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PREFACE ' =~ = .

- This book arose from a course of lectures given during the aca-
demic year 1954’55 at the Mathematical Centre, . Amsterdam,

repeated in 1956/’ 57 in a course at Eindhoven, otganized by the-

same institution. Its purpose is to teach asymptotlc methods by

‘explaining a- number of examples in every detail, 50 as to suit

'begmnrrs who seriously want to acquire some techmque in attacking
asymptotlc problems.

Although asymptotics is by no means a new field, only in recent
times have special courses and books beén devoted to it. The
reason may bé that today university courses in analysis are con-.
. densed in favour of modern mathematigs. The effeet is that analytic-
~* techniques are not so widespread as they used to be.On the other.
hand there areso many questions of an asymptotic nature both in pure -
and ‘applied mathematics, that ‘we cannot afford to neglect the
subject. Therefore it seems desirable to give a separate traihing in
asymptotics to those who have only a general knowledge of analysis.

The reader will not find anything like a general theory in this
book. Many agymptotic' methods are very flexible, 'and in such
. cases it is not possible to formulate a single theorem. covering all
apphcatlons Any attempt at generalization would actually result
.in a restriction. .

Usually in mathematics one has. to choose between saying more

~ and more about less and less on the one hand, and saying less and

less about more and more on the other. In a practical subject- like
thls, however, the proper attitude should be to say as much as
possible in a given situation.. And as it is impossible to include all
situations in one book, it seems to be imperative’ to teach by ex-
<amples statmg generahtles only when stnctly neceesary ’

The chonce of sub]ects in a book of this size is, of course, qmte
arbxtrary The reader will find quite an extensive treatment of the

7
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saddle point method (Ch. 4,5, 6), and a great deal of attention has
been paid to iteration (Ch. 8). On the other hand, with respect to-

Tauberian theorems (in Ch. 7), and the asymptotics of differential
equations (Ch. 9), this book presents only a very small part of what

the reader might expect. And what is worse, nothing -of analytic
number theory is included because this would require too much
space. On the other hand, there are so many excellent books on

analytic number theofy that-there isno need for a.nother text-book.
But no doubt anyone who wants to specialize in asymptotics, should
study analytic number theory, with its great vanbty of beautlful

- -a.symptotm problems

Many thmgs in thls book are not prmnted in the shortest

possible form, as an attempt has been made to reveal, to a certain
extent, the motives that lead to certain methods. Naturany one

cannot go too far in this respect; a mathematlcmn eannot poss;bly- :

pubhsh his waste-paper basket.

.~ In some cases two or more different treatments of one and the '
_ same problem aré given, so as to enable .the reader to com- -
pare different methods.” Several proofs for the Stn'hng theotemy .

are included; the problem of sec. 4.7 is.attacked a second
‘time in Ch. 6 and the ptoblem of the iterated sine is treated
‘twice in Ch. 8, ‘ -

. On the whole the author has tried to discuss original problems
and results, unless the inclusion of well-known thinfgs was strictly

necessary. In a field like this it is, of course, very difficult to say -

whether something is new, especially when the ideas are certainly

well-known. The contents. of- the following parts have probably

) neverbeenpubhshed before: sec. 3.9, sec. 4.7, Ch. 6, Ch. 8 from sec.
8.4 onwards, and passibly even sec. 2.4, sec. 9.2 and sec. 9.3.

1Y

This book has not been written exclusively for n';athemaﬁ(:ians,b_

but.also for those physicists and engineers Who have a certain

' maturity with respect to analysis, including some general knowledge = -

of complex function theory. On the whole it will not be easy reading

for any class of readers, asymptotics being a difficult subject that
requires constant alertness and carefulness. For those who find the
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. text occasionally too difficult it may be reassyring to know that the_
chapters of this book can be studied practically independently: The
only exceptions are Chs. 5 and 6, which are based upon Ch. 4. And
~ the introduction is, of course, fundamental for the whole book. -

. Most chapters start with simple things and end in quite hard
examples. At the end of each chapter there are a few exercises.
Even when these are quite difficult, they do not teqmre methods -
beyond those treated in the text

. Hardly any re_ferences are given in this book, because the subject
ié 50 old that it is very difficult to give the proper ones. For a short
bibliography of asymptotics we refer to A. Erpfrvr, Asymﬂouc

- Expansions, Dover Publ., 1956, which also contains a much more.

extensive introduction to the asymptotxcs of differential equations

'than Ch. 9 of this book. .

