PJUGRAMN&ING
WITH SIMULA

Bigrn Kirkerud

OBJECT-ORIENTED
" PROGRAMMING
WITH SIMULA

Biarn Kirkerud

Institute of Informatics
University of Osio.

LR 4

ADDISON-WESLEY
PUBLISHING
COMPANY

Wokingham, England - Reading, Massachusetts - Menlo Park. California
New York - Don Mills, Ontario - Amsterdam - Bonn
Sydney - Singapore - Tokyo - Madrid - San Juan

© 1989 Addison-Wesley Publishers Ltd. .
© 1989 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission of the
publisher.

Thé programs in this book have been included for their instructional value. They’
have been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept any
liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Addison-Wesley has made every attempt to
supply trademark information about manufacturers and their products mentioned in
this book: UNIX™ is a trademark of AT&T.

Cover designed by Crayon Design of Henley-on-Thames and

printed by The Riverside Printing Co. (Reading) Ltd.

Typeset by the AMS from the author’s TeX files.

Printed in Great Britain by Mackays of Chatham plc, Chatham, Kent.

First printed 1989.

British Library Cataloguing in Publication Data
Kirkerud, Bjern
Object-orientated programming with
Simula. .
1. Computer systems. Programming
languages: Simula language
1. Title
005.13'3

ISBN 0-201-17574-6

Library of Congress Cataloging in Publication Data
Kirkerud, Bjgrn .
' Object-oriented programming with SEMULA/Bjgrn Kirkerud.
p. cm. - (International computer science series)

Bibliography: p.

Includes index.

ISBN 0-201-17574-6

1. SIMULA (Computer program language) 2. Object-oriented
programming. I. Title. II. Series.
QA76.73.855K57 1989
005.13'3—dc19 89-149

CIP

Preface

Overview

A computer program is constructed in order to get a computer to behave in
a desired manner. The aim of this book is to teach the reader to construct'
computer programs in a systematlc and efficient fashion.

There are many different approaches to program construction. Some peo-
ple feel the differences to be so substantial that it is justified to talk about
different paradigms for programming. One approach that has received much
acclaim during the last few years is called object-oriented programming. After:
more than 25 years of experience in programming and teaching programming,
and after having used various approaches, I feel the praise given to the object-
oriented approach to be justified, and have chosen to base this book upon it.

A programming language is a notational system for writing programs. A
programming language called Simula has been chosen for use in this book. The
reason for this choice is not that Simula is a very well known or broadly used
programming language, but rather that it is well suited as a vehicle for learning
programming in general and object-oriented programming in particular. The
main ideas of object-oriented programming were in fact introduced for the first
time in Simula as early as 1967. Many people who have learned programming
via Simula have experienced not only that it is quite easy to adjust to.other
programming languages but that they quickly become better users of those
other languages than many people who have used those languages for a long
time. Such ability to adjust to new tools (a-programming language is of

vi PREFACE
h. c

course a tool) ~ which certainly is of particular value in an area which changes
rapidly and in which new tools incessantly are introduced - seems to be less
commonly experienced by people who have had other languages as their ﬁrst
programming language.

It is important to recognize the distinctioh between learning a program-
. ming language and learning how to construct programs. The latter is the aim
of this book, and I have not aimed at giving a complete coverage of every part
" of Simula. Nevertheless, most features of Simula are described in the book.
The only major omission is that part of Simula which deals with so-called
discrete event simulation. In addition, I have omitted some details whlch I
think are obsolete or of minor general interest.

RN

Readership

No previous knowledge of computers and computer programming should be
necessary to read this book: 1 have assumed that the reader knows nothing
about computers and have explained everything from scratch. In particular
I have not assumed that the reader has constructed any computer programs
or knows any programming language. But the first few chapters are rather
tersely written, and some experience in using and/or programming computers
(for instance a simple course in a programming language like Pascal or Logo)
would certainly help the reader when he or she reads those chapters.

A reader who is well acquainted with traditional programming and who
knows the programming language Pascal (or something similar) should be
able to read most of the first seven chapters rather quickly. But he or she is
advised not to skip these chapters, because they contain many dettuls that
will be new.

Background and related material

The choice of material and examples, and the sequence in which different con-
cepts are introduced, are based upon experience gained from various courses
in programming I have given (either alone or in collaboration with others)
since 1962, mostly at the University of Oslo. Some parts of the book are
translated from my book Systematisk Programmering (in Norwegian).

Every program in the book has been tested with care on one or more
computers. Nevertheless, they may contain errors, and I cannot guarantee
that they will always behave as indicated.

