Japanese
Perspectives

in
Software
Engineering

Edited by

Yoshihiro Matsumoto

Yutaka Okno

Japanese
Persppctives

in
Software
Engineering

Edited by

Yoshihiro Matsumoto
Kyoto University

Yutaka Ohno

Advanced Software Technology and Mechatronics
Research, Institute of Kyoto

B —

ADDISON-WESLEY PUBLISHING COMPANY

Singapore e Wokingham, England ¢ Reading, Massachusetts
Menlo Park, California « New York ¢ Don Mills, Ontario
Amsterdam e Sydney e Bgnn e Tokyo ¢ Madrid ¢ San Juan

© JForeword

Software engineering, as a distinct subject of research, study, and
"application, is 20 years old this year. After a sometifes tumultuous
.infancy, it is coming of age in a number of different ways throughout the
world. This excellent collection of articles 1llustrates/that point well and,
in the process, emphasizes the hlghly mterdepéndent international
character of modem science and engineering.

What you will find here is a set of articles (hat appear to represent a
solid ‘cross-section of current work in sof(ware engineering at that
interesting point of intellectual developmenf when ideas emerge from the

» labomtory and start to find their way mx’o the daily work of industrial
- ns. Some articles describe ‘prototype’ explorations of new
soﬁ‘wm%velopmcnt technologies; ‘others outline the usage of the
current $tock of operational development technologies in Japanese
organizations; ‘and others sketch possible future paths of Japanese
research and development on,” as well as application of, software
- technology. All are written from a Japanese perspective, and all provided
me with a view in one way oranother of what is going on in Japan today.
I should note that it is not my place to ‘certify’ the views put forth
here, nor could I even if that were asked of me. I do know, through a
number of years of interaction with Japanese researchers and industrial
practitioners in various ways, that the perspectives given here (both
explicitly and implicitly) are very consistent with what I and others have
independently observed.
I will, however, venture a personal viewpoint. The articles here
documen:zvz(has been obvious from individual papers and visits for a

number of years; namely, that the Japanese have studied carefully the

software goncepts and industrial practices of the West, choosing and

adapting those that are most relevant to their needs, then integrating

them into coherent systems for software production. (I would hasten to

note that some of those early ideas were, in fact, developed in Japan
d/or by Japanese researchers as well.)

, What is new, and what constitutes one of the forms of maturation I
mentioned above, is that today in the realm of utilization of the best of

vi Foreword

current software development technology and the creation of the next
level of capability the Japanese are equal players on the international
stage. Several of the articles here reflect an understanding of the issues
and a pragmatic aporoach to pushing the frontiers of software technology
forward that is equal to or more advanced than that of any in the world.
As these perspectives illustrate, we can expect the Japanese to contribute
their share of the good ideas and demonstrations of pragmatic capability
for the next generation of software technology.

Science and engineering have long held to an ‘internationalist’ view
that ideas and data recognized no political boundaries (at least under
normal circumstances). Indeed, one measure of a new discipline is
sometimes held to be the extent to which it is internationally pursued.
While software engineering was certainly international in its birth, much
of the intellectual development of the field has resulted from a relatively
small number of people in the United States and Western Europe who
mostly knew each other and communicated in person. e

The papers here, bet.er than any single collection that I have seen,
illustrate that software engineering has started to mature along the lines
of traditional scientific work. Ideas published elsewhere have been
picked up, applied, refined, extended and built on by the Japanese
(largely in an ‘arm’s length’ mode). This has resulted in a viable research
and development community in Japan that is now producing its own new
ideas and publishing them for the rest of the world. This is as it should be.

As with any collection of work by a variety of authors, you will not
get a completely uniform view, a consistent level of focus or the answer to
all your problems (be they pragmatic or research questions). The editors
do not intend this, and it is another aspect of the maturation of software
engineering that most people today understand that such simplistic
viewpoints are out of place. Instead, we understand that the development
of software is a complex, intellectual task to which a variety of ideas,
experiences and data apply. I recommend this collection to you and hope
that you enjoy it and learn as much from it as I did.

