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PREFACE

The subject of this tract is the theory of the distribution of the
prime numbers in the series of natural numbers. A chapter on
the ‘elementary’ theory has been included for its historical
interest and for the intrinsic interest of the methods employed,
but the'major part of the book is devoted to the analytical
theory founded on the zeta-function of Riemann. The tract is
thus a companion to No. 26 of the series, ‘The zeta-function of
Riemann’ by Prof. E. C. Titchmarsh, published in 1930, but the
logical sequence of the two volumes is the reverse of the chrono-
logical order of publication. The part of the theory of the zeta-
function here required is what may be called the classical’
theory, and comprises roughly those properties summarised by
Prof. Titchmarsh in his Introduction. g‘ehis is expounded in
detail in the present volume, which is thus complete in itgelf
(apart from & few isolated references to Titchmarsh which do
not affect the understanding of the book as a whole); and the
relevant parts magl;erve a8 an introduction to the more profound
study of the zeta-function in the companion volume. The present
tract is not intended exclusively for specialists, for whom the
more comprehensive treatises of Landaun, ‘Handbuch der Lehre
von der Verteilung der Primzahlen and Vorlesungen iber Zahlen-
theorie, are already available; it aims rather at making the
subject accessible to a wider circle of readers.
This volume like its companion has its origin in the Bohr-
Littlewood manuscript referred to by Prof. Titchmarsh in his
reface. This manuscript forms the basis of the present version,
g’ut a complete revision was found desirable in order to bring
the work up-to-date and to take account of improvements of
technique introduced since the preparation of the original. In
the task of revision I derived much assistance from lecture notes
kindly placed at my disposal by Prof. Littlewood. My indebted-
ness to the two books of Landau already referred to will be too
obvious to readers of those works to need special emphasis here.
The proof-sheets have been read by Prof. H. Bohr and Prof, J. E.
Littlewood, the authors of the original manuscript, and also by
Prof. G. H. Hardy, Dr A. Zygmund, Mr R. h? Gabriel, and
Mr C. H. O’D. Alexander, to these my thanks are due for a
number of corrections and improvements. To Prof. N. Wiener
I am indebted for some valuable comments on the concluding
sections ‘of Chapter II. AEIL
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THE DISTRIBUTION OF
PRIME NUMBERS

INTRODUCTION

1. The positive integers other than 1 may be divided into two
classes, prime numbers (sucll as 2, 8, 5, 7) which do not admit of
+ resolution into smaller factors, and composite numbers (such as
4, 6, 8, 9) which do. The prime numbers derive their peculiar
importance from the ‘findamental theorem of arithmetic’ that
a composite number can be expressed in one and only one way
as a product of prime factors. A problem which presents itself
at the very threshold of mathematics is the question of the dis-
tribution of the primes among the integers. Although the series
of prime numbers exhibits great irregularities of detail, the
general distribution is found to possess certain features of regu-
larity which can be formulated in precise terms and made the
subject of mathematical investigation.

We shall denote by = (x) the number of primes not ex‘ceeding z;
our problem then resolves itself info a study of the function = (z).
If we examine a table of prime numbers, we observe at bnce that,
however extensive the table may be, the primes show no signs
of coming to an end altogether, though they do appear. to be-
come on the average more widely spaced in the higher parts of
the table. These observations suggest two theorems which may
be taken as the starting-point of our subject. Stated in terms
of 7 (2), these are the theorems that = () tends to mﬁmty, and
w (x)/x to zero, as x tends to infinity. '

2. The first theorem—that there exists an infinite number of
primes—was proved by Euclid (Elements, Book 9, Prop: 20).
In essentials his proof is as follows. Let P be a product of any
finite set of primes, and let @ = P -+ 1. The integers P and @
can have no prime factor in common, since such a factor would
divide @ — P = 1, which is impossible. But ¢ (being greater than
1) must be divisible by some prime. Hence there exists at least
one prime distinct from those occurring in P. If there were only
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2 - INTRODUCTION

a finite number of primes altogether, we could take P to be the
product of all primes, and a contradiction would result. The
argument really gives a little more. It shows thas, if p, is the
nth prime (so that p,=2, p3=3, Py=5, ...), the integer
Q= Py Pg+- P + 1 i divisible by some p,, with m > n, so that
Prir < Pm < @,; from which we may infer, by induction, that

w o, L Pa< 2P,

3. In 1737 Euler proved the existence of an infinity of primes
by a new method, which shows moreover that

(2) ' the series § 1 is divergent.