. One: wammg should be glven to all readers: tlns isnot an encyclo-«
: paedia on asymptotic results. Not even the asymptotic behaviour

* of Bessel functions can be found in this book. Attention is focussed -

mainly on methods, The problems themselves are not of primadry -
Jmportance their selection depends on mstructxvenwl rather t.han
- on unportance ,

. October-, 1957. ' . | NG DE BRUIJN
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: CRAPTER 1

INTRODUCTION

1.1. What is asyml’totics?

This question is about as difficult to answer as- the qmtxon.
“What is mathematics?" Nevertheless, we shall have to find some
" explanation for the word asymptotics.

It often happens that we want to evaluate a certain number.
defined in a certain way, and that the evaluation involves a very
large number of operations so that the direct method is almost

. prohibitive. In such cases we should be very happy to have an

entn‘ely different method for finding information about the number,
giving at least some useful approximation to it. And usually this
- new’ method gives (as remarked by Laplace) the better results in -
proportion to its being more necessary its accuracy unproves when
the number of operations involved in the-definition increases. A
situation like this is considered to belong to asymptotics.
~ This statement is very vague indeed. However, if we try to be
more ptemse, a definition of the word asymptotics either excludes .
everything we are used to call asymptotics, or it includes almost the
whole of mathematical analysis. It is hard to phrase the definition in
such a way that Stirling’s formula (1.1.1) belongs to asymptotics, -
and that a formula like /5° (1 + #2)~1dx = }x does not. The obvious"
" reason why 1 the latter formula is not called an asymptotic formula is
_ %that it belongs to a part of analysis that already has got a name:
""" the mtegral calculus. The-safest and not the vaguost defmmon is
the followmg one: Asymptotics is that part of analysxs which |
considers problems of the type dealt with in this book ,
A typical asymptotic result, and one of the oldest, is Stn‘lmgs ‘
- forinula just mentioned:

g (BB hmnl/(r'n"\/Zam)
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‘For each #, the number #! can be evaluated wrthout any theoretlcal

difficulty, and the larger n is, the larger the number of necessaty ‘

‘operations becomes. But Stirling’s formula gives a decent approxi-

mation e~mw#V/ 2, and the ‘larger » 1s, the smallér its relative ..

“error becomes.

Several proofs of (1.1.1) a.nd of its generallzatlons will be given
in this book (see secs. 3.7, 3.10, 4.5, 6.9). e

. We quote another famous asymptotlc formula much deeper than
the previous one and beyond theé scope of this book. If xis a positive -
nuniber, we denote by x(x) the number of primes not exceed’ing .
Then the so-called Prime Number beeorem states tha,t 1)

= 1.

( 3 | hm.u(x)-/ e

-The above formnlas are limit formulas and therefore they have,
as they stand, litide wvalue for numerical purposes. For no single
specialivalue of % cah we draw any conclusion from (1.1.1) about n!,
- It is a statement about infinitely many values of #, which, re-

markably enough does not state anything about any special vaiue )

of », o
For the purpose of closer mveshgatxon of thas feature, we ab-
-breviate (1.1.1) to . - :

(113) ’ hmf(n)—l or fin) > 1 (u—roo)

+* This formdla expreeses the mere existence of a functlon N(§) wrth

the property that -
(1. 14) foreachc>0 n > N(e) mphes If(n) - l; <& '

When proving f(n) -> 1, one usually produces, hidden or' not,
, information of the form (1.1.4) with explicit construction of a
" suitable function N(e). It is clear that the knowledge of N(e)-»
actually means numerical information about f. However, when using
the notdtion f(#) — 1, this information ‘is supprensed So if we -
- write (l 1.3), the knowledge of a function N(g) with the property

(1.1.4) is replaced by the knowledge of the emtence of such a

_ fanction.
1) Sée A. E. INgHAM, The Distribuﬁon of anes, Cambridge 1932. ‘

v



m’rxonu‘cnou R ! 3

' ’[o a certain extent it- is one of. the reasons of the success of
-analysis that a notat:on has been found which suppresses that much
information and still rémains useful. Even with quite simple
theorems, for instance lim guby = lim ay- lim by, it is easy to.see -
" that the'existence of the functions N(s) is easler to handlethan the ]
funictions N () themselves o :

1.2. The O-symbol
A weaker form of suppressmn of mfbrmatlon is given by the
‘Bachmann-Landau O-notation 1). It does not suppfess a function,
but only a number. That is to say, it replaces the knowledge of a
number with certain properties by the knowledge that such a
number exists. The O-notation suppresses much less information

B ~ than the limit notation, and yet it is easy enough to handle.

