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Series Foreword

Computational neuroscience is an approach to understanding the information
content of neural signals by modeling the nervous system at many different
structural scales, including the biophysical, the circuit, and the systems levels.
Computer simulations of neurons and neural networks are complementary
to traditional techniques in neuroscience. This book series welcomes contri-
butions that link theoretical studies with experimental approaches to under-
standing information processing in the nervous system. Areas and topics of
particular interest include biophysical mechanisms for computation in neurons,
computer simulations of neural circuits, models of learning, representation of
sensory information in neural networks, systems models of sensory-motor
integration, and computational analysis of problems in biological sensing,
motor control, and perception.
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Preface

To understand how neurons give rise to a mental life, we must know what
they do, both individually as single cells and collectively as coherent systems
of cells. The idea that brains are computational in nature has spawned a range
of explanatory hypotheses in theoretical neurobiology. This book represents
one slant on current computational research relevant to neurobiology, a slant
both on the conceptual foundations and the benchmark studies. We mustered
our plans for this book against the backdrop of several earlier projects: Parallel
Distributed Processing, edited by Dave Rumelhart and Jay McClelland (1986),
and Neurophilosophy (P. S. Churchland, 1986). Since those books went to press,
much has changed. Powerful new tools for modeling neurons and circuits
of neurons have become available, and a conceptual framework for neuro-
computational projects has been steadily greening out. Puzzling questions
abound on every side, however, concerning such matters as algorithms for
weight-setting in neural nets and the extent to which they can be valuable in
neuromodeling; concerning biological realism in neural net models and what
degree of realism is necessary to make a model useful; and highly focused
questions such as what exactly is “Hebbian learning” and what are “grand-
mother” cells.

The questions that became pivotal in The Computational Brain were questions
that have been biting our heels more or less incessantly. The book is thus
shaped by what has bothered or beguiled us, individually and jointly. We
learned a great deal from the conversations in the laboratory, some of which
extended over many months. Francis Crick launched the institution of after-
noon tea in the Computational Neurobiology Laboratory at the Salk, and
teatime quickly became the daily occasion for close discussion of ideas and
data, flying untried balloons, and giving the broad questions a hearing. It was a
time for emerging from the comfortable burrows of safe detail into the wide-
open prairie of no-holds-barred. Crick characteristically pushed the questions
about how the brain works further and more relentlessly. Moreover, it was
typically his hunches, breadth, and steel-edged skepticism that supplied a sense
of balance both when we thought we knew what we were doing and when we
were pretty sure we didn’t. Virtually everyone who visited the Computational
Neurobiology Lab was coaxed or bullied into dilating on the philosophical
(grand-scale, background, or fuzzy) questions facing computational neuro-



science. From these “confessions,” we drew ideas and inspiration, and garnered
the pluck to stick our necks out a bit.

Several explanations-cum-apologies are in order. The first is for our decision
to facilitate easy reading by including only the unavoidable minimum of refer-
ences in the text itself. We found that long lists of authors in the text make the
reader stumble, and hence we elected to use notes for many references rather
than follow standard practice in technical writing. Despite our best efforts to
refer as fully as possible in the notes, we undoubtedly have missed some
essential references, and we apologize in advance for unwitting omissions. The
next apology is owed because in choosing instances of research to exemplify a
point, we inevitably found ourselves drawing on the research that was most
familiar to us, and that often meant research based in California, especially in
San Diego. Important and interesting work in computational neuroscience is
going on all over the globe, and to have done an exhaustive survey before
beginning to write would have meant a deadline receding faster than the
progress line. We therefore apologize if we seem rather provincial in our
selection preferences. The third apology is for the length. We began the proj-
ect with the strict understanding that primers are best if brief. In the execution,
alas, it became impossible to live within the bounds. As it is, a number of
additional topics might well have been included but for permitting the book an
embarrassing girth. We therefore apologize—both because the book is too
long and because it is too short. Fourth, we decided in the interests of smooth
reading to abide by the practice of using “he” as the third-person pronoun
referring indifferently to males and females. This reflects nothing ideological. If
anything, it is a concession to Mrs. Lundy, whose unflinching dictum in gram-
mar school was that ideological shoe-horning frustrates readability.