If you have access to a computer that is connected to the computer network
called ‘Internet’, you may obtain copies of -the programs in the book and also
proposed solutions to some of the exercises. Every program (except some of
the smaller ones) may be retrieved by ‘anonymous ftp’ from directory simbook
on host ifi.uio.no. .

PREFACE vii
/

Acknowledgements

I would like to thank my colleagues Ole-Johan Dahl, Stein Gjessing, Stein
Krogdahl and Olaf Owe for valuable comments, inspiring criticisms and the
discovery of errors in preliminary versions of some of the chapters in this
book. A number of students, one of which is Kjetil Otter Olsen, have also
given helpful comments on parts of the manuscript.

The book was written on a Sun computer running under an operating
system called UNIX. I have used a text processing system called Gnu-emacs
to enter the text, and the document preparation system IATgX to typeset
the manuscript and to ‘draw’ the figures. I am not an expert at setting up
and tuning systems like these to behave as desired, and am grateful for the
assistance of several people, in particular Jens Thomassen and my son Ketil
Kirkerud. Finally, I would like to thank Kjell E. Nordli who used the Musikus-
system (which has been developed at the University of ‘Oslo) to produce the
musical score in Figure 1.1.

Bjgrn Kirkerud
Oslo, September 1989

Contents

Preface

Chapter 3

Learning how to Construct Prognm

Programming languages

Syntax, semantics and pragmatics
Programs may have side effects
About the necessity for practice

A Simple Program

Breakdown of a simple program
How to get the program executed by a computer
Exercises '

A Small Part of Simula

Words and symbols :
Syntax diagrams

Declarations

Expressions

Imperatives

Programs

A common error

Comments

Layout

Exercises

Arrays and Blocks

A first sketch of a program
A more detailed program sketch.
How to declare a table of variables *

Reading a list of numbers
!

NN W =

17
19

21

21

26

32
41
53

55
57
61

67

70
71

X CONTENTS

4.5 The histogram : 76

4.6 Step imperatives 77

4.7 A complete program according to proposal 1 80

4.8 Proposal 2: ideas and sketches 8t

4.9 Blocks . ’ 82

4.10 A complete program according to proposal 2 - 84

4.11 Robustness 86

4.12 More about arrays 88

4.13 More about step imperatives 91

4.14 Some frequently used program patterns 92
Exercises 96

Chapter 5 Simple Use of Files 101
S.1 Tools and tool-boxes Co 102

5.2 Simple tools for writing to files 102

5.3 Simple tools for reading from files 108

5.4 Commonly used program patterns)] - 12

55 Sysin and sysout ’ 117

5.6 Anexample: counting words in a file 118
Exercises 120

Chapter 6 Procedures ' © 128
" 6.1 Procedures with no parameters 126
6.2 Procedures with parameters 131

6.3 Why use procedures? 144

6.4 External procedures 153
Exercises , 154

Chapter 7 Case 1: A Program for Weather Data - . 163
7.1 -Specifications for a program 163

7.2 Afirst rough draft 164

7.3 How to give and take commands 165

7.4 The data structure 168

7.5 Afirst test version 168

7.6 Programming the procedures 171

7.7 A program that works ' : 174
Exercises 181

!Clnpter 8 Case 2: A Program for Students and Classes : 183
8.1 Rough specifications for the program 184

8.2 A rough draft and a first test program 185

8.3 Two alternative data structures 188

84 Objects . 189

8.5 Simula classes 190

8.6

8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

Chapter 9 .

9.1
9.2
9.3
9.4
95
9.6
9.7
9.8
9.9
9.10
9.1
9.12
9.13
9.14
. 91s
9.16

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10

»
.A second test program

More constructions for handling objects
How to write a student’s data

A simple program ®

Objects with data and operations
Protection and encapsulation

Drafts for the command procedures
Demands on the data structure

Programs for the command procedures

A third test program

Data structure for 1500 students

A program that satisfies the specifications
Prefixed blocks . .
Sorting students

Objects and Classes

Declaration of simple classes

How to generate objects
Reference types

Remote access-of attributes
Inspectir~ objects

Classes w..n parameters

Classes with imperatives
References as parameters and function values
Comparing references

How tb copy objects

Subclasses and inheritance

Virtual procedures

How to stop and restart objects
How to protect and hide attributes
Prefixed blocks

External classes

Exercises

Case 3: Can-a Computer Learn?

