Anatomy
Database System




The INGRES Papers:
Anatomy of a Relational
Database System

Michael Stonebraker, Editor
University of California, Berkeley

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts ® Menlo Park, Califonia ® Don Mills, Ontario
Wokingham, England ® Amsterdam ® Sydney ® Singapore ® Tokyo @ Mexico City -

Bogotd @ Santiago ® San Juan . . .




This book is in the Addison-Wesley Series in Computer Science.

Censulting Editor: Michael A. Harrison

Library of Congress Cataloging in Publication Data
Main entry under title:

The INGRES papers.

Bibliography: p.
Includes index.
1. Data base manageiment--Addresses, essays, lectures.
2. INGRES (Computer system)--Addresses, cssays, lectures. 1. Stoncbraker, Michacl.
II. Title: Relational database system.
QA76.9.D31535 1986 001.64'2 84-24584
ISBN 0-201-07185-1 N

Reproduced by Addison-Wesley from camera-ready copy supplied and approved by the
author. .

Copyright © 1986 by Addison-Wesley Publishing Company, Inc. All rights reserved. No
part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United
States of America. Published stmultaneously in Canada.

ABCDEFGHIJ-HA-898765




Preface

This book summarizes the -work of the INGRES project at the University of
California, Berkeley over the years 1973-1983. The project was initiated by
Professor Eugene Wong and myself in late 1973 and has been in existence
since that time. Professor Lawrence Rowe joined the project in 1976.

Initially, the project goal was to construct'a working relational database
system. In 1970, Ted Codd proposed the relational model as a better founda-
tion on which to build a database system. His ideas (as reported in
[CODD70, CODD71, CODD72]) were widely debated in the early 1970s.
The critics insisted that a relational database system could not run efficiently.
Moreover, even if one could be built, no REAL programmers could be taught
to use the novel languages which were being proposed. On the other hand,

Codd’s supporters claimed that older technologies (e. g.. network and
hierarchical data models) were too complex, too difficult to program and of-
fered insufficient tnsulation from changing data structures. The issues were
hotly discussed at anrnual SIGFIDET (now SIGMOD) conferences, and for-
mally debated at the 1974 conference. Eugene Wong and 1 had begun read-
ing papers in database management in 1972, and it was apparent to us that
the relational model offered simplicity and elegance. It seemed to us that this
had to be the way of the future, and we embarked on an implementation
project to prove that an efficient, easy-to-use system could be built.

The INGRES system first ran in 1975. During 1976 and 1977, we pro-
duced increasingly reliable and functional systems. Because our software
worked in a UNIX ehvironment, and there were few other database alterna-
tives available, we were able to convince a substantial collection of outside
users to try INGRES. By 1978 we had considerable user feedback and were
aware of the benefits and shortcomings of our software. Fixing the draw-
backs would involve a lot of work and did not seem like a reasonable
research project. Hence, active development of the University of California
INGRES prototype tapered off in 1979. Since then, several companies (in-
‘cluding Amdahl, ELXSI, Computer Associates, Relational Technology, and

iii



iv

N

Preface

NBI) have produced commercial products based on the University of
California code.

Thé first section of this book contains a collection of three papers that
chronicle the development of the INGRES system. The papers were written
in 1976, 1978, and 1984. The final paper in the trilogy describes the experi-
ence of one company, Relational Technology, in correcting the earlier draw-
backs.

During the University of California development phase, we made many
engineering tradeoffs in the design of INGRES. Many of these issues were
concurrently investigated formally: by members of the INGRES team. The
second section of this book contains a representative collection of supporting
studies on issues faced in building a database system. Two of the papers
cover . the traditional topics of concurrency control and query optimization.
The third paper uses INGRES as a vehicle to investigate what database
machine architectures might be feasible. The fourth paper uses INGRES to
study compilation, microcode, a fast file system, and a special purpose
operating system as. performance enhancement techniques. The final paper in
Section 2 contains a collection of complaints and frustrations concerning the
services provided by contemporary operating systems.

In 1977, we enlarged our development sights to include managing data
distributed across multiple computer systems in a computer network.
Although fraught with implementation problems, Distributed INGRES
worked in a two-site configuration over a 9600 baud RS232 interface in 1981
and worked with an arbitrary number of sites over an Ethernet in 1983. The
third section of this book includes four papers that discuss this development
project, and the lessons we learned from it. The first one indicates the gen-
eral charagteristics of our design, and some performance numbers, and a
backward look at problems encountered. Then, two papers which are
representative of our thoughts have been included on query processing in a
distributed environment.  The last paper discusses protocols necessary to
correctly recover from crashes in a distributed environment.