Many people helped enormously in writing the book; it simply could not
have been done by just the two of us. Most particularly, Paul Churchland gave
unstintingly of his imagination and ideas; the daily ritual was to think through
everything, page by page, model by model, over capuccino at Il Fornaio.
Antonio and Hanna Damasio talked through every major issue with us; they
broadened and deepened our perspective in all dimensions, but especially in
thinking about what neuropsychological results could tell us about micro-orga-
nization. Beatrice Golomb, V. S. Ramachandran, Diane Rogers-Ramachandran,
Alexandre Pouget, Karen Dobkins, and Tom Albright helped with representa-
tion in general and visual representations in particular; Rodolfo Llinas helped
with many issues, but especially in thinking about time; Gyori Buzsaki, Larry
Squire, David Amaral, Wendy Suzuki, and Chuck Stevens with plasticity;
Carver Mead with thinking about the nature of computation, time, and repre-
sentation. Shawn Lockery, Steve Lisberger, Tom Anastasio, Al Selverston,
Thelma Williams, Larry Jordan, Susan Shefchyk, and James Buchanan gave us
much useful advice on sensorimotor coordination. Mark Konishi and Roderick
Corriveau gave us invaluable criticism and advice on many chapters and saved
us from several embarrassments. Many thanks are also owed to Paul Bush for
preparing the glossary, Shona Chatterji for drawing and cheerfully redrawing
many figures, Mark Churchland for the cover and for useful criticism, Georg
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Schwarz for manuscript preparation, and David Lawrence for rescues from
macfrazzles. A special debt is owed to Rosemary Miller, whose wit and wis-
dom kept the boat afloat. Others who helped in indispensable ways include:
Richard Adams, Dana Ballard, Tony Bell, Anne Churchland, Hillary Chase
Benedetti, Richard Gregory, Geoff Hinton, Harvey Karten, Christof Koch, Bill
Lytton, Steve Nowlan, Leslie Orgel, Hal Pashler, Steve Quartz, Paul Rhodes,
Paul Viola, Ning Qian, and Jack Wathey.

P.S.C. was supported by a University of California President’s Humanities
Fellowship, a grant from the National Science Foundation (87-06757), and the
James S. McDonnell Foundation. T.].S. was supported by the Howard Hughes
Medical Institute and grants from the Drown Foundation, the Mathers Foun-
dation, the National Science Foundation, and the Office of Naval Research.
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Introduction

NoT . . . sy - . .
! Major advances in science often consist in discovering how macroscale

phenomena reduce to their microscale constituents. These latter are often
counterintuitive conceptually, invisible observationally, and troublesome ex-
perimentally. Thus, for example, temperature in a gas turned out to be mean
kinetic energy of the constituent molecules; the varied properties displayed
by matter turned out to be a function of the component atoms and their arcane
properties such as electron shells; bacteria—not Divine vengeance—were
found to be the proximal cause of smallpox and bubonic plague; and the
reproduction of organisms, we now know, depends on the arrangement of four
bases in the molecule DNA. |

Our psychological life, too, is a natural phenomenon to be understood. Here
as well, the explanations will draw on properties of the infrastructure that are
certainly veiled and probably arcane, an infrastructure whose modus operandi
may seem alien to our customary self-conception. Perhaps this is inevitable,
since the very brain we wish to understand is also the brain whose unaided
observation is focused at the macrolevel and whose design seems to favor
large-scale concepts for the explanation of its own behavior; for example,
superstructure concepts such as “is hungry,” “wants food,” “believes honey is
in the hole up the oak tree,” and “sees the grizzly bear approaching.”

”

v Neurons are the basic structural components of the brain. A neuron is an

individual cell, specialized by architectural features that enable fast changes of
voltage across its membrane as well as voltage changes in neighboring
neurons. Brains are assemblies of just such cells, and while an individual neuron
does not see or reason or remember, brains regularly do. How do you get from
ion movement across cell membranes to memory or perception in brains?
What is the nature of neuron-neuron connectivity and interactivity? What
makes a clump of neurons a nervous system?,

At this stage in the evolution of science, it appears highly probable that
psychological processes are in fact processes of the physical brain, not, as
Descartes concluded, processes of a nonphysical soul or mind. Since this issue
has been discussed at length elsewhere (for example, P. M. Churchland 1984,
P. S. Churchland 1986), and since Cartesian dualism is not taken very seriously
either in mainstream philosophy or mainstream neuroscience, it is not neces-
sary to repeat the details of the arguments here. Suffice it to say that the



Cartesian hypothesis fails to cohere with current physics, chemistry, evolution-
ary biology, molecular biology, embryology, immunology, and neuroscience.
To be sure, materialism is not an established fact, in the way that the four-base
helical structure of DNA, for example, is an established fact. It is possible,
therefore, that current evidence notwithstanding, dualism might actually be
true. Despite the rather remote possibility that new discoveries will vindicate
Descartes, materialism, like Darwinian evolution, is the more probable working
hypothesis. That being so, it does not seem worthwhile to modify the basic
neuroscience research program and its scaffolding of physicalistic presupposi-
tions to accommodate the Cartesian hypothesis, though scientific tolerance
counsels that the door not be closed until the facts themselves well and truly
close it. Whether modifications to micro/nano/pico level sciences such as
quantum physics will be called for as a result of advances in neuropsychology
is likewise conceivable (Penrose 1989), but so far there is no moderately con-
vincing reason to expect that they will.