. Assume that we have the following exphc:t miormatlon about the
 sequence {f(n)}:
(121) M) —H <32 (n=1, 2, 3, cas)e.
Then we clea.rly have a suitable funchon N(e) sa.txsfymg (I 1.3),
- viz. N (8) =361, Therefore,
__(122) L fn) >1  (#—>o00).
* It often happens that (1 22) is useless, and that (1.2.1) is sat:s-
factory for some purpose on hand. And it often happens that (1.2.1)\

would remain as useful if the number 3 would he replaced by 108
‘or any other constant. In such cases, we could do with-

: (1.2'3) {There ems§s a number :4 (mde_penéent of n) such that
O lfm) =1L At (8=1,23,...).
The Ioglca.l connections are glven l;y R
' (121) (123)»(12“2) o
Now (l 23) is the statement expressed by the. symbohsm
(1.24) - fm) = -1=0(1)  (r=1,23...).
’l'here are some minor dxffe::ences between the various defmmons

1) See E LANDAU, Vorlesungen ﬂber Zahlentheone, Lelpzxg 1927, vol. 2,
p.3—8 :

-



‘that f(s)/@(s) is bounded throughout S.
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of the O-symbol that occur in. the literature, but these differences

‘are unimportant. Usually tlie O-symbol is meant to represent the
‘words “‘something that is in absolute value less than a constant

number times”. Instead, we shall use it in the sense of “somethi
that is, in absolute value, at most a constant multiple of the
absolute value of”. So if S is any set, and if f and ¢ are real or
complex functions defined on S, then the formula

(125 S =0(gp(s)) - (seS), S -
means that there is a positive number 4, not depending on s, such

‘_ that

(126) () < Alg(s)} forallseS.
. If, in particular, g(s) O for all s ¢ S, then (1.2.5) simply means -
We quote some obvious examples: |
| B=00 (<2, .
 Sinx=0(1)  (—o0o<x<oo), .
sing=0() (—o0,<x < o0).

, Quite often we are interested in results of the type«(1.2.6) only °

" on part of the set S, especially on those parts of S where the inform-

ation is non-trivial. For example, with the formula'sin x = O(#)
(— 00 < x < o) the only interest lies in small values of |x|. But '
those uninteresting values of the vatiable sometimes give some

-extra difficulties, altheugh, these are not essential in any respect.

»

An example is: / : .
‘ 2 1=0() (—1<x<]l)

We are obviously interested in'small values of x here, but it is
the fault of the large values of x that ¢ —1 = Q(x) (—co< x<o0) -
fails to be true. Se a restriction to a finite interval is indicated, and -

it is of little concern'what interval is taken.

On the other hand, there are cases where one has some trouble to
find a suitable interval. Now ini order to eliminate these mon:
essential minor inconveniences -one ‘uses a‘modified O-notation,
which again suppresses some information. We shall explain it for
the case where the interest lies in large positive values of x (v — oo},

‘but by obvious modifications we get similar notations for cases like
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% = — 00, ]x| -+ 00, x>c, % T ¢ (i, = tends to ¢ from the Ieft)
The formula ,
(127 [ =Op@). (r=soe)
means that there exists a real | ‘number & such that
) =O(p(x) (@ <% < oo)

.In other pvords (1.2. 7) mean§ that there emst numbers a and A
such that .

(L. 28) ’ If(x)l < Alcp(x)l whenever a<x < 0.
. Examples o, T
22 = O(x) (x—->0) . x=0(@? (xr >o0);
e-z =0(1) (x —~ oo) .. (log x)8 = O(x¥) (x - o0);
(log 2)T=0(1) (x — 00); (sin :rl)‘1 = 0(x) {x - o).

~ 'In many cases a formula -of the type (l .2,7) can be replaced
: mmedlately by an O-formula of the type (1.2.5). For if (l 2.7) is

- given, and if f and ¢ are continuous in the interval 0 < % < oo,
and #f moreover p(x) 0 throughout this interval, then we have

f(#) = O(g(#)>(0 < x < oo). This follows from the fact that f/¢ |

s contmuous and therefore bounded, over 0 < x < a.
7

The reader should notice that so far we d1d not defme what

’

O(p(s)) means; we only defined the meaning of some complete ‘

formilas. Tt:is obvious that the isolated expression O(g(x)) cannot
be defined, at least not in  such a way that (1.2.5) rémains equivalent
“to (1.2, 6) For, f(s) = O(p(s)) obviously implies 2f(s) = O(p(s)). If
O(p(s)) in itself were to denote anything; we would mfer Hs) =
= O(p(s)) = 2f(s), whence f(s) = 2f(s).

