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Abstracts-—

S. SESHU, R. E. MILLER, AND G. METZE, Transition Matrices
of Sequential Machines—Page 5 .

In this paper a matrix technique is introduced for the analysis of
state diagrams of synchronous sequential machines. The matrices
introduced are closely related to the relation matrices of the calculus
of relations and provide a formal tool for discussing state diagrams.
It is shown that several of the well-known theorems on state dia-
grams are consequences of properties of transition matrices, which
remain invariant under matrix multiplication. A reduction procedure
for state diagrams, based on transition matrices, which is similar to
Moore’s technique, is given. A method of extending the results to
asynchronous machines is also included.

N

S. H. UNGER, Hazards and Delays in Asynchronous Sequential
Switching Circuits—Page 12

This-paper is concerned with asynchronous, sequential switching
circuits in which the variables are represented by voltage levels,
riot by pulses. The effects of arbitrarily located stray delays in such
circuits are analyzed, and it is shown that, for a certain class of
functions, proper operation can be assured regardless of the pres-
ence of stray delays and without the introduction of delay elements
by the designer. All other functions require at least one -delay
element in their circuit realizations to insure against hazards. In
the latter case it is shown that a single delay element is always

sufficient. The price that.must be paid for minimizing the number

of delay elements is that of greater circuit complexity.

J. M. SIMOK, 4 Note on Memory Aspects of Sequence Transducers
—Page 26 ’ ’
This paper defines seveyal classes of sequence transducers whose
operations exhibit simple forms of memory. Some of the special
propertiés and interrelationships for these classes of transducers
are established. ‘ g )

W. J. CADDEN, Eguivalent Sequential Circuits—Page 30

Three types of sequential circuits are defined, two of which are -

synchronous and one of which is asynchronous. The concept of
equivalent sequential circuits as discussed by Huffman, Mealy, and
Moore is extended to circuits of different types. Transformation
procedures are given for transforming a state table of one type into
" state tables of the other types. One of these transformations can
also be used to introduce unit delay between correspanding inputs
and outputs for a synchronous circuit. The transformation methods
allow a comparison of circuits, or state tables of different types to
be made for a given sequential circuit problem. A few general con-

clusions are drawn about the different types of sequential circuits,’

FREDERICK C. HENNIE, Analysis of Bilateral Iterative Net-
works—Page 35

In the usual iterative switching circuit, which may be considered
the space analog of & synchronous sequential transducer, the output
of any cell is dependent only upon the inputs of the cells to its left,
This paper describes 4 more general type of one-dimensional. iter-
ative network in which the output of each cell may be.a function
of the inputs of all the cells in the network, both to the left and to
the right of the given cell. Starting from a table of combinations
which specifies the behavior of an individual cell, a means of describ-
ing the steady-state® behavior of the entire network is developed.
This description is readily reduced to a fairly simple canonic form,
8o that equivalent networks can be recognized. Certain types of

redundancy which do not oceur in an ordinary iterative or sequen- -

tial network are discussed, and a means of detecting these redun-
dancies is described. Examples are presented which indicate that
the process of removing redundancies js more complex than the
corresponding process in the sequential case. Finally, one method
of synthesiging a stable bilateral iterative network is deseribed, and
.some of the problems of transient behavior are indicated.

~

BERNARD ELSPAS, The Theory of Autonomous Linear Sequential
Networks—Page 45 "

Analysis and synthesis techniques for a class of sequential discrete-

. state networks are discussed. These networks, made up of atbitrary. ”

interconnections of unit-delay elements (or of trigger flip-flops),
modulo-p adders, and scalar multipliers (modulo @, prime p), are
of importance in unconventional radar and communication systems,
in automatic error-correction circuits, and in the control eircuits of
digital computers. In addition, these networks are of theoretical
significance to the study of more general sequential networks.