' e n=1Pn
Euler’s work is based on the idea of using an identity in which
the primes appear on one side but not on the other. Stated
formally his identity is S

) Zat=H0+pe+p2+.)=M1MQ1~-p"7

n=1 » ?

where the products are over all primes p. Euler’s contribution
to the subject is of fundamental importance; for his identity,
which may be regarded as an analytical quivalent of the funda-
mental theorem of arithmetic, forms the basis of nearly all sub-
sequent work. - . . .. T

The theorems (1) and (2) resemble one another in that they
each add something (though in different ways) to. the statement
that the number of primes is infinite. . .. .

4. The question of the diminishing frequency of primes was
the subject of much speculation before any definite results
-emerged. The problem assumed a much more precise form with
the publication by Legendre in 1808 (after a less definite state-
.ment in 1798) of a remarkable empirical formula for the approxi-
mate representation of = (x). Legendre asserted: that, for large
values of , 7 () is approximately equal to .

x
(4) ' logz— B’ ‘

where logz is the natural (Napieﬁt;,ﬁ) logarithm of z and B a

]



INTRODUCTION ' 3

certain numerical constant’—a theorem described by Abel (in a
letter written in 1823) as the ‘most remarkable in the whole of
matliematics’. - A similar, though not identical, formula was
proposed independently by Gauss. Gauss’s method, whiech con-
sisted in counting the primee in blocks of a thousand consecutive
integers, suggested the function 1/logz as an approximation to
the average density of distribution (‘number of primgs per unit
.interval’) in the neighbourhood of a large number z, and thus ‘
z du
(8) ), iog 5
88 an appronma,tmn to 7 (x). Gauss’s observations were com-
municated to Encke in 1849, and first published in 1863; but
they appear to have commenced as early as 1791 when Gauss
was fourteen years old.* In the interval the relevance of the
function (5) was recognised independently by other writers.? For
convenience of notation it is usual to replace this function by
the ‘logarithmie integral’ . = :
. . -9 = du
hx_nl-lgfo 0 * ,[1+,,)logu
+from which it differs only by the constant1i 2= 1-04....
The precise degree of approximation claimed by Gauss and
- Legendre for their empirical formulae outside the range of the
tables used in their construction is not made very explicit by
either author, but we may take it that they intended to imply
at any rate the ‘asymptotic equiva.lenee’ of = (z) and the ap-
proximating function f(z), that is to say that @ (z)/f (x) tends
to the limit 1 as = tends to infinity. The two theorems which thus
arise, corresponding to the two forms of f(x); are easily shown
to be equivalent to one another and to the simpler relation

(6) # —>1 as z—>o00;
"logx
but the distinction between (4) and (5), and the value of Bin (4),
1 Legendre 1a, 19; 1b, 394; 2, ii, 65. The referenoea in heavy type are to the
bibliography at the end of the tract.

3 Gauss 1, ii, 444-447; x,, 11.
* Dirichlet, Werke, i, 372, footnote **; Chebyshev 1, 2; Hargreave 1, 2.
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4 INTRODUCTION

become important if we enquire more closely into the order of
magnitude of the ‘error’ w (z) — f (¥). The proposition (6), which
is now known as the ‘prime number theorem’, is the central
theorem in the theory of the distribution of primes. The problem

of deciding its truth or falsehood engaged the attention of
mathematicians for about a hundred years.

5.. The first theoretical results connecting = (x) with zflogz
are due to Chebyshev. In 1848 he showed (among other things)
that, if the ratio on the left of (8) tends to a limit at all, the limit
must be 1; and in 1850 that this ratio lies between two positive
constants @ and A for all sufficiently large values of «, so that
the function z/logz does at any rate represent the true order
of magnitude of = (z). These results constituted an advance of
the first importance, but (as Chebyshev himself was well aware)
thoy failed to establish the essential point, namely the existence
of lim 7 (x)/(x/log z). And, although the numerical bounds (a, 4)
obtained by Chebyshev were successively narrowed by later
writers (particularly Sylvester), it came to be recognised in due
course that the methods employed by these authors were not
likely to lead to a final solution of the problem.