The trouble is, of course, due to abusing the egua.hty sign =. A

similar situation arises if someone, becanse his typewriter lacks the

sign <, starts to write = L for the words “is less than”’, and so

~ writes 3 = L(5). On being asked: “Wl\at does L(5) stand for?”,

he has to reply “Something that is less than 5. Consequenﬂy ‘he

rapxdly gets the habit of redding L as “something that is less than”;
‘thus coming close to the actual words we. used when mtroducmg

(1.2.5). After that, he writes L(3) = L(5) (something that is less.

than 3 is.something that is less than 5), but certainly not L(S) ==L(3).

N\

~



6 ASYEPTOTIC un‘rnons IN‘ANALYSIS

He will not sec any harm in 4==2+L(3) L(3)+L(2)==L(8)
TheO-symbollsusedmexactlythesamemannerasthupersons
L-symbol We g1ve a few examples: , ,

T O +0E =0f) (0,
_ Tlns means: for any pair of functxons f- & such that
fxy =0 (x>0), " pglx) = 0(1’) (x -*0)-

we have
e+ g(x) oW (0.
"L Analogously, , _
<O + 0(?) ———ow) (# = o0),
S €0 = Q(1) (=00 < ¥ < o0),
- T g0 = gOteh (x - oo);

- Wea]sowntethmgshke .
. e’—l+x+0(x’) (x-+0)

which means that there isa function f such that ¢® = 1 %4+ }(x),
a.nd (%) = O(x’) (¥ —0). And we wtite thingslike .

%10(1) = O(l)-l-O(x‘") @ <% < oo). f

: '.Tmsmeans that for any functlon/(x) with f(x) = O(1) (0 <.» « oo)\ ,‘

we can split +-1/(x) into two parts g(x) and h(x) such that g(x)=0(1),
h(x) = O(x%) (0 <% < o0). The proof is easy: take g(x) =0 if

o<x<1, g(x)==r1f(x)1fx>1 h(x):»x-lf(x)xfo<xs 1, .

hx) =0ifx > 1.

The common interpretation of all these foxmulas can.be ex-

pressed. as follows. Any expression involving the O-symbol is to be
considered- as a class of functions. If the range 0 < % < oo is
consideved, then O(1)4O(x2) denotes the class of all functions of
the form f(x) + g(x), with f(x) = O(1) (0 < x < o), g(z) = O(z~%)
(0 < x < 00). And £10(1) = O(1) + O(x~2) means that the class
#-10(1) is contained in the class O(1) + O(x>%). Sometimes the
left-hand-side of a relation is not a class, but a smg]e function, as

- in (1.2.7). Then the relation means that-the functmn on the left ig a

~ membm'oftheclassonthenght
. It is obvious that the sign = is really the wrong sngn for such
- relations, because .it suggests symmetry, and there is no such

H
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symmetry, For example, O(z) = O(s%) (¥ — oo) is: ‘cotrect, but
O(»®) = O(x) (x - o) is false. Once this warning has -been given,
there is, however, not much harm in using the sign ==, and we shall
) mamtam it, for no other reason than that it is customa.ry .

,Let q:‘ a.nd y be functions such that q;(x) O(w(x)) (x >o0)is .
“‘true and ip(x) O(cp(x)) (= ->oo) is false. If a,third function f
satisfic ) |

(129 - fx) = Ofplx) P 4;»)'. :
then obviously 1_t also satisfies »
(12100~ fx)=O0@@) * (v oco).

- If (} 2.9) is true, it is ca]led a refinement of (1 2 10)= Formula
(1.2.9) iis called best possible if 1t cannot be refined, that is, if there
are positive constants a and 4 such that a|¢(x)| s ll(x)l < Alpl)!

from a certain value of x onwa.rds
o Forexample : e '
' P \2x+xsmx—0(x) (# ~ oo)

is best poemble, since the left—hand side lies between x and 3x Also
 log(etreoss 4 ) =0@x) (s >ce)

is best possible. If » >0 the logarithm is at most log(e”-t-a’) 3
and this is less than log(e2# 4 ¢2%) == log 2 + 2¢. On the dther hand
we have e?* co¢ = > 0, whence the logarithm is eertamly not less

- than log ¥ =z
~ If m is a positive mteger then the estxmate
'(1.2.11)- L %= O(_x'»"") (% > 00)

holds (¥%e—* has its maximum at x = m, ‘as far as positive values .
of x are concerned). But for no value of m (1.2.11) i8 best possible
' slnce T = O(x—"'-l) (x— o) is always areﬁnement. -

. We shall now dlscuss the matter of uniformity. We start mth an
.example Let S be a set of values of , let % be a positive number,
and let f(x) and g(z) be arbitrary functions, Then we have

(1.2.12) (f(%) + 8@)* = O((ft=)*) + Ollg(x)®)  (x ¢ 5). - ’