Arguments from ignorance are to be especially guarded against in this
context. Their canonical form is this: neuroscience is ignorant of how to ex-
plain X (consciousness, for instance) in terms of the nervous system; therefore
it cannot be so explained. Rather, it can eventually be explained in terms of Y
(pick your favorite thing, for example, quantum wave packets, psychons, ecto-
plasmic retrovibrations, etc.). The canonical form lends itself to endless seduc-
tive variations, particularly ones in which failures of imagination massage
 intuition: "“We cannot imagine how to explain consciousness in terms of neu-
ronal activity ...; how could physical processes like ions crossing membranes
explain the awfulness of pain?In its denuded rendition, the argument from
ignorance is not mildly tempting, but in full regalia, it may seem beguiling and
exactly what reharmonizes such “intuition dissonance” as is provoked by re-
flecting on the physical basis of the mental. A version of the argument con-
vinced the German mathematician and philosopher, Leibniz (1714), and in
the past two decades, variations on Leibniz’ basic theme have surfaced as
the single most popular and appealing justiﬁcationrfor concluding that neuro-
biological explanations of psychological phenomena are impossible., (For in-
stances of the argument in many different and alluring guises, see Thomas
Nagel 1974, ]. C. Eccles 1977, John Searle 1980, 1990, and Roger Penrose
1989.) From the revolutions wrought by Copernicus, Galileo, Darwin, and
Einstein, it is all too apparent that “intuition dissonance” is a poor indicator of
truth; it is a good indicator only of how one idea sits with well-favored others.
Establishing truth or probability requires rather more.

' The working hypothesis underlying this book is that emergent properties
are high-level effects that depend on lower-level phenomena in some system-
atic way. Tuming the hypothesis around to its negative version, it is highly
improbable that emergent properties are properties that cannot be explained
by low-level properties (Popper 1959),jor that they are in some sense irreduc-
ible, causally sui generis, or as philosophers are wont to say, “nomologically
autonomous,” meaning, roughly, “not part of the rest of science” (Fodor 1974,
Pylyshyn 1984). The trouble with characterizing certain properties as irreduc-

Chapter 1



ibly emergent is that it assumes we can tell in advance whether something can
be explained—ever explained. Obviously such a claim embodies a prediction,
and as the history of science shows all too clearly, predictions grounded in
ignorance rather than knowledge often go awry. In advance of a much more
highly developed neurobiology than currently exists, it is much too soon to be
sure that psychological phenomena cannot be explained in terms of neurobio-
logical phenomena. Although a given phenomenon such as protein folding or
awareness of visual motion cannot now be explained, it might yield to explana-
tion as time and science go on. Whether it does or not is a matter of empirical
fact, not a matter of a priori divination. Searching for reductive explanations of
emergent properties does not entail that we should expect the explanations to
be simpleminded or breezily cobbled up or straightforwardly readable off the
data points; it means only that the betting man keeps going.

' Two groundbreaking discoveries in the nineteenth century established the
foundations for a science of nervous systems: (1) macro effects displayed by
nervous systems depend on individual cells, whose paradigm anatomical struc-
tures include both long tails (axons) for sending signals and treelike prolifera-
tions (dendrites) for receiving signals (figure 1.1); (2) these cells are essentially
electrical devices; their basic business is to receive and transmit signals by
causing and responding to electric current. Within this elegantly simple frame-
work, truly spectacular progress has been made in unravelling the intricate
story of exactly how neurons work. In this century, and especially within the