During the development of INGRES, we have designed and/or imple-
mented several user interfaces to database systems. Our first programming
language interface, EQUEL, remains today as a reasonable mechanism for
coupling an existing host language to a database system. Initial use of this
interface convinced us that any hodt language coupling would be fraught
with impossible dilemmas. -FTo explore alternative solutions to these prob-
lems, we designed and implcmemed a new programming language, RIGEL,
which performed both general purpose computation and database access in
one environment. A processor for RIGEL was constructed between 1977 and
1979. More than a dozen external users tried RIGEL in 1979 apd 1980. The
second paper in Section 4 discusses constructs in this language. A third user
interface which we construeted in 1981-83 was oriented toward forms. All
real database applications spend an inordinate amount of code manipulating

e Lh&sqsgx and we attempted to reduce this effort by an order of magnitude.
The thi papgr\m\ \\c\tion_ﬂiscusses the design of the resulting system,

I

‘x*, »}»\“\\

~



Preface

FADS. The last paper in this section proposes a new programming language
interface, which may someday replace EQUEL. This interface was motivated
by the special needs of application programs which allow users to browse
through a collection of data making random changes.

Many researchers and practitioners agree that relational database sys-
tems are well suited to business data processing applications. However, there
are many other kinds of users with database problems. For lack of a better
word, we will term them “‘non-traditional’” applications, and it is evident that
their database needs are somewhat different than business ones. Many
researchers in the database community are engaged in a ““group grope” for
ideas that address the issues of this community. Section 5 contains a set of
four papers that propose various extensions to the relational model appropri-
ate in nonbusiness environments. At the moment, the INGRES project is at-
tempting to release a new version of the system (Version 8), which contains
many of these ideas. We have always prototyped our ideas, and now seems
an appropriate time to integrate,the more valuable ones, so others can try
them out. It is hoped that such research eventually results in a small set of
powerful primitives that can address the needs of such clients, and do so with
the same robustness that relational database systems have addressed the
needs of business data processing applications.

One of the most difficult database problems faced by any real world ap-
plication designers is to specify his ‘“schema,” and then make access path
choices to generate good performance for his application. The twin problems
of logical database design and physical database design must be overcome.
Section 6 contains two papers which represent our insights into this impor-
tant area.

The future directions of the project are primarily in the area of database
support for nontraditional applications. We are pursuing ideas to support
text processing, expert systems, and spatial data applications in a database
context. We have decided not to attempt a release of Distributed INGRES be-
cause the code is not reliable enough to be useful to others.

Because the project is at a crossroads, it seems appropriate to summarize
past successes and failures at this time. The papers in this book have been
selected with this goal in mind, and were all written by students and profes-’
sors at the University of California who were associated with the INGRES
project. '

The INGRES project has always been organized as a chief programmer
supported by a team of four to six people. The chief programmer was the
only full-time employee; all other people associated with the project have
been students intent on passing courses and obtaining degrees. The chief
programmers have been: '

Dr. Gerald Held (1973-1975)
now Director of Strategic Planning at Tandem Computers, Inc.



vi

Preface

Myi. Peter Kreps (1975-1977)
now Member of the Technical Staff at Relational Technology Inc.
Dr. Robert Epstein (1977-1980)
now Vice President at SYBASE
Mr. Eric Allman (1980-1982)
now Member of the Technical Staff at Britton-Lee, Inc.
Mr. Joseph Kalash (1982-1985)
now Program Manager at Unisoft

Whatever success the project has had rests largely on the contributions of
these people. Each was the ‘“keeper” of the INGRES knowledge (i.e., how
the system really worked) and was the ultimate authority on how to fix bugs.
Moreover, large portions of the system were written by them. It would be
impossible to list all of the students who have been associated with the
INGRES project but T feel that it is important to acknowledge the contribu-
tions that some of them have made to developing the various systems that
we have built.

