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Preface

The scattering of acoustic and electromagnetic waves by periodic sur~
faces plays a role in many areas of applied physics and engineering. Opti-
cal diffraction gratings date from the nineteenth century and are still
widely used by spectroscopists. More recently, diffraction gratings have
been used as coupling devices for optical waveguides. Trains of surface
waves on the oceans are natural diffraction gratings which influence the
scattering of electrom-.gnetic waves and underwater sound. Similarly, the
surface of a crystal acts as a diffraction grating for the scattering of
‘atomic beams. This list of natural and artificial diffraction gratings
could easily be extended.

The purpose of this monograph is to develop from first principles a
theory of the scattering of acoustic and electromagnetic waves by periodic
surfaces. In physical terms, the scattering of both time-harmonic and
transient fields is analyzed. The corresponding mathematical model leads
to the study of boundary value problems for the Helmholtz and d'Alembert
wave equations in plane domains bounded by periodic curves. In the formal-
ism adopted here these problems are intimately related to the spectral
analysis of the Laplace operator, acting in a Hilbert space of functions
defined in the domain adjacent to the grating.

The intended audience for this monograph includes both those applied
physicists and engineers who are concerned with diffraction gratings and
those mathematicians who are interested in spectral analysis and scattering
theory for partial differential operators. An attempt to address simultan-
eously two such disparate groups must raise the question: 1is there a common
‘Qomain of discourse? The honest answer to this question is no! Current
mathematical literature on spectral analysis and scattering theory is based
squarely on functional analysis, particularly the theory of linear trans-

formations in Hilbert spaces. This theory has been readily accessible ever




since the publication of ™. H. Stone's AMS Colloquium volume in 1932:
Nevertheless, the theory has not become a part of the curricula of applied
physics ‘and engineerirg and it is seldom seen in applied science literature
on wave propagation and scattering. Instead, that literature is character-
ized by, on the one hand, the use of heuristic non-rigorous arguments and,
on the other, by formal manipulations that typically involve divergent
series and Integrals, generalized functions of unspecified types and the
like.

The differences in style and method outlined above pose a dilemma. Can
an exposition of our subject be written that is accessible and useful to
both applied scientists and mathematicians? An attempt is made to do this
below by dividing the work into two parts. Part 1, called Physical Theory,
presents the basic physical concepts and results, formulated in the simplest
and most concise form consistent with their nature. Moreover, Part 1 can be
interpreted in two different ways. First, it can be interpreted in the
heuristic way favored by applied physicists and engineers. When read in
this way it presents a complete statement of the physical content of the
theory. Second, for readers conversant with Hilbert space theory Part 1
cag be interpreted as a concise statement of the principal concepts and

‘fesults-of a rigorous mathematical theory.

When read in the second way Part 1 serves as an introduction to and
overview of the complete theory which is preseated in Part 2, Mathematical
Theory. This part develops the relevant concepts and results from func-
tional analysis and the theory of partial differential equations and applies
them tc give complete proofs of the results formulared in Part 1. At the
same time many secondary concepts and results are formulated and proved that

lead to a deeper understanding of the nature and limitations of the theory.
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Introduction

The first theoretical studies of scattering by diffraction gratings
are due to Lord Rayleigh. His "Theory of Sound” Volume 2, 2nd Editiomn,
published in 1896 [18]*, contains an analysis of the scattering of a mono-
chromatic plane wave normally incident on a grating with a sinusoidal pro-
file, In a subsequent paper [19] he extended the analysis to oblique
incidence. Rayleigh assumed in his work that in the half-space above the
grating the reflected wave is a superposition of the specularly reflected
plane wave, a finite number of secondary plane waves propagating in the
directions of the higher order grating spectra of optics, and an infinite
sequence of &anesceﬁt waves whose amplitudes decrease exponentially with
distance from ‘the grating. The validity of Rayleigh's assumption for gen-
eral grating profiles was realized in the early 1930's [10], following
Bloch's work [4] on the analogous problem of de Broglie waves in crystals.
Waves of this type will be called Rayleigh-Bloch waves (R-B waves for
brevity) in this work.

