic subgroups. In the case of G = GL,, these associate classes of
parabolics are parametrized in turn by partitions of n.

The next step in the philosophy of cusp forms is to determine the irreducible
components of the induced representations.

Consider then a parabolic subgroup P, and a cuspidal representation o, of M.
Since P, may be replaced by any associate parabolic subgroup, we shall take
A={0=gay<a <ay< --- <a;=n} so that the members A, = a, — a,_, of
the associated partition form a nonincreasing sequence. Of course, we may have
certain of the A; equal to each other. Suppose Ji are the indices where the A,
change value. Thus

NP N === >N
and so forth. Define a partition {1, } of n by
B = (jk+1 —jk)Aj,,+l’
and define an increasing sequence

A= {0=ap<ay<dy< -+ <d,=n} witha,= Y pu,.
kgr

By Theorem 4.1, any w € W which intertwines o, with itself must normalize
M . By the construction of A, we see therefore that w must belong to P, 1t then
follows from general theory that each irreducible component of the induced
representation Ind} o, induces irreducibly to G. Thus, it will suffice to describe
Ind¥ o,.

Since o, is trivial on U, 2 Uy, the induced representation Ind} o, will be
trivial on U, and therefore will effectively be a representauon of M. But M ;isa

product
M;= I;[ GL“(F,,).

Furthermore,
PiOM;= [k'[(GLm(F,,) nPp,).

The representation o, of P, N M; will be a tensor product of representations
(01); of the factors GL, (F,) N P,, and the induced representation will be a
tensor product of the induced representations

GLp (F,)
(4.3) In dGL"‘(,,m,‘(ol),‘.

Hence, to determine the structure of Ind% # 0y, it suffices to determine the
structure of representations of the type (4.3). In other words, it suffices to
consider the case A = {0=a,<a, <a,< -+ <a,;=n} in which all the steps
a; — a,_, have a common value, say A, so that n = /A.
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For such an A as just specified, we have
1
M, = (GL,(F,)),

and a cuspidal representation o, of M, will be a tensor product

®ff.‘-

where each 7, is a cuspidal representation of GL,(F,). Arguing again as above,
and appealing to Theorem 4.1(ii), we can further reduce to the case in which all
the 7, are equivalent to each other. This basic case will be investigated in the next
section.

5. Intertwining algebras for induced representations. Suppose n (as in ¥, and
GL,(F,) = G) is composite, say n = Am. We divide an n X n matrix into an
m X m array of A X A blocks. Let G denote the subgroup of elements of G
which, on each A X A block, contain a multiple of the identity matrix. Then G is
isomorphic to GL,,(F,). Let W = W G. Let P be the parabolic subgroup of G
consisting of matrices whose entries in the subdiagonal blocks are all zero. Thus,
P=P ,whered = {0=ay,<a;=A<ag,=2A< --- <g,=mA=n}.IfM
is the Levi component of P, then

= (GL,(F,))".

Let 7 be an m'educnble cuspidal representation of GL,(F,) on a Hilbert space

. ¥, and let o, be the representation of M obtained by takmg the m-fold tensor

product of 7 acting on ® ¥, the m-fold tensor power of ¥. According to

Theorem 4.1(i), the elements of G which intertwine o, with itself belong to the set
PWP. In fact, we can write these elements explicitly. ,

We identify W with the symmetric group S,, by identifying w € W with its
action by conjugation on the diagonal blacks labeled according to their position
along the diagonal. Let J(w) be the operator on ® "#¥ which permutes the
factors of an m-fold tensor according to the permutation w. Thus,

J(W)(yl ®y,®:-- ®y,)= Yu) Ve ® * OY(m)-
Then the intertwining algebra End;(Ind$o,) has a basis consisting of the
functions f, defined by
(5.1) f(pwp,) = (‘P)‘l"x(l’x)-’(w)"l(l’z)’ P P2 € P;
f(g) =0 ifge& PwP.

We now compute the products of the functions f, defined by (5.1). Let / be the
length function on W defined in §3. Since each w € W normalizes the group D of
diagonal matrices in G, equation (3.4) is equivalent to

(5.2) Y Up/(Up N wU,w")) =9/ wew.
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If w € W, then w normalizes M and M N Uy. Thus, we may conclude
(5.3) $(PwP) = '™ P), wewW.