Figure 1.1 Drawing by Cajal based on his Golgi-stained sections of the superior part of the
cerebral hemispheres and corpus callosum of a mouse of 20 days. A, corpus callosum; B, antero-
posterior fibers; C, lateral ventricle; a, large pyramidal cell; b, callosal fiber bifurcating into a
branch that is arborized in the gray matter and another that continues in the corpus callosum;
¢, callosal fiber that comes from an axon of the white matter; 4, callosal fiber the originates in a
pyramidal cell; e, axons of lateral pyramidal cells which follow a descending course in the corpus

callosum without forming part of the commissure; £, f, the two final branches coming from a
fiber of the corpus callosum and arborizing in the gray matter; g, epithelial cells; h, fiber from a
large pyramid, giving off a fine collateral to the corpus callosum; i, fusiform cells whose axons
ascend to the molecular layer; j, terminal arborization of a callosal fiber originating on the
opposite side. (With permission. Santiago Ramén y Cajal, 1890. Reprinted in DeFelipe and
Jones, eds., 1988, Cajal on the Cerebral Cortex. Oxford: Oxford University Press.)
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last three decades, an enormous amount has been learned about neurons: about
their electrophysiology, microanatomy, connectivity, and development; about
the large assortment of neurochemicals that mediate signaling from one neu-
ron to the next; inside a neuron, about the cell's membrane, its roster of channel
types, and their specific roles in receiving, integrating, and sending signals;
about transmitter release, and about the range, structure, and mechanisms of
receptors. Even the genetics of the proteins that constitute the various recep-
tors is now steadily coming into view. (Nathans 1987, 1989, Gasic and Heine-
mann, 1991, Heinemann et al. 1990). ,

"Recent progress in neuroscience is genuinely breathtaking and deservedly
captivating. But, the naif might wonder why, if we know so much about
neurons, do we not yet understand how the brain works—or at least how, say,
the visual system or the motor system works? Assuming that detailed knowl-
edge of the parts automatically confers (or nearly so) knowledge of the whole,
then we ought to understand—more or less, at least in silhouette—how
animals see, learn, and take action. In fact, however, we do not. Perhaps the
hitch is that microlevel progress notwithstanding, we still do not know nearly
enough about the fine-grained neural facts. All that is needed, runs this argu-
ment, is more of the same—indeed, much, much more of the same. This
strategy is sometimes referred to as the pure bottom-up approach. It counsels
that if brains are, after all, just assemblies of cells, then once we truly under-
stand every facet of cell function, the principles of brain function will be evi-
dent, by and large. Perhaps. But perhaps not. ,

{The overarching contention of this book is that knowledge of the molecu-
lar and cellular levels is essential, but on its own it is not enough, rich and
thorough though it be. Complex effects, such as representing visual motion,
are the outcome of the dynamics of neural networks. This means that while
network properties are dependent on the properties of the neurons in the
network, they are nevertheless not identical to cellular properties, nor to simple
combinations of cellular properties. Interaction of neurons in networks is re-
quired for complex effects, but it is dynamical, not a simple wind-up doll affair.,

A telling illustration derives from research by Allen Selverston (1988) on
the stomatogastric ganglion of the spiny lobster (figure 1.2).! The network in
question contains about 28 neurons and serves to drive the muscles controlling
the teeth of the gastric mill so that food can be ground up for digestion. The
output of the network is rhythmic, and hence the muscular action and the
grinders’ movements are correspondingly rhythmic.

The basic electrophysiological and anatomical features of the neurons have
been catalogued, so that the microlevel vitae for each cell in the network is
impressively detailed. What is not understood is how the cells interact to
constitute a circuit that produces the rhythmic pattern. No one cell is responsi-
ble for the network’s thythmic output; no one cell is itself the repository of
properties displayed by the network as a whole. Where then does the rhyth-
micity come from? Very roughly speaking, from the pattern of interactions
among cells and the intrinsic properties of component cells. What, more pre-
cisely speaking, is that? How does the network create rhythm? How is it
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Figure 1.2 Diagram of the circuit in the stomatogastric ganglion of the spiny lobster. The circuit
normally has 28 neurons, and for each, its connectivity (whom it affects and who affects it), sign
of connectivity (excitatory or inhibitory), and mode of effect (chemical or electrical) have been
discovered. Labels on cell bodies stand for their individual names. (Courtesy Allen Selverston.)

that the network can produce different rhythms under different biochemical
conditions?