6. The new ideas which were to supply the key to the solution
were introduced by Riemann in 1859, in a memoir which has
become famous, not only for ite bearing on the theory of primes,
but also for its influence on the development of the general
theory of functions. Euler’s identity had been used by Euler
himself with a fixed value of 8 (= 1), and by Chebyshev with
& as a real variable. Riemann now introduced the idea of treating
s as a complex variable and studying the series on the left of (3)
by the methods of the theory of analytic functions. This series
converges only in a restricted portion of the plane of the complex
variable s, but defines by continuation a single-valued analytic
function regular at all finite points except for a simple pole at
s= 1. This function is called the ‘zeta-function of Riemann’,
after the notation £ (s) adopted by its author. ‘

Although Riemann is not primarily concerned with approxima-
tions to = (x), his analysis shows clearly that this function is
intimately bound up with the properties of {(s), and in par-



INTRODUCTION b

ticular with the distribution of its zeros in the s-plane. Riemann
enunciated a number of important theorems concerning the zeta-
funetion, together with & remarkable identity connecting = (x)
with its zeros, but he gave in most cases only insufficient indica~
tions of proofs. The problems raised by Riemann’s memoir in-
spired in due course the fundamental researches of Hadamard
in the theory of integral functions, the results of which at last
removed some of the obstacles which for more than t}nrﬁy years
had barred the way to rigorous proofs of Riemann’s theorems.
The proofs sketched by Riemann were completed (in essentials),

in part by Hadamard himself in 1893, and in part by von
Mangoldt in 1894.

7. The discoveries of Hadamard prepared the way for rapid
advances in the theory of the distribution of primes. The prime
number theorem was proved in 1896 by Hadamard himeelf and
by dela Vallée Poussin, independently and almost simultaneously.
Of the two proofs Hadamard’s is the simpler, but de la Vallée
Poussin (in another paper published in 1899) studied in great
detail the question of closeness of approximation. His results
prove conclusively (what had been foreshadowed by Chebyshev)
that, for all sufficiently large values of z, = () is represented
more accura.tely by liz than by the function (4) (no matter
what value is assigned to the constant B), and that the most
fayourable value of B in (4)-s 1. This conflicte with Legendre’s
original suggestion 1-08366 for B, but this value (based on tables
extending only as far as z = 400000) had long been recognised
as having little more than historical interest. _

The theory can now be presented in a greatly sxmphﬁed form,
and de la Vallée Poussin’s theorems can (if desired) be proved
without recourse to the theory of integral functions. This is due
almost entirely to the work of Landau. The results themselves
underwent no substantial change until 1921, when they were
improved by Littlewood; but Littlewood’s refirements lie- much
deeper and the proofs involve very elaborate analysis.

8. The solution just.outlined may be held to be unsatisfactory
in that it introduces ideas very remote from the original problem,
and it is natural to ask for a proof of the prime number theorem
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not depending on the theory of functions of a complex variable.
To this we must reply that at present no such proof is known.
We can indeed go further and say that it seems unlikely that a
genuinely ‘real variable’ proof will be discovered, at any rate so
long as the theory is founded on Euler’s identity. For every
known proof of the prime number th¥orem is based on a certain
property of the complex zeros of {{s), and this conversely is
a simple consequence of the prime number theorem itself. 1t
seems clear therefore that this property must be used (explicitly
or implicitly) in any proof based on {(s), and it is not easy to
see how this is to be done if we take account only of real valuesof s.

9. There is one important respect in which the theory is still
very far from complete. Riemann conjectured (without any sug-
gestion of proof) that the-complex zeros of { (), which (as Rie-
mann proved) are confined to a certain infinite strip of the s-plane
and lie symmetrically about the ventral line of this strip, are all
gituated on this central line. But this assertion, the now famous
‘Riemann hypothesis’, has never been proved or disproved,
though the available evidence, both theoretical and numeriocal,
seems to point in its favour. The truth of the Riemann hypothesis
would entail considerable improvements of the theorems of
de 1a Vallée Poussin and Littlewood on the order of magnitude of
n (x) — liz, but the true order cannot be decided so long as the
truth of the hypothesis remains in doubt.