The following students were largely responsible for implementing the
early versions of the INGRES systemn:

Mr. James Ford (1973-1975)
now Principal Member of the Technical Staff at CXC Corp.
Mr. William Zook (1973-1975)
Mr. Rick Berman (1973-1975)
now Section Manager at Tandem Computers, Inc.
Mr. Nick Whyte (1976-1978)

now Manager of Data Base Development at ELXSI Computers, Inc.
Mr. Peter Rubinstein =~ (1975-1977) .
Ms. Iris Schoenberg (1974-1975)
Ms. Angela Go (1974-1975)
Ms. Carol Joyce (1974-1976)

now Member of the Technical Staff at Relational Technology Inc.
Dr. Karel Yousseffi (1973-1976)

now Member of the Technical Staff at Tandem Computers, Inc.
Dr. Nancy McDonald  (1973-1975)

now Senior Scientist at GTE Data Services

Mr. Michael Ubell (1975-1977)
now Director of IDM Software at Britton-Lee, Inc.
Dr. Daniel Ries (1975-1978)

row Director, End User Product Development at Computer Corpora-
ticn of America, Inc.
Dr. Paula Hawthorn (1976-1979)
now Director of Product Development at Britton-Lee, Inc.
Ms. Polly Siegal (1976-1978)
now Development Engineer at Hewlett-Packard



Preface vil

Mr. Marc Meyer (1978-1981)
now an independent consultant

Dr. Randy Katz (1977-1980)
now Professor of Computer Science at the University of California,
Berkeley

Distributed INGRES was largely coded by the following students:

Mr. John Woodfill (1979-1983) .

now a graduate student in Computer Scie.ice at Stanford University
Mr. Jeff Ranstrom (1979-1982)

now Member of the Technical Staff at Altos Computers, Inc.

In addition, the following students contributed various modules to later ver-
sions of the code:

Ms. Nadene Lynn (1981-1982)
now OEM Support Manager at Relational Technology Inc.
Mr. Robert McCord (1980-1982)
now Project Manager, Database Systems at Tolerant Systems, Inc.
Mr. Dennis Fogg (1981-1982)
now a graduate student in Computer Science at M.I.T.
Mr. James Ong (1981-1982)
now a graduate student in Computer Science at Yale
Ms. Heidi Stettner (1981-1982)
now Audio Systems Programmer at Lucas Films, Ltd.

RIGEL was primarily coded under the supervision of Larry Rowe by the
following students:

Dr. Kurt Shoens (1979-1981)
now Member of the Technical Staff at IBM Research
Mr. Dan Brotsky (1978-1979)

now a graduate student at M.L.T.
Mr. Joseph Cortopassi  (1978-1980)

now Manager of User Interfaces at Relational Technology Inc.
Mr. Doug Doucette (1978-1980)

now Member of the Technical Staff at Tolerant Systems, Inc.

FADS was primarily coded by Kurt Shoens as a portion of his Ph.D.
dissertation with assistance from:

Mr. Mark Hanner
now a product marketing engineer for Relational Technology Inc.

The INGRES project has been supported primarily by research grants
from various federal agencies. The support of Mr. John Machado of the Na-
val Electronics Systems Command, Captain William Price of the Air Force Of-



Preface

fice of Scientific Research, Dr. Jimmie Suttle of the Army Research Office,
and Dr. Rick Adrion and Dr. Bemard Chemn of the National Science Founda-
tion are especially appreciated. -

This book was edited using UNIX document processing facilities pri-
marily by Beatrice Dryfoos and Beth Rabb to whom I am deeply indebted.
Typesetting was expertly done by Beatrice Dryfoos.

Berkeley, California ' M.S.



Contents

SECTION 1 -DESIGN OF RELATIONAL SYSTEMS 1

Chapter 1:
The Design and Implementation of INGRES
by Michael Stonebraker, Peter Kreps, Eugene Wong, and Gerald Held 5

Chapter 2:
Retrospection on a Database System
by Michael Stonebraker 46

Chapter 3:
The Commercial INGRES Epilogue
by Lawrence A. Rowe and Michael Stonebraker 63

SECTION 2 SUPPORTING STUDIES ON RELATIONAL
SYSTEMS 83

Chapter 4:
Locking Granularity Revisited
by Daniel R. Ries and Michael Stonebraker 87

Chapter 5:
The Use of Technological Advances to Enhance Database System Performance
by Paula Hawthorn and Michael Stonebraker 106

Chapter 6:

Performance Enhancements to a Relational Database System

by Michael Stonebraker, John Woodfill, Jeff Ranstrom, Marguerite Murphy,
Marc Meyer, and Eric Allman 131

Chapter 7:
Query Processing in a Relational Database Management System
by Karel Youssefi and Eugene Wong 154



. Contents

Chapter 8:
Operating System Support for Database Management
by Michacel Stonebraker 172

SECTION 3 DISTRIBUTED DATABASE SYSTEMS 183

Chapter 9:
The Design and Implementation of Distributed INGRES
by Michacl Stonebraker 187

Chapter 10:
Distributed Query Processing in a Relational Database System
by Robert Epstein, Michael Stonebraker, and Eugene Wong 197