Peter Freeman
IImdcnnsts -
< eversity of California, Irvine

Preface

The total domestic demand for software by the Japanese public and
industries in the future is predicted to rise 6% every year in monetary
value. A lot of scientific and technical research has been conducted to
increase the capability for producing reliable commercial software in
order to catch up with these needs.

The first article, by Yutaka Ohno, addresses many of the basic
problems related to the aforementioned requirement and summarizes
many efforts both in academic and industrial Japanese organizations.

Part | organizes various new research accomplishments and prac-
tices which deal with requirements specification. The software develop-
ment life cycle model is changing. Some of the new paradigms such as
operational specification, prototyping, program transformation and
automatic program generation are discussed.

Part 2 is a mixture of industrial practice and academic efforts.
Computer-assisted software design, testing and quality assurance are
discussed first and then some of the topics of the future, Al application
and algebraic specification, are discussed in the second half.

Part 3 addresses practical problems, especially $bftware engineering
environments and management of software production. Several large
Japanese software industries apply a software production system called
the software factory. Discussions of the software factory are included.

The discussions of these themes will contribute in helping readers of
this book to understand:

¢ the current interests of Japanese universities and industries in:the
pursuit of the problems addressed at the beginning of this Preface;

o the latest accomplishments of the research and development
activities in Japan related to software engineering; and

e the real management practices applied in Japanese industries.

vii

‘ @@m@ms |

Foreword

Preface

Peter Freeman

e

Background and Current View of Software Engineering -
Yutaka Ohno

Part 1: Specification K

A

Requirements Specification in a New Software
Development Paradigm
Yoshihiro Matsumoto

Natural Language Interface for Requirements Specification
Naoki Yonezaki

Parametrized Programming and its Application to Rapid
Prototyping in OBJ2 '

Kokichi Futatsugi, Joseph Goguen, Jose Mesaguer and Koji
Okada

Requirements Specification and Program Generation
Kiyoshi Agusa ' .

Part 2: Dési‘gn and Development

6

Computer Assistance in Software Design
M. Matsumoto and O. Shigo

Functional Testing and Structural Testing
T. Chusho

Software Quality Assurance Activities in Japan
K. Yasuda

vii

21

4]

77

103

119

155

187

X

x Contents

9 Applying the Knowledge Engineering Approach to Software

Development

T. Tamai 207
10 Algebraic Language ASL/! and its Semantics

Y. Sugivama 229

Part 3: Management

11 The Software Engineering Environment

Nobuo Saito 257
12 Management of Software Production

Shuetsu Hanata 279
13 An Overview of Japanese Software Factories

Yoshihiro Matsumoto 303
Index 321°

Trademark notice

ACE, MOOG and VFPL Verifier are systems developed by Mitsubishi
Electric Corp.

CHILL is a language developed by CCITT.

C-NAP, HYPERCOBOL, KIPS and SDEM are systems developed by
Fujitsu.

DEC 20™ and VAX™ are trademarks of Digital Equipment Corp.

ESTELLE is a language developed by ISO.

Eagle, HIPACE, ICAS and PPDS are systems developed by Hitachi.

Ethernet™ is a trademark of Xerox Corp.

Facet and SMEF are systems developed by JSD Corp.

ISMOS, NUPS, SEA/I and STEPS are systems developed by NEC.

IMAP, MYSTER and TUPPS are systems developed by Toshiba.

IPT™, VM/CP™ and YES/MVS™ are trademarks of International Business
Machines Corp.

MacLisp is a system developed under the MAC project at MIT.

NINA is a system developed by OKI Electric Industry Co.

PAPS is a system developed by IPA.

Smalltalk-80™ is a trademark of Parc Systems Corp.

UNIX™ is a trademark of AT&T.

ZetaLisp™ is a trademark of Symbolics Corp.

1

Background and Current
View of Software
Engineering

Yutaka Ohno*

Abstract

The principal software engineering challenge, achieving higher
development productivity and quality, is discussed in connec-
tion with the recent trends in the information technology field.
The history and characteristics of software engineering are
surveyed, showing past, currently effective and essential results
of research.