The goal of Rayleigh's work and the literature based om it was to
calculate the relative amplitudes and phases of the diffracted plane wave
ccmponents of the R-B waves. Severai methods for doing this have been
developed. L. A. Weinstein [27] and J. A. DeSanto [5,6] gave exa;:t solu-
tions to ﬁhe problem of the scattering of monochromgtic plane waves by a
comb grating; i1.e., an array of periodically spaced infinitesimally thin
parallel plates of finite depth mounted perpendicularly on a plane. For
gratings with sinusoidal profiles, infinite systems of linear equatioms for
the complex reflection coefficients Qere given by J. L. Uretsky [26] and
J. A. DeSanto [7]1. Morxe recently,;DeSanto [8].hés extended his results to
essentially arbitrary profiles. Finally, an excellent review up to 1980 of

"Numbers in aquarekbr\ackets denote references from the list at the end of
the monograph.
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both theoretical and numerical methods for deternining the reflection coef-

ficients is contained in the book Electromagnetic Theory of €ratings, edited

by R. Petit [17].
The literature on diffraction gratings and their applications is very

large. References to work done before 1967 may be found in the monograph

by Stroke in the Handbuch der Physik [25]. A survey of the literature up
to 1980 is contained in [17]. ’

The works refereuced above provide a satisfactory understanding of the
scattering of the steady beams used in classical spectroscopy. However,
modern applications of gratings in such areas as optical waveguides and
underwater sound require an understanding of how transient electromagnetic
and acoustic fields, such as pulsed laser beams and sonar signals, are
scattered by diffraction gratings. The existing grating theories are inade-
quate for the analysis of these problems.

'The purpose of this monograph is to develop a theory of the scattering
of transient electromagnetic and acoustic fields by diffraction gratings.
The theory is based on an eigenfunction expansidn for gratings in which the
eigenfunctions are R-B waves. The analysis parallels the author's work on
the scattering of transient sound waves by bounded obstacles [30,31,33}.

The eigenfunction expansions are generalizations of T. Ikebe's theory of
distorted plane wave expansions [12], first developed for quantum mechanical
potential scattering and subsequently extended to a varieﬁy of scattering
problems {2,15,21,22,23,32]. The theory is based on the study of a linear
operator A, called here the grating propagator, which is a selfadjoint reai-
ization of the negative of the Laplace operator acting in the Hilbert space
of square integrable acoustic fields. A fundamental result of this analysis
is a representation of the spectral family of A by means of R-B waves. The
R-B wave expansions follow as a corollary.

The theory of scattering by gratings developed below is restricted, for
brevity, to the case of two-dimensional wave propagation. Specifically, the
waves are assumed to be solutions of the wave equation in a two-dimensiomal
grating domain and to satisfy the Dirichlet or Neumann boundary condition on
the grating profile. These problems provide models for the scattering of
sound waves by acoustically soft or rigid gratings and of TE or TM electro-
magnetic waves by perfectly conducting gratings. It will be seen that the
) methods employed are also applicable to the scattering of scalar waves by
three-dimensional (and n-dimensional) gratings and to systems such as
Maxwell's equations and the eqﬁations of elasticity.

Even with the restrictior to the two-dimensional case, the analytical

work needed to derive and fully establish eigenfunction expansions for

£200393
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diffraction gratings is necessarily intricate and lengthy. This is clear
from an examination of the simpler case of scattering by bounded obstacles
presented in the author's monograph [30]. Therefore, to make the work more
accessible to potential users, the monograph has been divided into two
parts. As explained in the Preface, Part 1 can be interpreted both as a
complete statement, without proofs, of the physical concepts and results of
the theory and also as a summary and introduction to the complete mathemat-
ical theory developed in Part 2.

A preliminary version of the R-B wave expansion theorem of this mono-
graph was announced by J. C. Guillot and the author in 1978 [34]. That work
was based on an integral equation for the R-B waves. In this monograph an
alternative method based on analytic continuation is used. A key step is
the introduction of the reduced grating propagator Ap which depends on the
wave momentum. The Hilbert space theory of such operators was initiated by
H. D, Alber {3]. Alber's powerfﬁl method of analytic continuation of the

resolvent of AP is used in Part 2 to construct the R-B wave eigenfunctions.
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Part 1
Physical Theory

This monograph develops a theory of the scattering of two-dimensional
acoustic and electromagnetic fields by diffraction gratings. This Part 1
presents the principal physical concepts and results in their simplest forms
and without proofs. Moreover, to avoid distracting technicalities the
precise conditions for the validity of the results are not always given.
Part 1 also contains no references to the literature. All of these omis-
sions are remedied in Part 2 which contains the final mathematical formula-
tion of the ;heory, together with complete proofs and indications éf related

literature.