The basic problem with which this paper is concerned is that of
finding economical. realizations of such networks for prescribed
autonomous (excitation-free) behavior. To this end, an analytical-
algebraic model is described which permits the investigation of the
relation between network logical structure and state-sequential be-
havior. This relation is studied in detail for nonkingular networks -
(those with purely cyclic behavior). Among the results of this inves-
tigation is the establishment of relations bétween the state diagram
of the network and a characteristic polynomial derived from its
logical structure. An operation of multiplication of state diagrams
is shown to correspond to multiplication of the corresponding
polynomials, -

A criterion is established for the realizability of prescribed eyclic
behavior by means of lingar autonomous sequential networks. An
effective procedure for the economical realization of such networks
is described, and it is shown that linear feedback shift registers ,
constitute a canonical class of realizations. Examples are given of
the realization procedure. The problem of synthesis with only one-
cycle length specified is also discussed. A partial solution is obtained
to this ‘“‘don’t care” problem. .

Some special families of feedback shift registers are investigated
in detail, and the state-diagram structures are obtained for an
arbitrary number of stages and an arbitrary (prime) modulus.

Mathematical appendixes are included which suminarize the
pertinent results in Galois field theory and in the factorization of
cyclotomic polynomials into irreducible factors over a modular field.

The relation of the theory developed in this paper to Huffman’s
description of linear sequence transducers in terms of the D operator
is discussed, as well as unsolved problemg and directions for further
generalization. ) :
BERNARD FRIEDLAND, Linear Modular Sequential Circuits—
Page 61 : :

Sequential circuits comprising 1) modulo-p (p = prime) summers,
2) amplifiers whose gains are integers <p, and 3) unit delays are’
considered in this paper which constitutes an extension of earlier
work by Huffman. SBuch circuits are characterized in terms of
the modular field GF(p) and vectors ard matrices defined thereover.
A summary of the properties of GF(p) is given.

A linear sequential circuit is defined in terms of

?(ry) = C§(n) +"D5:'(n)
T + 1) = AS(n) + -BZ(n)

where 4, B, C, and D are k X k matrices defined over GF(p). The
latter equations constitute a canonical representation of any cirouit
comprising ‘the above listed components. It is shown that circuits
of this type meet the usual additivity criterion of linear systems.
The behavior of the circuit is described in a finite state space
of k dimensions and p* states. The autonomous- eircuit (4,.B,
C, D = constant and Z(n) = 0, all n) is characterized by the
matrix 4. If 4 is nonsingular all initial states are either finite egui- .
librium points or lie in periodic sequences of length T, < Ty, =
p* — 1. If the minimum polynomial of A” has distinqt roots, T, .
divides 7(p — 1). If A is singular, there are some si initial
states to which the circuit cannot return in the absence of excitation.
The use of Z transforms for linear modular sequential circuits
is demonstrated. Inputs and outputs are represented by their-
“transforms’ and the circuit by its “transfer function.” The trans-
form of the output is the product of the transfer function and the
transform of the input. Several illustrative examples are included.

\
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JURIS HARTMANIS, Linear Multivalued Sequential Coding Net-
works—Page 69

Linear multivalued sequential coding networks are circuits whose
input and output are synchronized sequences of non-negative
integers less than some fixed number m. The output depends
linearly on the present input and a finite number of previous inputs
and .outputs. The transfe- characteristics of such a network are
described by a ratio of polynomials in the delay operator, where
the multiplication and addition are performed with respect to the
fixed modulus m. An algebraic theory of the delay polynomials is
obtained. It is shown that a polynomial has a complete set of nuli
sequences if, and only if, its first and last coefficients are prime to
the modulus m. The polynomialg with no null sequences are char-
acterized. It is shown when common null sequences imply that the
polynomials have common factors and that a complete set of null
sequences defines the polynomial.

It is also shown that a transfer function can be realized if the de-
nominator contains a constant term prime to m and explicit construc-
tions are given. A network is stable if the polynomial in the
denominator of the transfer junction has no null sequence. Thus any
nontrivial polynomial or its inverse is unstable if we are working
modulo ¢ prime. If the modulus is not prime, stable networks with
stable inverses are constructed. Finally it is indicated how polynomi-
als with no null sequences can be used to simplify the construction of
coding networks.