Research on the stomatogastric ganglion is legendary in neurobiology, part-
ly because it is a fair test case for the bottom-up strategy: if the purely bottom-
up approach works anywhere, it should work on the stomatogastric ganglion.
If the macrolevel answers are supposed to fall out of the microlevel data, they
ought to do so here. Yet we are disappointed. As Selverston ruefully points
out, the purely bottom-up strategy has all the earmarks of a half-strategy.
Moreover, the plea, “If only more microlevel details of the neurons were
discovered, then the explanation would be evident,” tends now to fall on
skeptical ears. What the stomatogastric ganglion seems to be telling us is that
we need to figure out the interactive principles governing the system, and that
although interactive hypotheses should be constrained by microlevel data,
their job is to characterize higher-level features. Boiled down, the lesson is that
microlevel data are necessary to understand the system, but not sufficient. To
echo a remark of Maxwell Cowan, even if we did know about all the synapses,
all the transmitters, all the channels, all the response patterns for each cell, and
so forth, still, we would not know how an animal sees and smells and walks.2

There is a broader rationale for modeling that goes beyond neuroscience in
particular and applies to science generally. Why bother with models at all, one
might ask? Why not just perform experiments and record the observations?
Though the answers may be obvious, they are perhaps worth listing. First,

Introduction



models help organize the data and motivate experiments; they suggest how
data might fit together to yield an explanation of a phenomenon. It is, there-
fore, better to have some model than none at all. In fact, of course, scientists do
always have some hypothesis or other that provides the motivational and
interpretive framework for their research, though background hypotheses may
be neither cleanly articulated nor well-honed. A quantitative model is a step
forward because it brings background assumptions to the light of day and
permits a more exacting analysis of why they might or might not be true. The
further philosophical point is that models increase in believability as they
survive tough experimental tests (Popper 1959, P. S. Churchland 1986). Espe-
cially in the pioneering days of a discipline, when data are relatively sparse,
progress is closely tied to ruling out a class of models and hypotheses. Indefi-
nitely many models can be equally consistent with a set of data; to make real
strides one must seek to falsify an ostensibly plausible model. Consequently,
models that suggest potentially falsifying experiments are critical.> Should a
model survive a demanding experimental test, to that degree it is more proba-
ble; saved from the scrap heap of dead hypotheses, it lives on to be tested
against yet further experimental data. Should it be falsified, it then becomes a
springboard for the next model.

Computational neuroscience is an evolving approach that aims to discover
the properties characterizing and the principles governing neurons and net-
works of neurons. It draws on both neurobiological data and computational
ideas to investigate how neural networks can produce complex effects such as
stereo vision, learning, and auditory location of sound-emitting objects. To put
it crudely, it has one foot in neuroscience and one foot in computer science. A
third foot is firmly planted in experimental psychology, and at least a toe is in
philosophy, so evidently the enterprise is multipedal. Of which more anon.

Probably the closest acade.nic kin of computational neuroscience is systems
neurobiology, a branch of neuroscience that traditionally has focused on much
the same set of problems, but did not explicitly ally itself with computer
modeling or with an avowedly information-processing framework for theories.
A precocious ancestor went by the name of “cybernetics,” which, inversely to
systems neurobiology, generally leaned more heavily on the engineering and
psychophysical sides, and more lightly on the neurobiological side. Coined
more recently, “connectionism” usually refers to modeling with networks that
bear only superficial similarities to real neural networks, while “neural net
modeling” can cover a broad range of projects. Ironically perhaps, “neural net
modeling” is usually identified with computer modeling of highly artificial
nonneuronal networks, often with mainly technological significance such as
medical diagnoses in emergency wards.* “PDP” (“parallel distributed process-
ing”) is generally the preferred label of cognitive psychologists and some
computer scientists who seek to model rather high-level activity such as face
recognition and language learning rather than lower-level activity such as
visual motion detection or defensive bending in the leech.

As we use the term, “computational neuroscience” aims for biological real-
ism in computational models of neural networks, though en route, rather sim-
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plified and artificial models may be used to help test and explore computational
principles. Academic garden-plotting is a comically imprecise trade because the
carrots regularly wander in with turnips and the turnips with the potatoes.
Each of us (P.S.C. and T.].S.) is cheerfully guilty of wandering into neuroscience
from his mother discipline, so we emphatically do not mean to tut-tut academic
“cross-fielding.” On the contrary, we view the blurring of the disciplinary
boundaries between neuroscience, computer science, and psychology as a
healthy development to be wisely encouraged. In any case, perhaps a crude
survey will help orient the greenhorn—or even the old hand—to the clus-
tering of goals, tactics, and prejudices manifest in the “network” game.