Developments in software engineering are discussed, in-
cluding the software life cycle model, software paradigms, use of
knowledge engineering and natural language, automatic genera-
tion, software management and development environments.
Finally, the kernel mechanism is proposed as a software develop-
ment environment.

*Emeritus Professor, Kyoto University, and President, ASTEM Research Institute of
Kyoto, Japan

~

2 Japanese Perspectives in Software Engineering

1.1 The probiem of software [1-3]

Computer hardware technology achieves remarkable progress year after
year, and the cost : performance ratio of computer hardware has been
improved tremendously, which promotes the use of computers in many
ways within the fields of industry, the economy, administration and
science. The infrastructure of the so-called information-intensive society
is evolving gradually. To support this trend, it is the responsibility of
software to deal thoroughly with various jobs or functions in every field
or department. A more abrupt increase in demand for software is
expected in /the future. Furthermore, the demand for software which
contributes to the information-intensive society will increase not only in
quantity but in quality. As all sorts of information systems and control
systems grdw in size and complexity, and are distributed and networked,
a higher degree of reliability is sought for software. Moreover, to obtain a
more humanized system, we may expect higher intelligence from
software. To provide a more friendly and cooperative system, greater
sophistieation for the man-machine interface is desired. A qualitative
metamorphosis of software is necessary to meet these requirements

(Table/1.1). o

$ Zé fultilling these requirements, software costs have come to
account for more-than 80% of the total costs of information systems, and
the gap between the demand and supply of software has become wider
and wider. Tabie 1.1 illustrates this situation with respect to the growth
of the infermation-processing industry. In this table, we observe that the
‘growth of ‘programmer productivity is lower than the growth of the
information-processing industry and the performance of computer
hardware, and hence an urgent countermeasure is required. The Ministry
of International Trade and Industry of Japan has recently estimated that
the shortage of programmers may be. 970 000 in AD 2000 if we do not
take any countermeasures. In conclusion, the present problem of
software is how to develop efficiently a software product with high
quality and reliability. '

Some people may recall, by analogy, a technique for manufacturing
material products. Modern technology brought the manufacture of
various types of products with high quality and high productivity into
practice with factory automation rather than with human skill. The

Table 1.1 Recent trends of information technology fields

Information technc ogy fields Growth magnification per 10 years
Industry 4
Machine performance 10?
i Programmer productivity 24
System reliability 5

1: Background and Current View of Software Engineering 3
quality and quantity of products are guaranteed by this automation. It is
possible for people to develop their own personal software in their own
way without taking others’ use into consideration. However. most
software circulates to a certain extent, and also the development and
maintenance of it involves many people. This suggests that software is
also a kind of product like a material product. Therefore we should assure
" the quality and quantity of software products by automatic manufactur-

ing (development).

However, software is distinct from a material product because it is a
ware that expresses human ideas and has no physical properties. This
distinction gives rise to a fundamental way of manufacturing $oftware,
and hence an analogy with the manufacture of material products is not
appropriate. Although we may learn and acquire useful knowledge for

- manufacturing software from traditional engineering as used for the
manufacture of material products, we need a new engineering based on

. the concepts and theories which reflect the characteristics of software.
For this reason software engineering is expected to be a new discipline.
We look forward to developing the framework of software engineering
which is different from traditional engineering.

1.2 History and goal of software engineering [4-6]
1.2.1 Beginning of software engineering

The need for systematic approaches to the development and mainten-
ance of software has been recognized since the 1960s. During that
decade, third-generation computer hardware was developed and influen-
tial concepts of software such as multiprogramming and time sharing
were proposed. Many software systems were implemented on the basis of
these concepts. These capabilities provided the technology for the
metamorphosis of batch processing, with the arrival of intéractive, on-
line, real-time, multiuser concurrent processing. New applications of
" computers based on this technology include the command and control-of
navigational guidance systems, airline reservations, process control and
scientific-engineering time sharing. However, some of the orginal
attemnpts 10 use these software techniques were never fully realized.
Among the systems delivered, there were many examples of cost
overruns, inefficiency, lack of reliability, time delay in development and
many other problems, and these became a subject of discussion. It had
already become apparent that the development of software technology
could not keep pace with system development, and this has become a
serious problem. ' ' .