REMARK. Since W has been identified with S,, it too possess&s a length
function which we denote by /. It is easy to check that
(5.4) AW = NI

Take w,w’ € W. Suppose first that /(ww’) = I(w) + {(w’), and consider the
multiplication map
(5.5) (PwP) x(Pw'P) — Pww'P.
Clearly, if xy = 2, then (xp)(p~'y) = z for any p € P. Thus, the fibers of the
map (5.5) are of cardinality a multiple of #(P). From (5.3), we sec that, under our
assumption, the fibers of the map (5.5) must have cardinality exactly 3(P). '
Hence, in particular, if xy = ww’, then x =wp and y =p~'w’. It follows
immediately that
(5.6) fotfu = fowr wWEW, 1(W)+1(W)=1(WW)

Thus, if the elementary transpositions of W are denoted by §,, we see that the
f;, generate End ;(Ind$ o,), and further, we have the relations

W hody=fyofn  li=il>1,
(ll) -,;: ‘jiiu‘f’l =f3/+|.‘61 .:'I’nu’

analogous to relations (3.7) and (3.8) in #°(G//B).

Next, we consider the convolution product f; # f;. The element §,, together
with P, will generate a parabolic subgroup P’ which is minimal with respect to
the property of strictly containing P. It is easy to see that among the double
cosets PwP, w € W, contained in P’, the only ones with w € W are P and P5,P.
Hence, to determine f; « f; , it suffices to determine its value at 1 and at §,.

If x,y € P5,P, and xy = 1, then clearly y = x~!, and, if x = p,§,p,, then
¥y = p3'5,p; 1. From (5.1) and (5.3), we see that

(57)

(5.8) £, # £,(0) =¥ (P)*(P3,P) = ' (P) .
Next, consider the equation
(5.9) xy=5, - x,y€P5P.

In studying this equation, we may as well assume that P’ = G, so that m = 2,
In this case, we write §; = §, and we may take x and y to have the form
x = u,8p,, ¥ = pySu,,
with u,, u, € U, the unipotent radical of P, and p,, p, € P. If we write p = p, p,,
then equation (5.9) becomes
(5.10) u,SpSu, = §.
Equation (5.10) is equivalent to the matrix equation

(5.11) [(l) ‘11](1) ][8 d][(l, (l)][o 1] 1
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where the entries are A by A matrices. Straightforward multiplication, followed
by a comparison of entries, leads to the conclusion,that a must be invertible, and

(5.12) . b=al, ¢cm—-a, d=1, e= —ag” L

Since m = 2, the space of the representation o, with which we are now dealing
is #® %, where ¥ is the space of the representation v of GL,(F,) = G,.
Consider the operator
(5.13) T= Y r(g)or(-g7")

8€G,
on ¥® #. One sees easily that -

(r(8) 8 7(8))T=T(r(g1) ®7(8;)), 21.8:€6.
Thus, T accomplishes the same automorphism of ¢,(M) =7 ® (G, X G,) as
does the operator J(w). Schur’s lemma then guarantees that T is actually a
multiple of J(w). To compute this multiple, it suffices to compute the trace of
TI(w).
Choose g € G,, and let {y,} be a basis for ¥ consisting of eigenvectors for
7(g), so that 7(g)y, = ea,y,. Then { y, ® ¥;} is a basis for ¥® ¥, and we have

(7(8) ® "("8—1))-’(“’).()'1 QYI) = 5(‘1)‘1,'“;1(){/ ®}’i)’

where e(—1) is the multiple of the identity map of ¥ which is equal to (—1).
Here, —1 denotes the negative of the identity in GL,\(F,) = G;. If we use the
above basis to compute the trace, we obtain

tu(((g) ® 7(=g71))J(W)) = e(~1)dim®.

Thus,
o  (+(8) @ (=) I(w) = e~ 1)(@im®)¥(G,),
8€0G,
and
(514) L (r(g) @ r(=g™")) = e(~1)(dim®) H(G,) (w).
8€G,
Combining equations (5.8)—(5.14), we find that
(5.15) fy* £, = 4" + (- 1)(dim®) TH(G)) .-
From Appendix 3, we see that ‘
- (5.16) (@m®)"*(G,) = (¢* - 1)g**-»7,
Now set
(5.17) f;? = 3(“1)4_(A(A—1))/2f3,; L =h-

Then, using (5.4), (5.15), and the fact that J(5,) = 1, we have
(5.18) o= +(a* - 1A