The expression “computational” in computational neuroscience reflects the
role of the computer as a research tool in modeling complex systems such as
networks, ganglia, and brains. Using the word in that sense, one could have
also computational astronomy or computational geology. In the present con-
text, however, the word's primary force is its descriptive connotation, which
here betokens the deep-seated conviction that what is being modeled by a
computer is itself a kind of computer, albeit one quite unlike the serial, digital
machines on which computer science cut its teeth. That is, nervous systems
and probably parts of nervous systems are themselves naturally evolved com-
puters—organically constituted, analog in representation, and parallel in their
processing architecture. They represent features and relations in the world and
they enable an animal to adapt to its circumstances. They are a breed of
computer whose modus operandi still elude us but are the mother lode, so to
speak, of computational neuroscience.

A number of broad clues about computation in nervous systems are avail-
able. First, unlike a digital computer which is general purpose and can be
programmed to run any algorithm, the brain appears to be an interconnected
collection of special-purpose systems that are very éfficient at performing their
tasks but limited in their flexibility. Visual cortex, for example, does not appear
able to assume the functions of the cerebellum or the hippocampus. Presum-
ably this is not because visual cortex contains cells that are essentially and
intrinsica]ly visual in what they do (or contain “visons” instead of “auditons”),
but rather it is mainly because of their morphological specialization and of their
place in the system of cells in visual cortex, i.e., relative to their input cells, their
intracortical and subcortical connections, their output cells, and so on. Put
another way, a neuron'’s specialization is a function of the neuron’s computa-
tional roles in the system, and evolution has refined the cells better to perform
those roles.

Second, the clues about the brain’s computational principles that can be
gleaned from studying its microstructure and organization are indispensable to
figuring out its computational organization because the nervous system is a
product of evolution, not engineering design. Evolutionary modifications are
always made within the context of an organization and architecture that are
already in place. Quite simply, Nature is not an intelligent engineer. It cannot
dismantle the existing configuration and start from scratch with a preferred
design or preferred materials. It cannot mull the environmental conditions
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and construct an optimal device. Consequently, the computational solutions
evolved by Nature may be quite unlike those that an intelligent human would
invent, and they may well be neither optimal nor predictable from orthodox
engineering assumptions.

Third, human nervous systems are by no means exclusively cognitive de-
vices, though the infatuation with cognition fosters a tacit tendency to assume
so. Nervous systems must also manage such matters as thermoregulation—a
very complex function for mammals—growth, aspects of reproduction, respi-
ration, regulation of hunger, thirst, and motor control, and maintenance of
behavioral state, such as sleeping, dreaming, being awake, and so forth. Thus
an evolutionary modification that results in a computational improvement in
vision, say, might seem to have the earmarks of an engineering prizewinner.
But if it cannot mesh with the rest of the brain’s organization, or if it margin-
alizes critical functions such as thermoregulation, the animal and its “prize-
winning” vision genes will die. Given these reasons, reverse engineering, where
the device is taken apart to see how it works, is a profitable strategy with
respect to the brain. By contrast, a purely a priori approach, based entirely on
reasonable principles of engineering design, may lead us down a blind alley.

Fourth, it is prudent to be aware that our favorite intuitions about these
matters may be misleading, however “self-evident” and compelling they be.
More specifically, neither the nature of the computational problems the ner-
vous system is solving nor the difficulty of the problems confronting the
nervous system can be judged merely by introspection. Consider, for example,
a natural human activity such as walking—a skill that is typically mastered in
the first year or so of life. One might doubt whether this is a computational
problem at all, or if it is, whether it is a problem of sufficient complexity to be
worth one’s reflection. Since walking is virtually effortless, unlike, say, doing
algebra, which many people do find a strain, one might conclude from casual
observation that walking is a computationally easy task—easier, at least, than
doing algebra. The preconception that walking is computationally rather trivi-
al is, however, merely an illusion. It is easy enough for toy manufacturers to
make a doll that puts one foot in front of the other as long as she is held by the
child. But for the doll to walk as we do, maintaining balance as we do, is a
completely different task. Locomotion turns out to be a complicated matter,
the ease implied by introspection notwithstanding.

Another computational issue of critical importance in generating hypotheses
in computational neuroscience concerns the time available for performing
the computation. From the point of view of the nervous system, it is not
enough to come up with solutions that merely give the correct output for a
given input. The solutions must also be available within milliseconds of the
problem’s presentation, and applications must be forthcoming within a few
hundred milliseconds. It is important that nervous systems can routinely detect
signals, recognize patterns, and assemble responses within one second. The
ability of nervous systems to move their encasing bodies appropriately and
swiftly was typically selected at every stage of evolution, since by and large
natural selection would favor those organisms that could flee or fight preda-
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