‘Learning’ to play tic-tac-toe

The game of Nim

Nim-players

Games and tournaments

Human Nim-players

Nim-playing machines

Perfect Nim-players

Machines that ‘learn’ to play
Training against a ‘sparring partner’
Can computers ‘learn’ real games?
Exercises

CONTENTS

xi

195
198
200
201
204
205
206
208
212
213
215
221
223
224

229

229
231
232
236
238
240
242
243
245
246
247
261
265
268
269
269
271

277
271
278
279
281
283
284
285
286
291
293
294

xii CONTENTS

Chapter 11

11.1
11.2

Chapter 12

12,1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Texts

Author profiles
Syntax and semantics of téxts
Exercises

Files

Files in general

A hierarchy of file-packages
Outfile

Infile

Placing texts in images
Printfile

Sysin and sysout

Directfiles

Another weather data program
Bytefiles

Access modes

Exercises

Case 4: An Interpreter

Syntax and semantics of Simpla
Drafts for the interpreter
Imperatives

Sequences of imperatives
Integer expressions

Boolean expressions
Operators and comparators
States

Various auxiliary procedures
An interpreter for Simpla
Getting the interpreter to work
Exercises

Tables, Chains and Sets

Some common operations on lists

Tables of pointers

Pointer chains

How to choose a data structure

Sets of objects

Sequences of objects

An example: data on students and courses
Simulating a post office

Exercises

297

297
315
327

331

331
336
339
346
351
355
356
362
364
375
377
379

381

381
384
387
397

403
406

408
412

415

415
416
421
432
433
438
441

456

Appendix A

Al
A2
A3
Ad
AS
A6

Appendix B

Appendix C

C.1
C2
C3
C4
CsS
C.6
C
(O]

References

Index

Predefined Identifiers

Basic procedures

Time and date

Text procedures
Implementation-dependent procedures
Mathematical functions

Raridom numbers

The ISO Characters

Syntax Diagrams

Program

External specifications
Imperatives
Declarations
Expressions

Names and parameters
Literals

Identifiers

Tools for Sequences and Sets

Main structure of the class settools
The class element

The class sequence

The class basis_set

The class set

The class ordered_set

The class table

CONTENTS

xiii

469

471

471
471
473
476

485

489
489
490
491
492
493
494

497

499

Chapter 1 |
Learning how to Construct
‘Programs

According to my dictionary (which predates the invention of computers and
computer programs), a program is a prearranged plan or course of
proceedings. Most people are familiar with programs of various kinds. Some
examples:

* A musical score can be looked upon as a very detailed program for a
musician or an orchestra. Figure 1.1 contains the first parts of one the
most beautiful programs ever written.

e A knitting pattern is a program for a knitter.
¢ A recipe for bread-baking is a program for a cook.

¢ A computer program is a detailed plan for a computer. Figure 2.1
(p. 12) in thé next chapter contains the first of many examples of such
programs in this book. '

Observe that programs are intended to be evecuted by someone or some-
thing: musicians, cooks, knitters or computers. Programs consist of se-
quences of instructions to be obeyed by the program executor(s). These
instructions must be written in a language - or notational system — which
must be understood by whatever or whoever executes the programs. But the
language used may be quite incomprehensible to anyone not ‘in the field’.
) A computer program like the one in Figure 2.1 (see p. 12) is probably un-
intelligible to anyone unfamiliar with the language in which it is written. But
it is not difficult to learn enough about computers and about the language in
which the program is written to understand its meaning and also the meaning
. of similar programs — at least if they are not overly complex. A reader who
.- takes time to study the next chapter should be able to understand not only
* the program explained there but quite a lot of other programs. An experience
~ shared by many is that it is rather easy to learn to read programs which are

1

2 LEARNING HOW TO CONSTRUCT PROGRAMS

Flutes

Oboes

Bb Clarinets

Bassoon

Eb Horns

Eb Trumpets

Trombones I II

Trombone III

Violin I

Violin I

Viola

Cello

Bass

THE MAGIC FLUTE

W. A. MOZART

—
N E—— -
5 g2
e
| 4.. Yl 3 AR P 4 VA /4 >
3’4 L2 3 - | 4
‘VA y A } -)
: y - " y B § s
:@1 7 P ¥ & P - 3
/A
[3) 14 4
2le A A
T —
T n » W =
i 74 P -
P it n 14 —
T T
o) N o
z s o e B —
— & aci
6 ’9
t n
y Y 2 T 3 _—
8 _ P W T 3
& - C R
.
R ES=s Tt
I Ve 7 17,1 —3
[/ ¥ T)
¥—H ¥
At
0 y \V - S <
- . 1 ’) By N p] ? 1 -
Z P ¥ L P - 4

Q]

»

"
M
ﬁ# S e K
4
Fﬁr
i

an
H
H

iﬁ

Figure 1.1 A program for an orchestra.