10. The relationship between = (x) and li z is illustrated by the
table on the opposite page (p. 7).! It will be noted at once that,
for each value of x shown, 7 (z) <liz. Until comparatively re-
cently this inequality was believed to hold generally, and there
were theoretical as well as numerical grounds for this belief; for
the relation between = () and ¢ (s) associates w (x) not directly
with liz, but with a more complicated expression of which the

1 The last four entries lie outside the range of existing tables of primes, which
stop a little beyond 10 000 000. But = (z) has beerrealoulated for these values of z
without actual enumeration of the primes; for an account of the method by which
this is done see G. B. Mathews, Theory of Numbers, Part 1 (Cambridge; Deighton,
Bell and Co.; 1892), 272-278. The values of li = are given to the nearest integer.
See J. Glaisher 1, 28-38; 8, 66-103; Lehmer 1, Xmr-xvi; Phragmén 2, 199-200
(footnote). -
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leading terms are liz — $lizt. It was proved, however, by Little-
wood (in 1914) that if we go far enough v we shall eventually reach

‘® -~ m(®). . - e a{z)/liz
1 000 168 . 178 0-94...
10 000 1229 1 246 0-98...
50 000 5133 5167 0-993...
100 000 9 592 9630- |. 0-998...
500 000 41 538 . 41 606 0-9983...
1 000 000 78 498 78 628 0-9983...
2 000 000 148 933 149 055 0-9991...
8 000 000 348 513 348 638 0-9998...
10 000 000 664 579 664918 |° 0-9994...
20 000000 1 270 807 1 270 905 0-9997...
90 000 000 5 216 954 5217810 | 0-99983...
100 000 000 5 761 456 5 762 209 0-99986...
1 000 0600 000 50 847 478 50849235 | 0-99996...

a value of z for which = (x)>liz, and that such values will
recur infinitely often. Littlewood’s theorem is a pure ‘existence
theorem’, and we still know no numerical value of « for which
7 (x) > liz. It is probable that the first such value lies far beyond
the range of the above table.

There is a similar phenomenon in connection with the dis-
tribution of the odd primes between the two arithmetical
progressions 4n + 1 and 4n + 8. If 0 (z) and 2 (z) denote re-
spectively the number of primes of these two forms which do
not exoeed z, then 7 (z)/n®(z) tends to the limit 1 as 2 tends
to infinity. (This theorem is of the same ‘depth’ as the prime
number theorem, and its proof depends on the theory of functions
of & complex variable.) Thus, to a first approximation, the odd
primes are evenly distributed between the two progremons.
But the tables show a definite preponderance of primes of the
form 4n 4 3, and until 1914 all the available evidence pointed
to the conclusion that (except for a short range at the be-
ginning) #®(z) < 2®(z).! But Littlewood’s method shows that
2®(2) > #®(x) for arbitrarily large values of z, though again it
provides no numerical solution of this inequality.

1 J. W. L. Glaisher 1. An earlier table by Scherk (Jowrnal fitr MatA., 10 (1838),
208) is very inacourate.
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11. The present tract is devoted to a systematic study of the
asymptotie relations for = () discussed in outline in'the foregoing
sections. The theory of the Riemann zeta-function will be de-
veloped only so far as it is required for applications to = ().
The more advanced theory of {(s) forms the subject of a com-
panion volume by E. C. Titchmarsh.}