§1. The Physical Problems

The propagation of two-dimensional acoustic and electromagnetic fields
is studied below in unbounded planar regions whose boundaries (= the dif-
fraction gratings) lie between two parallel lines and are periodic. In eacg
case the medium f ling the region is assumed to be homogeneous and loss-
less. In the acouSG;E case the grating is assumed to be either rigid or
acoustically soft. 1In the electromagnetic case it is assumed to be per-
fectly conducting. In both cases the sources of the field are assumed to
be localized in space and time. The principal goal of the theory is to

calculate the "final" or large-time form of the resulting transient field.

§2. The Mathematical Formulation

Rectangular coordinates X = (x,y) € R? will be used to describe the

region adjacent to the diffraction grating. The notation
(2.1) R: = {X:y>a}

will be used. Then with a suitable choice of coordinate axes the region




€= Source Region

Incident Pulse

Figure 1. Grating with Source Region and Incident Pulse

above the grating will be characterized by a grating domain G C R? with the

properties
(2.2) R}ZICGCRZ,
(2.3) G+ (21,0) =G

where h > 0 is a suitable constant. The choice of the constant 27 in (2.3)
is simply a convenient normalization.
The acoustic or electromaguetic field in G can be described by a real-

valued function v = u(t,X) that is a solution of the initial-boundary value

problem

(2.4) th:u—Au=0forallt>OandX€G,

(2.5) Dy 2V ¢+ Yu=0 (resp., u=0) for all t > 0 and X € 36 ,
(2.6) u(0,X) = £(X) and D u(0,X) = g(X) for all X€& G .

Here t is a time coordinate, D, = 3/dt, b = 3/9x, D Y, = 3/3y, Vu= (D MU u)
Au = D;u + D;u, 3G denotes the boundary of G and v = \)(X) is a unit normal
vector to 3G at X. In the acoustic case u(t X) is interpreted as a poten-

tial for an acougtic field with velocity ¥ = -Vu and acoustic pressure

»




p= Dtu. Then the boundary condition (2.5) corresponds to an acoustically
hard (resp., soft) boundary. Alternatively, if u satisfies the Neumann
condition Dvu = 0 on 3G then

(2.7) Ex = Dyu, Ey = —Dxu, Hz = Dtu

describes a TM electromagnetic field in a domain G bounded by a perfect
electrical conductor. Similarly, if u satisfies the Dirichlet condition
u =0 on 3G then

-
(2.8 Hx = —Dyu, Hy = Dxu, Ez = Dt“
describes a TE electromagnetic fileld in the same kind of domain. The func-
tions f(X) and g(X) in (2.6) characterize the initial state of the field.
They are assumed to be given or calculated from the prescribed wave sources,
and to be localized:
(2.9) supp £ U supp g C {X : x2 + (y - y)? < 6%]
where y, > h + §,.
ALY
<]E) Source Region
-
Vv
[
2n
Figure 2. Grating Domain with Coordinate System
»
[ ]

In both the acoustic and the electromagnetic intecrpretations the

integral

(2.10) E(u,K,t) = J {va(e, 0% + D u(t,x)|*} &
'k




is interpreted as the wave energy in the set K at time t (dX = dxdy).
Solutions of the wave equation satisfy the energy conservation law E(u,G,t)
= E(u,G,O) under both boundary conditions (2.5)+s 1t will be assumed that
the initial state has finite energy:

(2.11) I {|VER) |2 + |g(®)]?} ax < = .
: G .

§3. Solution of the Initial-Boundary Value Problem

The initial-boundary value problem in its classical formulation (2.4)
~(2.6) will have a solution only if 3G and the functions f and g are suf-
ficiently smooth. However, for arbitrary domains G the problem is known to
have a unique solution with finite energy whenever the initial state f,g
has this property. A formal construction of the solutfion may be based on
the linear operator A = -A, acting in the Hilbert space X = L,(G). If the
domain of A is defined to be the set of u € ¥ such that Vu € ¥, Au € ¥ and
one of the boundary conditions (2.5) holds then A is a selfadjoint non-
negative operator. Moreover,

(3.1) u(t,*) = (cos t AY2) £ + (A V2 gin ¢ AVZ) ¢

is the solution with finite energy whenever the initial state has finite
energy. It will be convenient to write (3.1) as

. - 1/2
(3.2) u(t,X) = Re {v(t,X)} , v(t,) = e 1tA ¢
where
(3.3) h=f+1ia Vg,

This representation is valid if f and g are real-valued and AY?2 £, f, g and
AY? g are in . A rigorous interpretation of relations (3.1)-(3.3) can be

based on the calculus of selfadjoint operators in Hilbert spaces.