Chapter 11:

Dynamic Rematerialization: Processing Distributed Queries Using Redundant Data
by Eugene Wong 215

C haplu 12:

Nonblocking Commit Pmlncols

by Dale Skeen 225

SECTION 4 USER INTERFACES FOR DATABASE
SYSTEMS 243

Chaplu 13:

Embedding a Relational Data Sublanguage in a General Purpose Programming
Language

by Eric Allman, Michacl Stonebraker, and Gerald Held 247

Chapter 14:
Database Portals: A New Application Program Interface
by Michael Stonebraker and Lawrence A. Rowe 261

Chapter 15: "
Data Abstraction, Views and Updates in RIGEL
by Lawrence A. Rowe and Kurt A. Shoens ~ 278

Chapter 16:
A Forms Application Development System
by Lawrence A. Rowe and Kurt A. Shoens 295

SECTION 5 EXTENDED SEMANTICS FOR THE
RELATIONAL MODEL 313

Chapter 17:
Application of Abstract Data Types and Abstract Indices 10 CAD Data
by Michael Stoncbraker, Brad Rubenstein, and Antonin Guttman 317



Contents

Chapter 18:

An Implementation of Hypothetical Relations

by John Woodfill and Michael Stonebraker 334

Chapter 19.

Document Processing in a Relational Database System

by Michael Stonebraker, Heidi Stettner, Nadene Lynn, Joseph Kalash, and
Antonin Guttman 357

Chapter 20:
QUEL as a Data Type
by Michael Stonebraker, Erika Anderson, Eric Hanson, and Brad Rubensiein

SECTION 6 DATABASE DESIGN 393

Chapter 21:
Logical Design and Schema Conversion for Relational and DBTG Databases
by Eugene Wong and R. H. Katiz 395

Chapter 22:
An Access Path Model for Physical Database Design
by R. H. Katz and Eugene Wong = 409

REFERENCES 429

INDEX 445

376



1

Design of N
Relational Systems

This section of the book contains a trilogy of papers describing the design and

implementation of INGRES. The first paper describes INGRES as it existed in

early 1976. This paper sketches the original design principles and the
reasoning behind them. It was written when the criginal system was emerging
and appeared in the September 1976 issue of Transactions on Data Systems
(TODS).

The second part of the trilogy was written in late 1978 when initial perfor-
mance tests on the code had been done and we discovered some major design
flaws. At this point, it was clear that major problems existed with the code, and
the INGRES project was having a “what’s next” crisis. The original title of the
paper (Chapter two here) was ““‘Requiem for a Data Base System,” but the
TODS reviewers thought the title was too somber. It appeared as ‘‘Retrospec-
tion on a Database System” in the September 1980 issue of TODS.

The last paper in the trilogy was written in early 1984 and describes the
changes to INGRES since 1978. Since the majority of the work on the code has
been done at Relational Technology Inc., the paper is aptly named ‘“The Com-
mercial INGRES Epilogue.”

Keep the following thoughts in mind as you read these papers. First,
notice some of the naive comiments in the first paper. There are remarks that
the UNIX kernal will be used for buffer management and that a multiple process
database system should execute as fast as a single process one. Such comments
reflected the inexperience of the designers concerning the real operating system
costs of various function$. ‘The second paper discusses the extreme cost of such
operations once INGRES was running and benchmark testing had been
performed.




1 -
; / ’ N

Noticeé the discussion in the three papers concerning the tradeoff of space for
speed. The earlier systern was constrained to a small address space machine
and all tradeoffs were forced to the ““small space’”” alternative. The third
paper indicates the ways in which the code was speeded up by trading space for
time (e.g., caching the “’state”” of past commands).

Then, notice the willingness of the design team to rethink past decisions
and to rewrite major pieces of the system, if appropriaté. The adage that it is
never too late to throw everything away and begin again with a clean slate
should always be kept in mind.

ilotice also the desire to use the operating system facilities intact for the
purposes for which’they were designed, regardless of the performance conse-
quences. Notice that INGRES continues to use the operating system scheduler,
messages. and file system. Although loud complaints appear in a later section
about operating system services, it is clear that we had no desire to redo such
services if we could ‘avoid it. .

In the first paper note the defense of single statement transactions and a
single level of delegation in the proteéuon system. Such remarks reflect ¢ our
absence of maturity about these issues.