There are many questlons relating to the distribution of primes which
we are unable to discuss in this tract, either through lack of space or
because the problems are as yet unsolved. To the former category be-
longs the general theory of the distribution of the primes among the
various arithmetical progressions of given difference k, & theory asso-
ciated principally with the names of Dirichlet and de la Vallée Poussin.?
To the second ca.tegory belong nearly all questions relating to the finer
structure of the series of primes. The prime number theorem shows that
the average interval p,,, —p, between (la.rge) consecutive primesis about
log p,,, but there may be wide deviations in either direction from this
average. There are strong indications on the one hand that the interval
reduces infinitely often to the value 2, so that there exists an infinity
of pairs of primes differing only by 2 (such as 17, 19 or 10 006 427,
10 006 429); but this has not been proved. The opposite problem, that
of abnormally large values of p, ; —p,, is: also unsolved, and.such
indications as do exist are of a negative charaocter. Thus, on the Riemann
hypothesis, we infer easily from the results of this tract that, if 9 is any

fixed number greater than %, the interval is never as large as p’ except

possibly in a finite number of instances, and it has been conJectured that .
the stronger assertion with 9 =}isalso true; but themost thathas actually
been proved i is the correspondmg statement with 9> 1— ( 33000)“1 3.

1 T in the blbhography at the end of this tract.

* For an account of this theory (and for a full treatment of the subject as a
whole) we refer to the two well-known books of Landau {H and V m the biblio-
graphy).

3 Yor the last result see Hohemel 1. For an account of the delicate problems
just referred to, and of related problems, see V; BC, 805-810, and the references
there given; Hardy and Littlewood, 4, 5; Hardy and Littlewood, Proc. London
Math. Soc. (2), 28 (1928), 518 (footnote); Schuirelmann 1; Landau 19.

!



CHAPTER1I
ELEMEE@!ARY THEOREMS

1. In this chapter we confine ourselves to theorems which can
be proved without the use of the theory of functions of a complex
variable. The main results are superseded by those of later
chapters, but the elementary arguments are of great interest on
account of their simplicity and directness.

We denote primes generally by p, and the nth prime by p,.
We denote by # () the number of primes not exceeding », where
z is a positive number (not necessarily integral). We sha,ll use

the notations
2 f(n) 2 f(P), Hf(p), etc.

(with various mod.lﬁca.tlons and extensions which will be ex-
plained by the context) to indicate sums or products over all
positive integers », or all primes p, within the speclﬁed ranges; .
in the third example, where no range is indicated, it is under-
stood that all primes are included. The order of the terms or
factors (when relevant) is that which corresponds to increasing
n or p. We adopt the general convention that an ‘empty’ sum
(i.e. a sum containing no terms) is to have the value 0, and an
‘empty’ product the value 1. As-examples we have (for z> 0)

[z]= =1, w(@)=31, [z]!=1n,
n<r sz nLe

where [u] denotes (for any real u) the ‘integral part’ of u (i.e.
the integer m defined by m < u < m + 1). We sometimes write

2 for[il

n=1 n=1
We use the symbols 0, o, and ~ (the sign of asymptotlc
equality’) in the senses which are now classical. Thus

f@)=0(), f@@)=o(), [flx)~=, :
(as 2->00) mean respectively ‘|f(x)|/x is less than a constant
K (i.e. a number mdependent of z) for all suﬂiclently large z’,
‘f(z)/x->0 as z—o0’, and ‘f(z)/zr->1 as x—>00’.
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The notations m | n and m { n mean ‘m divides »’ and ‘m does
not divide »’ respectively.

2. Theorem 1. The series and product
-1
2, n(i-2
»D

p
are divergent. ?
Write
1 1
S@= % o, P@=1 (1—— (@>2).
. p<z P p<a P
Since
Y1 —u)> (1 — )l —w)=14u+... +um. (0<u<l),
h P II
we have (a:)> (l+p+p,+ +p"‘

where m is any posﬂnve mteger. Now the product on the right, -
when multiplied out, is equal to X 1/n summed over a certain
set of positive integers n, and, if m is chosen so that 2=+1> z,
this set will certainly include all integers from 1 to [«]. Hence'
[z] 1 211 dy '
(1) P(2)> ” 3 > logz.

Since —log(l—u)—u< {»u‘/(l u) for O<u <1 (from the
series for log (1 — u)), we have

log P(x)—- S (x) < Z 2 o0 :z 79 <1E’i 3 (”l__ 0= =1.
Hence, by (1),

2) 8 (z) > loglogx — §.

The inequalities (1) and (2) evidently establish the theorem.