73
— oleo N +
N e B 8 — 1
A r~; I T y - 1—1 1=
1T &7 & ¥ IT r W— ¥ P S - |
S E— T G &
K74
gle N "
0 77 ~ T—N
5 - T y -) T
ney Anw W — t) 758 W1 y — -
Dl Y1t
F
® e A A
C 4 1 7z N T—I
OW) IR 2 7)) T VPR P R 71 1) 1
"N A r W S R r w—"; 1 " W 1
LA-L i T L

PROGRAMMING LANGUAGES 3

not too complex and to understand what happens when they are executed
* by a computer. But to learn enough to be able to construct programs is a
very different matter. The primary aim of this book is to teach the reader
how to construct programs. But first, some general observations and advice
concerning programs and program construction.

1.1 Programming languages

A programming language is a notational system for writing computer pro-
grams: that is, for writing sequences of instructions intended to be executed
by computers. A large number (too large, according to most observers) of
such languages have been constructed during the short time man has had the
need to write computer programs. Some of the most widely used and well
known of these languages are FORTRAN, COBOL, Pascal, C, Ada and LISP.
The language we use in this book is called Simula.

It is important to recognize the distinction between learning a program-
ming language and learning how to construct programs. This distinction has
some similarity to the distinction between learning the precise rules for writ-
ing musical scores and learning how to compose music: the former is not very
difficult (and arguably not very interesting in itself), while the latter is rather
more demanding and also more rewarding. My aim is to teach the reader how
to construct programs, a more valuable (and also more difficult!) skill than
mastering the quirks and foibles of some specific programming language.

. To achieve this goal, it is certainly necessary to use a programming lan-
gu.ge, which the reader must learn. I have chosen Simula for this pur-
pose. One reason for this choice is that, in my opinion, Simula is very well
suited for learning how to construct programs in general. It is my experi-
ence — based upon many years of teaching thousands of students — that it
is quite straightforward to learn to use most other programming languages
after having learned the basic principles of programming and programming
methodology using Simula as a vehicle. Many students who take what at first
seems to be a detour via Simula become better programmers of languages
like FORTRAN, C, Ada or COBOL (and other ‘programming languages) than
those who go directly to these languages. This may perhaps seem strange: it
“appears to be akin to being told that the best way for an English-speaking
person to learn French is by first learning German, which is patently unsound
advice. But this analogy is only superficial. First, programming languages
are very different from languages like English and French. It is somewhat
misleading to say that Simula and FORTRAN are languages: it would be
better to call them notational systems. Compared to ordinary human lan-
guages, programming languages are extremely simple in structure, and also
very much simpler to learn. The experience many of us have of difficulty in
learning foreign languages is therefore not valid when it comes to learning
programming languages. Second, it is important to recognize that our aim

4 LEARNING HOW TO CONSTRUCT PROGRAMS

is to teach the reader principles and methods that are of general use when
- constructing programs, and not just a notational system for writing programs.
As already stated, the aim is to teach programming, not just a programming
‘language. Simula contains a number of very powerful and generally useful con-
cepts which do not exist in most other programming languages and which are
of particular interest when it comes to learning generally applicable methods
of programining.

1.2 Syntax, semantics and pragmatics

When studying a language, be it one of the ordinary human languages like En-
glish, Latin or Esperanto, or a programming language like Simula or COBOL,
it can be advantageous - and is in fact quite common - to split the study into
three parts: syntax, scmantics and pragmatics. These parts are, however,
closely related, and it is advisable to study them simultaneously.

1.2.1 Syntax

The syntax of a language consists of rules for correct use of the language.
When studying syntax, cne learns how to use the language without making
grammatical errors. In ordinary human languages (such languages are of-
ten called natural languages in order to distinguish them from the artificial
programming languages), there are rules for inflection, declension and conju-
gation, for correct spelling, for hyphenation, for constructing new words, and
for much more. The rules are usually rather complex, with many special cases
and exceptions. ‘

The syntactical rules of any programming language are very much simpler
than the syntactical rules of any natural language: there are fewer and simpler
rules, and these rules are almost without exceptions. But the syntactical rules
of a programming language must be adhered to much more strictly than we
have to adhere to the syntactical rules of a natural language. If we deviate
somewhat from the syntactical rules when we use a natural language like
English, people will usually understand us, at least if the deviations are not
too gross and misleading. But even the slightest syntactical mistake made
when using a programming language will normally entail that the program
awill not be accepted for execution. Instead, the computer that should execute
the program will produce a message saying that there are syntax errors in the
program.