Fmally, notice that the theme of rapid protolypmg is prevalent throughout
the three papers. The second. paper describes an early INGRES user using the
now popular technique for application design. Moreover, it is evident that the
INGRES design team used this approach for all their development. -

From the third paper, one can note the direction in which INGRES is mov-

ing. Tactics include generating a query plan by examining al! (or most) of the
possibilities and saving the plan for reuse if possible. Plans shouid include both
merge-sort and tuple substitution as possible tactics. These decisions are ones
that the System R designers also amved at [SELI79] and are common]y believed
correct in 1984.

One might ask; “what 1mplementatlon issues are not well understood at
“the moment?”" The rest of this iritroduction addresses this question. First, there
is a trend by operating system designers to move transaction management inside
the operating system. This topic is briefly addressed in the next section, and it
appears that there. are substantial implementation problems to be overcome
[STON84] Henge, the proper place of transaction’ management is still an operi
issue.

Secondly, most database managemem systems peak at 50 or fewcr transac-
tions per second in large transaction- -processing apphcanons The reason is not
insufficient CPU horsepower or /O bandwidth but a variety of software
bottlenecks. For example, while a lock is being set, the lock table is temporarily
in an inconsistent state. As a result, a process to set a lock must get exclusive
control of the lock table for the duration of its modification to the data

.




structure. In applications with a very large number of terminals (say 1000),
there may be queuing delays to access the lock table. Another problem is
that standard database practice requires that a log record be written out to
disk at the conclusion of a transaction. Many database systems have a single
log file per database; hence, one must write 50 log records to a single file in one
second in order to commit 50 transactions per second. This is difficult to do
with most contemporary operating systems. How to overcome this myriad of
software bottlenecks and achieve dramatic increases in transaction throughput
(say 1000 per second) remains an open question.

A third issue is storage of complex objects in a database system. This topic
is extensively discussed in Section 5.0 for engineering applications. However,
one should note that data dictionaries for relational database systems are being
enlarged 10 hold information on reports, forms, graphs, application programs,
and so forth, as well as information on relations and stqrage structures. The
information about a form includes the layout of iis fields, the position of trim
elements, which fields are protected, and so forth. Such information does not
naturally fit the relational model. 1 feel that extending the semantics for the
relational model to handle such complex objects is one of the most pressing
open issues. :

Nowadays, computers are being sold with increasing amounts of main
memory, and buffer pools with a size of several megabytes are becoming com-
mcnplace. Clearly, database systems must change over the current decade to
manage a database that is partly on disk ahd partly in main memory. This pos-
sibility suggests for example that hash-join algorithms may be a viable query
processing tactic [DEWI84]. Re-engineering current systems to take advantage
of massive amounts of main memory is a challenging open issue.

Lastly, I predict that optical disks will finally see the light of day and
become commercially significant. A “‘write once”” device with a very large capa-
city has considerable appeal.. Clearly, one can put the database log on such a
device. However, one might be able to build a data structure in which data
records are never overwritten., This would allow all past values of all items in
the database to be accessible and would allow one to ask questions of the data-
base as of some particular point of time in the past. Building such a data struc-
ture on a write-once medium is a challenging open issue. .







B CHAPTER ONE I

The Design and
Implementation
of INGRES

Michael Stonebraker | Peter Kreps / Eugene Wong / Gerald Held

B 1.0. INTRODUCTION

INGRES (Interactive Graphics and Retrieval System) is a relational database
system which is implemented on top of the UNIX operating system developed
at Bell Telephone Laboratories [RITC74a] for Digital Equipment Corporation
PDP 11/40, 11/45, and 11/70 computer systems. The implementation of
INGRES is primarily programmed in C, a high level language in which UNIX
itself is written, Parsing is done with the a551stance of YACC, a compxler—
compiler available on UNIX [JOHN74].
The advantages of a relational model for database management systems
- have been extensively discussed in the literature [CODD70, CODD74,
DATE74] and hardly require further elaboration. In choosing the relational
model, we were particularly motivated by the high degree of data indepen-
dence that such a model affords, and the possibility. of providing a high level
and entirely procedure-free facility for data definition, retrieval, update, access
control, support of views, and integrity verification.

1.1. Aspects Described in This Paper

_In this paper we descnbe the design decisions made in INGRES. In particular
we stress the design and unplememanon of: .

1) the system process stmg:ture (see Section 2.0 for a discussion of this
UNIX notion);' r :

2) the embedding of all INGRES commands in the general purpose pro-
K gramming language C;

M. Stonebraker, P. Kreps, E. Wong, and G. Held, ACM Transactions on Database Systems, vol. 1,
no. 3, September 1976.  Copyright 1976 Association for Computing Machmery Inc.; réprinted
by permission.