8. Theorem 1 shows incidentally that the number of primes
is infinite, or that = (z) tends to infinity with 2. We next show
that « (x)/x tends to zero.

Theorem 2. w(x)=o0(x) as x—> 0.

Denote by N, (z,hk), where 2> 0 and & is a positive mteger,
the number of positive integers n not exceeding = which are
divisible by A but. not by any of the first » primes p,,...,2,,
N, (, h) being simply the number of n < = divisible by &. Then,

1 Euler 1, Theorema 19;.2, § 279.
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by considering the integers n enumerated by N, , (z,%) and
dividing them mto two classes aceording as p,+ % or p,. ] n, We

RO Ny )= N, @b+ N, @b,
prowded that p, t h; for in this case » is divisible both by h and
by p, if and only if it is d1v1mble by p,h. Expressing N, in terms

of.N,_, by means of this relation, we infer by mductxon that :
if h is not divisible by any of p,, ..., Prs then

N, (x,h)= No(2,h) — zNo(x,Pih)*‘ ZNo(a: k) — ...

where tho summations are over all combmatmns of pl, s Drs
taken one, two, ..., at a time. Taking A= 1 and observ'mg that
No(z,m)= [x/m], we deduce

(3 N,(z,1)=[] - b [ff—] ~ i
® (= 1)= [x] [P«] +u PPy
Now suppose 2 < £ <z, and let r be defined by p, < { < p,,4-

Then w(@)<r+N,(z1),

since any pnme 2 is either one of py,...,p,, ora positivé integer
not divisible by any of these. We substatube from (8) and omit
the square brackets. This involves an error less than 1 in each
term, and so a total error less ths,n 2r, the number of terms.
Hence
1
@) <r+¥+e—-22 435 <2f+1+zﬂ( ’
. "( ) i Pi 4, PP . <t P) '
since r < 2 < 2¢. Taking £ to be a funotion of z such that £>
and 26+1/z > 0 as > co, we infer, by Theorem 1, that  (z)/z >0, ;.
If we take £=clog«, where, O<e< 1/log 2, and use (1), we
obtain the more pretise result
s xz . )
T (x) =0 (ioglog x) ,
Euler stated that the primes are ‘infinitely fewer tham the mtegers "
but his argument does not prove the assertion in the_ precise sense of

‘ Theoremz1

“The underlying prmclplé of the above method is that 'of the ‘sieve
of Eratosthenes’; the actual formula (3) is due to Legendre*. An

1 Euler 1, Theorep 7 Corol.hnums
* Legendre ia, }2-— 5; 1b, 412—414 2, i, 86—89
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elaborate refinement of the method’ has been evolved by Brun, whereby
the error arising from the omission of square brackets is greatly re-
duced.! With the aid of this refinement we can obtain the relation
#(2) = O (z/logx), which will be proved (in & mueh simpler way) in § 5.
The merit of Brun’s method is that, while it does not profess to give
a final solution of any, problem, it is applicable, within its limits, to &
number of problems not amenable (at present) to the analytical methods
which arein general more powerful. 1t oan be used to prove, for example,
that the number of primes in any interval of length z>1 is less than
Azxflogx, where A is an absolute constant.? Another application is to
the proof of Schnirelmann’s theorem that any positive integer n (> 1) can
be expressed as & sum of not more than k primes, where k is some absolute
constant—an importent contribution to the unsolved ‘Goldbach’s pro-
blem’ concerning the possibility of expressing any even integer as a sum
of two primes.?

4. Chebyshev's functions §‘and f. Tt is convenient at this
point to introduce Chebyshev’s auxiliary functions

3(r)= = logp, P(@)= = logp (x> 0),
p<a « <z

where the second sum extends over every combination of a prime
p with a positive integer m for which p™ < z.

If we group together terms of ¢ (x) for which m has the same
value, we obtain

(4) P (@) =98 (@)+9 @)+ 3@+ .0

where the series on the right contains only & finite number of
non-zero terms, since 9 (y) = 0 when y <2. If on the other hand
we group terms for which p has the same value (not exceeding ),
we obtain

=3 |og®

(®) v =2 (282 g,
since the number of values of m associated with a given pis equal
to the number of positive integers m satisfying mlogp <logz,
and this is [log z/log p].