" A workshop was held in West Germany in 1968, and another was

held in Italy in 1969. The term ‘software engineering’ was proposed in

RS

4 Japanese Perspectives in Software Engineering

those workshops. The technical and managerial aspects of the develop-
ment and maintenance of software became the subject of a discussion
with a wide scope. - :

Since 1968, with the advance of technology and application of
computers, research and development in software engineering has been

Stimulated. The definition and goal of software engineering have gradu-
ally become clear and precise.

Software engineering has been defined in many ways. However,
these definitions share several common points. The object of software
engineering is the development and maintenance of larger software
systems than the software produced by one person. The development of
those software systems applies several engineering disciplines common
to any sort of engineering. Moreover, software engineering deals with not
only téchnical but also managerial issues.

The term ‘software’ has become common knowledge and is used
even in daily conversation. However, this does not necessarily imply that
‘software engineering’ is used correctly. Software is not simply a
computer programn related to-an application-or a product, but it also
contains all documents necessary for the installation, operation, develop-
ment and maintenance of the program. In a large-scale system, to
document is as laborious as to develop the program itself.

1.2.2 Goals and characteristics of software engineering

The primary goal of software engineering is to improve the quality of
software products, including reliability, and to raise the productivity of
software engineers. In addition, software engineering deals with social
problems originating in software technology. It is based on computer
science, communication techniques, systems engineering, management
science, linguistics, an engineering approach to problem solving and
cognitive science. Concepts and methodologies from these sciences are
incorporated into software engineering within the engineering frame-
work, but software engineering is a new technological discipline distinct
from the other sciences, and its contents range from the theoretical
treatment of ideas and concepts to pragmatic approaches. '
There are significant differences between software engineering and
traditional engineering. The fundamental causes of these differences are
the fact that indispensable physical or chemical laws are unnecessary for
software itself and the lack of visibility in the interfaces between software
modules. Software has no mass, no volume, no colour, no odour.
Software does not degrade with time as hardware does. Only design and
implementation errors cause software failures, and degradation does not.
Because a program runs on computer hardware, the disciplines used to
guide software development and maintenance are constrained by the

1: Buckground and Current View of Software Engineering $

computer architecture. However, because a program is an expression of
human concepts, these disciplines are founded on the principles of
intelligent human activity. The principles of intelligent human activity in
software are not as strict as Newton’s law or Maxwell’s equations. Logic
is the only strict principle among them. However, logic is insufficient for
the above-mentioned disciplines to guide software development and
maintenance.

Until now, software engineers have investigated the ¢haracteristics
of software and have then attempted to formulate pringiples to guide
software development and maintenance. Unlike traditional engineering
based on the scientific laws of nature, software engineering looks for
principles of software based on laws of intelligent human activity. It also
looks for the principles which connect these laws with computer
architecture. These principles, if set up, will make sutomatic software
manufacture as realizable as that of material products. This is the goal of
software engineering.

1.2.3 Past results of software engineering [5,8]

18 years have passed since the beginning of software engineeying. All
software produced inevitably runs on a von Neumann computer,
involving a procedure in which a machine executes primitive operations
sequentially. A lot of research and development is applied to thjs sort of
software. A number of notable concepts, which are still useful as the
foundation for developing and maintaining current software, werp
established:

e Software life cycle: _
rcquirements analysis, design, implementation, testing and main-
tanance.

o Software quality:
rzliability, understandability, portability, maintainability, restabi-
ity and usabiity, and so on.

e Structured programming:
every procedural program can be written with three constructs - -
sequence, selection and iteration.

. Software structure:
hierarchy, moduiarization, abstraction and information hiding.

¢ Concurrency: '
prevention of deadlock, mutual exclusion and synchronization.

s Verification:
logical verification, abstract execution of specifications and proto-
typing. :

6 Japanese Petspectives in Software Engineering

e Visualizatien:
software representation by diagrams, charts and drawings.

s Software development environment:
documentation, development assistance, tools for automation and
an integrated environment.

