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PREFACE

Only too often in the literature on magnetic phenomena little or no
information is given on the measuring methods used. In particular
it is not always clear to what extent the result is influenced by the
methods of preparation and measurement of the sample. Literature
on measuring apparatus is scattered in a great number of scientific
periodicals and fluctuates considerably as regards what is. con-
sidered as known and what is explained.

This book presents a treatment of the prmcnples of a number of
widely-used methods for measuring magnetlc quantmes It is hoped
that the book will be useful to those engaged in magnetic experl_l-
ments, whether in scientific research or in routine measurements.
The reader is presumed to be familiar with the basic concepts, of
magnetism and with elementary vector analysis. The latter, how-
ever, is not necessary if the proofs are taken for granted and only
the results are used.

" To increase the practical,value of this book much attention has .
been given to those details of a method where errors are liable to
be introduced and how this can be prevented.

The book is‘certainly not meant to give a complete survey of the
literature. The examples are mainly chosen from the immediate
neighbourhood of the author; this does not of €ourse imply that
there may not be better or earlier ones. However, several chapters
are provided with a bibliography of books and survey articles con-
sulted by the author; these contain fairly complete lists of the
literature.

For technical reasons the book is split into two parts. The first
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‘part contains two chapters on the theory of the magnetic potential
.needed for the understandifig (though not for the application) of
several subjects discussed in the subsequent chapters of the book.
It further contains a chapteron the generation of magnetic fields by
ironless solenoids. This chapter is rather detailed as it is considered
that the experimenter is often faced with the design and construction
of coils of all sorts when building his apparatus. On the other hand
a chapter on iron-core magnets is kept very elementary as these
magnets are commonly bought and thus only a limited under-
standing of their differences is required.

Part 2 of the book deals with the measurement of magnetic
quantities. For the discussion of the various methods use is often
made of the results obtained in Part 1. Therefore the two parts
should be considered as one whole. Two important fields are not
treated, namely neutron diffraction and domain techniques. This
is because the experimental techniques used in the former field are
covered in detail in a book by BAcoN [1955] and two books on the
latter subject have appeared recently (CRAIK and TeBBLE [1965] and
Carey and Isaac [1966]). The chapter on resonance methods
(Ch. 6) is kept very elementary because. here too several books are
available, mentioned at the end of that chapter.

As to the remaining subjects it is hoped that the book presents
a useful supplement to the already existing literature. If so, this is
in no small measure due to the generous help I received from my
colleagues K. Compaan, P. Cornelius, U. Enz, W.P.J. Fontein,
N.J. Freedman, P.R. Locher, A.L. Luiten, G.W. Van Oosterhout,
R.P. Van Stapele, D.L.A. Tjaden, J.S. Van Wieringen, D. Wil-
kinson and from the Editor of this series E.P. Wohlfarth. Their
assistance is gratefully acknowledged here.

I am greatly indebted to my wife for her continuous encourage-
ment and her help in preparing the manuscript. :

T also wish to express my appreciation to the management of the
Philips Research Laboratories for the facilities granted, to E.
Deimel, J. Geel, R. Gersdorf, J.P. Morel and N.F. Verster for
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permission to mention their unpublished results, to the publishers
of Philips Technical Review for permission to reproduce Figs. 3.10
and 3.40, and to Mr.P. Vissers for making the drawings.

H. ZuLsTRA



LIST OF MOST IMPORTANT SYMBOLS

The symbols may have other meanings, incidentally, than those
mentioned below. The list applies to both Parts 1 and 2.

Area

Magnetic induction (flux density)
Specific heat

Capacitance

Curie constant

Potential energy

Electric fieldstrength
Electromotive force

Force

Electric fieldstrength

Madssbauer fraction

Frequency

Shear modulus

Galvanometer constant
Magnetic fiel.!

Magnetization

Electric current

Bessel function of order /

Polar moment of inertia

Angular momentum

Bulk modulus (modulus of compression)
Anisotropy constant .
Torsion constant
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LIST OF SYMBOLS

Thermal conductivity
Inductance

Length

Mutual inductance
Molar mass

Mass

Torque

Magnetic moment
Number of turns
Number of photons
Demagnetization tensor

- Fluxmetric or ballistic demaghetization factor

Magnetometric demagnetization factor
Density of turns

Legendre polynomial
Associated Legendre polynomial
Pressure

Dipole density

Volume force density

Factor of merit

Magnetit charge

Strength of magnetic 2-pole
Charge density

Resistance

Hall constant

Reduced resistivity

- Radius vector

Stress

Stress density
Angular momentum
Temperature
Volume

Torque

Time
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LIST OF SYMBOLS

Magnetic potential

Voltage

Volume

Power (energy per unit time)

Young’s modulus of elasticity

Spherical harmonic

Impedance

Dimensional ratio

Direction cosine

Dimensional ratio

Direction cosine

Dimensional ratio

Gyromagnetic ratio

Laplace operator

Difference operator

Packing density (volume fraction occupied by
matter)

Strain

Absorption coefficient

Dimensional ratio

Heat transfer coeffiCient

Electrical resistivity

Polar angle

Debye temperature

Reduced temperature

Efficiency :

Packing density (volume fraction occupied by
matter)

Magnetostriction constant

Absolute permeability

Permeability of vacuum

Relative permeability (vacuum=1)

Surfacial current density

Poisson’s ratio of contraction

xiii
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LIST OF SYMBOLS

Lagrange’s undetermined multiplier
Radius

Verdet’s constant

Area

Absorbing cross-section

Area

Time constant (relaxation time)
Current density

Magnetic flux

Azimuthal angle

Magnetic susceptibility

Electric potential

Angular frequency

Gradient operator
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CHAPTER 1

THE MAGNETIC POTENTIAL

§ 1. INTRODUCTION

Many methods used in the study of magnetic phenomena in solids
are based on the observation of the effect of an external magnetic
field on the material under investigation. Therefore a great deal of
attention will be paid to the generation of magnetic fields and the
potential theory connected with it. We shall use the concept of
magnetic charges and charge densities and relate these to electrical
currents. This approach is made for convenience of calculation and
does not imply any judgement on the physical reality of magnetic
monopoles.