Most students of a programming language struggle a little with the syntax,
especially in the beginning. -But after a while, they find the syntax easy to
learn. One reason for this is that they get help from the compiler. This is
a program that translates from the programming language to the internal
language of the computer (which consists only of 0s and 1s, and is quite
unreadable for humans). The compiler — which is a very large program -

SYNTAX, SEMANTICS AND PRAGMATICS 5

has already been constructed (by specialists), and is ready for use by Simula
programmers. You do not have to construct it. It starts by checking that .
the program to be translated is without syntactical errors. If the program
is without any errors, it is translated and executed. If, however, errors are
found, the compiler does not proceed with the translation. Instead, it writes
messages that describe the errors. This means that any syntactical errors are
caught quite soon after they have been committed, and that the programmer
. gets almost immediate notification of his or her errors.

1.2.2 Semantics

The semantics of a language is concerned with the meaning of syntactically
correct constructs of the language. The semantics of a natural language is
learned partly by reading and hearing definitions and explanations, partly
by experience (sometimes frustrating or even painful). The semantics of a
programming language describes what effects programs in the language have
when they are executed by a computer. It is normally learned in a fashion
similar to that in which the semantics of an ordinary language is learned:
some is learned by reading and hearing descriptions which explain what will
happen when programs in the language are executed by a computer, and some
by seeing what happens when programs are executed.

Most parts of a programming language have rather simple semantics, not
very difficult to learn. But most programming languages have parts with more
intricate semantics, not easily understood at first or even second glance. It
is advisable for a beginner to avoid such intricacies, and stay with the more
easily grasped parts of the language. When these parts are mastered, it is
time to proceed to the more complex parts of the language.

1.2.3 Pragmatics

The pragmatics of a language contains rules for proper and good use of the
language. This is the part of a programming language that is most difficult
to learn, and also the part that this book particularly stresses.

A good program is almost always constructed in order to solve a given
problem, and not, for instance, written in order to show.off the programmer’s
mastery of the more subtle intricacies of programming. The most important
demand to be satisfied by a program is therefore that it works correctly and
solves the problem it was constructed to solve. Rules and methods that may
ald a programmer in his or her construction of a program which solves a
given problem are also considered part of the pragmatics of the programming
language. The importance of such rules and methods graows strongly with
the size and complexity of the problems to be solved and the programs to be
- constructed. A problem when writing a book like this is that the. impartance
of some of these rules and methods only becomes apparent for problems with

6 LEARNING HOW TO CONSTRUCT PROGRAMS

a size and complexity beyond what may be presented as one of many examples
in a book. Using some of these methods on small problems may sometimes
be similar to using cannons to shoot sparrows.

1t is furthermore important to realize that the work on most programs that
are used in serious applications — and not just constructed as part of a course
in programming — almost never terminates: new wishes and demands for the
programs usually turn up all the time. It is also a very common experience to
discover errors in programs as they are being used. This means that programs
frequently must be changed. It is therefore very important to. construct the
programs in such a way that they are easy to change. By taking a little care
in the original construction of a program, later amendments and corrections
may often be done without excessive effort.

1.3 Programs may have side effects

Many programs that are constructed to solve some given problem may have
side cifects when being used. For example, the intended main effect of
using a computer with a suitable program to control an industrial process
in a factory may be to achieve a more rational and economic production.
One side effect may be to reduce the number of employees in the factory (and
hence possibly to increase unemployment in the surrounding society); another
to dramatically change the character of the work for the remaining workers.
Another example is the use of a computer with a suitable program to train
children in correct spelling of English words, which may reduce the number
of spelling errors committed by the children and possibly also the number
of teachers (and hence the size of the school budget), but will in addition
certainly affect the more human and social aspects of the education. As a
final example, to hand over the control of a weapon or a weapon system (for
instance, a rocket) to a computer may increase the speed with which the
weapon may be used in a crisis, but will also influence the chances that the
weapon is used accidentally owing to errors in the computer or the program
or the input to the computer. '

It is frequently the case that the various side effects of a program may
be of greater importance than the planned main effects. Such side effects are
not always good and desired, at least not for all those who are exposed to
them. A programmer should not close his or her eyes to the possibility of
undesired side effects, but should as much as possible try to foresee them.
Like everybody in a society, a programmer is responsible for his or her actions)
and also for the effects these actions may have on other people or on nature.

Many countries have laws and agreements that set limits for how pro-
grams may be constructed and used. For example, in some countries, the
employees of enterprises have the right to influence — even participate in — the
development of programs which may affect their working conditions. Another
example: there may be laws that limit the kind of information that may be