With the foregoing fundamental concepts, software engineering has
developed the techniques for requiréments definition, design automa-
tion, testing and quality assurance. Each topic is discussed in detail in
other articles and hence this article does not elaborase on them,

In every field of engineering, a product should always be evaluated
with quantitative measures. These measures are not always purely
technical or scientific. Manufactured engineering products should be
evaluated not enly with technical or scientific measures but also with
measures based on user friendliness or aesthetics. This applies perfectly
to software. Well-structured software may be ranked highly with the
latter measure as well.

Researches in software engineering have yielded significant results
for procedural software. They have improved remarkably the quality and
productivity of software. However, they have never caught up with the
increased demand for software. An innovational concept or idea is
necessary to advance software engineering substantlally Expected direc-
tions of the evolution of software engineering under progress are
described in the following.

1.3 Vision of forthcoming soﬂware engineering [3,4]

Our goal is to improve the quality and producnvny of software. Because
software manufacture is an inherently labour-intensive activity, this
improvement depends on the capability of software engineers and the
development management. Both of them have limitations. To improve
the quality and productivity beyond human capabnhty, we must realize
automatic manufacture of software in the same way as in the production
of material goods. If we follow the same track of previous software
engineering, it will be difficult to achieve our goal. Therefore we must
review, as a start, what is intrinsic in software development.

1.3.1 Towards a new model of the software life cycle

In the same way as material products, software has its life cycle, which is
the foundation of software engineering. The software life cycle is
modelled in several ways. Several new models take into consideration the

I: Background and Current View of Software Engineering 17

- fact that software demonstrates dynamic evolution as its characteristics’
- . are created. . _ '

 Waterfall model

This is an ideal model proposed in the early days of software engineering,
each phase of which requires well-defined input information, goes
" through well-defined processes, and sesults in well-defined produicts. The
products become the input information of the succeeding phase. If each
"phase is completed successfully, software development proceeds without
* regression. However, this ideal model is difficult to realize in the real
world. '

Cost model

This modified model reflects the fact that each phase may modify or
correct the products of the previous phase, and the cost of each phase
takes this modification and correction into account.

Prototyping model

During software development, many decisions are made. In the phase of
requirements analysis in particular, as customer’s needs are often
ambiguous, a simple demonstrative prototype illustrating the functions
of the proposed product is helpful to the customer to check whether the
needs are fulfilled or not. The manufacture of a material product often
utilizes these prototypes. As several techniques for easy prototyping have
been developed recently for software, the use of prototypes is becoming
popular. Another reason for implementing a prototype is to explore
technical issues in developing the proposed product. Sometimes, espe-
cially in the human-machine interface, it is impossible to define the
product without prototyping. '

Successive version model [7)

" Product development by the method of successive versions is an
extension of prototyping. Many software products including operating
systems are developed with this approach. There is also a spiral model
essentially similar to this model. In reality, software is evaluated during
its operation, and the evaluation is employed later in the development of
the successive products step by step. To improve productivity, we must
systematize and automate the prototyping and development of single

8 .Japanese Perspectives in Software Engineering

versions of software. We must also re-examine what the life cycle of
software is.

1.3.2 Software development process and it alitomation [8]

" The software development life cycle consists of phéses ranging from
requirements analysis to implementation, a¢ described previously. They
are partitioned into two processes which are fundamentally different
from each other. The first process is to analyse the native problems and to
seek the solutions in each application field. The other process is to
transform: the solution to a form which the computer can interpret and
execute. We call the former an upstream pfocess or an analysis process,
and the latter a downstream process or a transformation process.
Traditional software is procedural; that is, a sequehce of instructions is
executed by the computer. Both problem refinement and sequentializa-
tion proceed simultaneously in software development. Figure 1.1 illus-
trates this situation. Because the computer executing a program is
basically a von Neumann type of machine, a program is a sequential
procedure derived from the details of the problem, and it depends on the
processing mechanism of the computer. Even if a program is written with
a high level language, it is inseparable from the sequential procedure.
Thus, traditional software depends strongly on the processing mechan-
ism of the computer. Consequently, both the process to analyse and
refine the problem and the process to transform the solution into a
program depend on the processing mechanism as illustrated in
Figure 1.1.