The quantitative treatment of the theory involves the ch01ce of
a unit system. In this book the mksA- or Giorgi-system will be
used. However, for convenience of those who are used to other
systems a comparison between this and the current cgs-systems is
made in the next section.’

§ 2. COMPARISON OF UNIT SYSTEMS

For giving‘ a numerical value to a magnetic quantity the electro-
magnetic centxmeter—gram—second system (emcgs-system) is widely
used. Its principal feature is that the magnetic permeability u, of
the vacuum is put equal to one. Since

#oso"z =1

the dielectric constant ¢, of the vacuum is consequently equal to
¢72, ¢ being the velocity of light in vacuum.
In the cgs-system of Gauss the permeability and the dielectric

1

‘



2 . THE MAGNETIC POTENTIAL [Ch.1,§3

constant of the vacuum are both equal to one. The consequence is
that a factor ¢! appears in the basic formulae. This system is also
widely used in magnetism.

The meter-kilogram-second-Ampere system of Giorgi (mksA-
system) is very convenient if both electric and magnetic quantities
are involved in the calculation. It is rationalized, which means that
the factor 4 that occurs in the relation between electric field-
strength and polarization and also between magnetic ﬁeldstrenggh
and magnetization in the cgs-systems, is no longer present in the
corresponding relations in the mksA-system. This has been ob-
tained by putting the permeability of the vacuum equal to

po=4m x 107" Hm™!,
The dielectric constant then is
€0 = 1/poc® =8.855 x 10" 2 Fm™".

A unit charge emits a unit flux in this system rather than a flux 4=
as it does in the cgs-systems. '

The mksA-system has become widespread during the last decade
mainly because of its practical possibilities. It is adopted in this
book since the measurement of magnetic quantities is very often
done by methods based on the interaction between magnetic fields
and electric currents. ’

A comparison between a few basic formulae as they occur in the
above mentioned systems, together with a conversion table is given
in Appendix 1. A detailed survey on the use of these systems may
be found in the book by CorNELIUS [1961].

§ 3. POTENTIAL DUE TO MAGNETIC CHARGE SYSTEMS

§ 3.1. Single magnetic charge

Experimenting with lo: 1g magnetized wires thus simulating free’
magnetic charges Coulomb showed that the force F between t-
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magnetic charges Q, and @y is given by

Q000

Foc—5—r, (1.1)
r

where r is the vector connecting the two charges. From eq. (1.1) .
it follows directly that along a closed path

§F~dr=0, (1.2)

which means that the line integral of F from one point to another
is irrespective of the path chosen.
Yn the mksA-system we have
F=_t 9°?9 r=HQ,, (1.3)
drnpy r°

where H is the force per unit charge exerted by Qg on the charge
located at a distance r. This force is called the magnetic field-
strength at a distance r from the single charge or monopole of
strength Q. The potential ¥, at a point 4 is defined as the work
per unit charge required to bring a positive charge from infinity
(where ¥'=0 by definition) to 4:

! 93, (1.4)

Anpy r

p
VA=f—H~dr=
@©

where the fieldstrength H at any point is related to the potential
V by
=—grad V. (1.5)

The integral of eq. (1.4) does not depend on the bath chosen.
The potential difference between two points 4 2nd B is
B
Vy—Vy= | H-dr (1.6

A
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and if the integration path is closed )
§Hdr=0, (1.7)

which also follows directly from eq. (1.2).
Equation (1.7) only holds if the path does not enclose an electric
current (see § 4 of this chapter).

§ 3.2. Additivity of fields and potentials

If more point charges Q, are present the force exerted on a pesitive
unit charge at a point A4 is the resultant of the forces due to €ach
charge individually: ' ’

F=YF,

where F; is the force due to the charge Q;. Hence the resultant
fieldstrength at any point is

H=YH,

where H; is the fieldstrength due to the charge Q..
The total potential at the point 4 is

Vi=— JA.(ZHf)'dr =

A
=—'ZJ‘H."dr=

where V, is the potential at A due to the charge Q;. _
We thus see that the potentials in a point due to several sources

separately must be added to give the potential due to the whole

system of sources.

dmr ]

VI
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§ 3.3. Laplace’s and Poisson’s equations

It can be shown from eq. (1.3) that

§H’d/‘ = QolHo, (1.9)

where dA is a surface element of a closed surface enclosing the
point charge Q. .

If the charge is not concentrated in a point but distributed as a
charge density g inside the closed surface the right-hand side of
eq. (1.9) can be written as

. _
Q_ »~jq do, (1.10)
Ho Ho

where dv is an element of the volume enclosed by the surface.
Application of Gauss’ theorem to the left-hand side of eq. (1.9)
gives

§H-dA=fdidev. (1.11)
{

Since the right-hand sides of eqs. (1.10) and (1.11) are equal for
any surface the integrands must be equal which gives

divH = qju,. (1.12)
Using eq. (1.5) we have then
divgradV =AV = — q/u,, (1.13)

which is called Poisson’s equation.
In a region where the charge density equals zero
/

AV =0, ' (1.14)

which is called Laplace’s equation.

Equation (1.14) will be used in Chapter 2 to calculate the mag-
netic field due to a given system of magnetic charges. The procedure
is as follows: The magnetic charges provide a set of boundary con-