The behaviour of any one of the functions m, 9, ¥, for large @,
can be inferred from that of any other, in virtue of the following .
theorem.

1 Brun 1; Rademacher 1.

1 Hardy and Littlewood 4, 69 (3).
3 Sohnirelmann 1; Landau 10.
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Theorem 3. The three quotients :
(©) re)  d@ $@)

z(logz)1* =« ’ =z
have the same limits of indetermination when x—+o. =
Let the upper limits (possibly + o) be A,, A,, Ag, and the
lower limits A;, Ay, A;, reepectively. By (4) and (5)

8-(x)<:/:(x)< pA log;logp = (z)logz,

whence Ay <A< A;. On the other hand, if 0<a<1,2>1,
B@)> I logp> {m(x)— w(z*)}log (z%);
r<pEx

hence, since 7 (z*) < 22, _ o
¥z w(z)logx logzx
> o (08T T,
Keeping « fixed, let x—o0; since (logz)/2!~*->0, we deduce
that Ay > aA,, whence A, > A,, since « may be taken as near as
we please to 1. This combined with the previous inequalities
gives A;=A;=A;. And A may be replaced by A throughout
the argument.

A special consequence of Theorem 3 is that, if one of the
expressions (6) tends to a limit when x-> o0, 80 do the others
and the limits are all equal. Thus the three relations

logx '9'(x)~x’ '/‘(z)"'x,

the first of which is the ‘prime number theorem’, are equivalent.

It happens (as will appear more clearly in § 7) that, of the three
functions =, 3, ¢, the one which arises most naturally from the anglytical
point of view is the one most remote from the original problem, namely .
For this reason it is usually most convenient to work in the first instance
with #, and to use Theorem 3 (or more precise relations corresponding to
the degree of approximation contemplated) to deduce results about .
This is & complication which seems inherent in the subject, and the
reader should familiarise himself at the outset with the function ¥, which
is to be regarded as the fundamental one.

We note in passing a simple arithmetical interpretation of ¢ (z); it is,
for 1, the logarithm of the lowest common multiple of all positive
integers not exceeding .

5. The order of w(x). We now prove that « (z) is exactly

of order zlugz when z is large.

7 (&) ~ o=



14 ELEMENTARY THEOREMS

Theorem 4. There exist positive constanis & and A such that
2 4%

(7) aje <T@ <A

ogx
for all sufficiently large . __ .

Let A be the common upper limit, and A the common lower
limit, as - 00, of the three expressions (6). S

Consider the number o

et N== (n+=l)(n+12)... (27);) .
[Ty . ’

where n is a positive integer. This is an integer since it is & term
of the binomial expaxsion of (1 + 1) and it satisfies

(8) N<2n<(2n+ )N, ‘
gince the expansion consists of 2n + 1 positive terms of which
N is the greatest. Now N is divisible by all primes p in the
interyal n < < 2n, and therefore by their product; for these
primeé ocour as factors in the numerator, but cannot divide any
factor in the denominator. It follows that
' N> 1 p

n<p<in :
This combined with the first of the inequalities (8) gives
onlog2>logN-> T logp= $(2n)—8(n).

n<p<n

Putting n= 2"~ and summing from r=1 to r=m, we deduce '
3(2m) < "2'1 2rlog2 < 2™*1log 2.
rw

~ Hence, if > 1 and m is the integer defined by 2™ < x < 2™,
$(2) < 9(2m) < 2™+log2 < 4xlog2,
whence A < 4log 2. iy e B et s ,
To obtain an inequality ‘in the opposite sense we use the
familiar theorem that a prime p divides m! exactly

)

times.r Since N = (2n)!/(n!)?, it follows from this that
« ' N= II p",
o <. P
1 For the rth term m,=[m/p"] of this sum is the number of factors in the pro-
duct 1. 2. ... . m which are divisible by 27, and a factor which contains p exactly
¢ times is counted just r times in the.sum My +My+ ..., namely once for each of
the terms m,, My, «-es Myo ) ' ,
CoF