The analysis process is the first half of software development. In this
process, we analyse a problem and seek the solution. Human characteris-
tics such as contemplation or presentation (communication) affect this
process significantly. We should think about the issue of whether
traditional, procedural programs suit human characteristics or not. The

Program

Lever of refinement

Problem

Level of sequentiality
Figure 1.1 Simultaneous problem refinement and sequentialization.

1: Background and Current View of Sofiware Engineering 9

Formal
ifcati
1 —— Program
Transformation
process
L=}
§ Analysis
process
Problem)
Level of sequentiality

Figure 1.2 Improved process of software development.

object of this process is a formal description of the solution to enhance
the downstream process, that is, program design and implementation.
This formal description should suit human thought characteristics. We
call this description a formal specification. A formal specification is a
sufficient description which provides enough information for the prob-
lem to be solved logically. In principle, it need not have any relationship
with the processing mechanism of the computer.

As mentioned above, to solve a problem it is necessary to model it.
The human processing mechanism of thought applies this model to
analyse a problem. The model is an abstract computation model of
human thought. Traditional software development has used a procedural
computation model based on computers. If a computation model
suitable for human thought exists, there is no need to use a computation
model of the machine.

Up to the present, several models for formal specifications have
been proposed. Some of them are data flow, finite state machine,
functional, algebraic, relational, object oriented, etc. Each model has its
own application areas suited to its representation capability.

~After the formal specification is formulated, there comes the
process of transforming it into a program implementation. This process
could be performed in a formalized field of logic. The automation of this
process may be realized with tools, if any, generalized or extended from a
compiler. If the first process uses a model inexecutable by computer, the
latter process must transform it into a computation model. As a summary
of the above discussion, Figure 1.2 illustrates the improved processes of
software development.

Among software manut‘actunng processes, the automatnon of the
transformation process is most feasible. In reality, a respectable part of -
this process has been automated. The initial process of acquiring a formal
specification definitely requires intelligent human activity, but a com-
puter can assist this human aétivity. In the future, most activities of

10 Japanese Perspectives in Sofiware Engineering

software engineers will converge into this process. Software development
will transform into a knowledge-intensive job from a labour-intensive
job.

1.3.3 Computation model and software paradigm (new-type
programming)

The computation model is a theoretical framework, and the computer is
supposed to compile, interpret, and execute it. As mentioned previously,
most of the traditional high level languages are based on a procedural
computation model. Because this model reflects the processing mechan-
ism of computer hardware, it does not satisfactorily reflect a characteris-
tic of human thought. Traditional software engineering has used techni-
ques based on procedural software languages, but these techniques have
their limits. To develop high quality software productively, something
beyond these technigues is necessary.

Current researches propose new computation models. These
modefs are not limited by any existing computer hardware. They are
abstract models of the essence of computation. On the basis of these
models, software languages and sofiware development methods now
reflect human characteristics more explicitly. New models such as the

- functional model, logical model and object-oriented model are proposed.
The theoretical foundation of these models provides the semantics of
software description and the basis of software development method-
ology. Moreover, integrated models or more advanced models are
currently under research.

- The methodology for software: description and production on the
basis of those new models is called the software paradigm. It is also ealled
new-type programming with reference to procedural programming. The
-software paradigm plays an important role in research on future soft-
ware. The term ‘paradigm’ originally meant model, pattern or example.
In software engineering, it means models and approaches to solving
problems. A software paradigm contains the language of a class (func-
tional, logical or object oriented), a software development environment
supporting the language, and software engineering disciplines for creat-
ing a system in the environment, Human thought and presentation use
different models according to the attributes of the problem. Therefore we

‘ must integrate several paradigms into a multiparadigm and seek the most
suitable software reflecting human characteristies.

1.3.4 Knowledge engineering and software development

Research in artificial intelligence has a longer history than has software
engineering. As computer technology advances and fifth-generation
computers are investigated, research in artificial intelligence shifts its