§4. The Reference Problem and Its Eigenfunctions

In the class of grating domains defined by (2.2), (2.3) there is a
special case for which the scattering problem is explicitly solvable. This
is the case of the degenerate grating G = Rs (.=0). The problem (2.4)
-(2.6) with ¢ = R and the Neumann boundary condition will be called the

reference problem. The corresponding reference propagator is the operator

Ay = A In XK, = Lz(Rg) with Neumann boundary condition. The solution of

[
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the scattering problem for non-degenerate gratings is developed below as
a perturbation of the reference problem.

Ay, has a pure continuous spectrum filling the half-line A > 0. This
1s easily verified by separation of variables which yields the family of
generalized eigenfunctions

. 1l 4 1 4 o 1
4.1) Vo (x,y,p5q) = e PX cos qy = e (px-qy) + 5 o1 (pxtay)

where (x,y) € R:' and also (p,q) € R:. Clearly

4.2) Ay Vo (x,¥,P,0) = -A ,(x,y,p,9) = w?(p,q) Po(x,¥,p,q)

where '

(4.3) ‘ w*(p,q) = p? +q*> >0 .
and

wa Dy ¥a(x,¥,P,@) = Dy ¥4 (x,y,p,q) = 0 on 3R .

The decomposition of (4.1) illustrates the physical interpretation of Yo .
If (p,q) € R% then q > 0 and the first term represents a monochromatic plane
wave incident on the plane boundary in the divrection (p,-q), while the
second term represents the specularly reflected wave propagating in the
direction (p,q).

The functions {y,(X,P) : P = (p,q) € R?} form a complete family of
generalized eigenfunctions for A,. This means that for every h € ¥, one has

4.5) fiy(®) = 2.1.m. I , Vo(G,P) h(X) dX exist in ¥,
Ry
and
(4.6) nX = £.1.n. j , V&P B (®) aP inx, .
) R ,

The %.i.m. notation in (4.5) means that the integral converges not point-
wise but in ¥,; 1i.e.,

4.7 Lim I
R}

. M M 2
h () - I I Vo (X,P) h(X) dX| dP = 0 .
Moo

o ‘-M

Equation (4.6) has the analogous interpretation. Moreover, Parseval's
relation holds: ‘

————
\
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(4.8) J lh, (P) |2 @ = f [h(x){? dx .
R? S

In fact, if a linear operator ¢, in ¥, is defined by

(4.9) ,h =

then ¢, is unitary.
The eigenfunction expansion (4.6) is useful because it diagonalizes

-itAd”?

Ag. In particular, the solution vp(t,*) = e h of the reference

problem has the expansion

~iew(®) § ey ap

(4.10) ve(t,X) = f.i.m. J Vo(X,P) e
R
where w(P) = ]PI = va+q2.

§5. Rayleigh-Bloch Diffracted Plane Waves for Gratings

In analogy with the case of the degenerate grating, the generalized
eigenfunctions of the grating propagator A may be defined as the response

of the grating to a monochromatic plane wave (2n)-‘

exp {i(px-aqy)}. It
will be shown that there are two distinct famiiies which will be denoted by
v+(X,P) and y_(X,P), respectively. It will be coavenient to write them as

perturbations of the eigenfunctions wo(X,P) for the degenerate grating:
(5.1) Y, (P =y, (X,P) + ¢5S(X,P) , XEG, PER? .

They are characterized by the conditions

(5.2) AP (X,P) = -2 P, (X,P) = o’ (P) Y, (X,P) , XEGC,
(5.3) Dv wt = 0 (resp., wi = 0) for X € 3G ,
(5.4) wiC(X,P) is outgoing and wfc(X,P) is incoming for X - o .

The last condition is based on the Fcurier series representation in x of

$5(x,y,P) which is valid for y > h. It can be written (with P = (p,q))

i(p,xtq,y)
E@) e 275

VKB = o :

)
(p+2) F<pP4q?
(5.5)

i
+ CE(P) e

sz e—y{(p+2)2—p2-q2}lﬁ
2T (p+E) 2opl4q?