CARL F. SIMONE, Egquivalent Ladder Networks by the Use of
Signal Flow Graphs-—Page 75

Signal flow graphs of ladder networks have properties that make
them convenient for determining impedances and transfer ratios.
Because of the symmetry of these flow graphs it is possible to recog-
nize equivalent flow graphs, and hence equivalent networks, with
respect to-some desired characteristic. In particular, the output-
input voltage ratio is the characteristic that is used as the basis for
equivalence. Evaluation of elements in the equivalent circuits re-
sults from relating coefficients in the transfer voltage ratio to the
element values.

Using 4-branch ladder networks, examples are given of distri-
buting resistance, determining when networks must use active
elements for certain iransfer functions, and finding the number of
equivalences that exist.

A particular equivalence is derived between a bridged-T and

‘ladder, and between a lattice and ladder. In each case, three of the

branches of the ladder are the same as in the bridged-T or lattice,
while the fourth branch of the ladder is a function of all the imped-
ances. These equivalences are derived by recognizing the flow graph
configuration for a ladder within the flow graph of each of the other
circuits and then reducing these flow graphs to the one for the ladder.

DANIEL C. FIELDER, Identification of Certain Networks with
Reflection Coefficient Zero Locations—Page 81

In this paper, the coefficients of return loss expansions are found
for certain low-pass, LC ladder networks which have n lossless
elements and which exhibit Tchebycheff (or equal ripple) pass band
and monotonic stop band transmission behaviors. The return loss
expansion is the Taylor expansion of In (1/p,(s)) about s equal to
infinity, the variable s being the familiar complex frequency variable
& = o + jw, and p, being the reflection coefficient between a resistive
termination and the remainder of the network. The return loss
coefficients are tabulated according to reflection zero locations for
odd and even n.

Methods for synthesizing low-pass, LC ladder networks from
return loss coefficients are available. A presentation of the modifi-
cations necessary to adapt these methods for use with the particular
coefficients discussed above is given. Thus, it is possible +: synthe-
size certain Tchebycheff networks through use of return loss coeffi-
cients which are, in turn, directly identified with reflection zero
locations.

The paper concludes with a brief discussion of the extension
of existing tables of Tchebycheff network element values for finding
the element values for several reflection zero distributions and LC
1g,dder arrangements.

ABRAHAM BERS, The Degrees of Freedom in RLC Networks—
Page 91

It i8 shown here that the number of degrees of freedom, or what
is equivalent—the number of natural frequencies—of any RLC
network can readily be determined from the number of energy-
storing elements and the topology of the network. The effect of loss
(resistance) in altering the number of degrees of freedom is explained.

RICHARD LA ROSA, Pole Migration in Coupled-Resonator
Filters—Page 95 .

The narrow-band, coupled-resonator filter is analyzed by giving
a vector interpretation to the transfer function. The significant
parameters are the natural frequencies of the complete filter and
the natural frequencies of the individual resonators. It is shown
that insertion loss is related to the migration of the natural fre-
quencies (poles) as the coupling coefficients between resonators
are increased from zero. A vector construction is described for the
pole migration of three coupled resonators.

D.C.YOULA,L. J. CASTRIOTA, AND H. J. CARLIN, Bounded Real
Scattering Matrices and the Foundations of Linear Passive Net-
work Theory—Page 102

In this paper the most general linear, passive, time-invariant
n-port (e.g., networks which may be both distributed and non-
reciprocal) is studied from an axiomatic point of view, and a com-
pletely rigorous theory is constructed by the systematic use of
theorems of Bochner and Wiener. An n-port @ is defined to be an
operator in H,, the space of all n-vectors whose components are
measurable functions of a real variable ¢, (— © < t < «) (and as
such need not be single-valued). Under very wesk conditions on
the domain of &, it is shown that linearity and passivity imply
causality. In every case, ®,, the n-port corresponding to ¢ aug-
mented by n series resistors is always causal (&, i3 the “augmented
network,” Fig. 2). Under the further assumptions that the domain
of ®, is dense in Hilbert space and ¢ is time-invariant, it is proved
that ® possesses a frequency response and defines an n X n matrix
8(z) (the scattering matrix) of a complex variable z = w - 8 with
the following properties: 1) S(z) is analytic in Im z > 0; 2) Q(2) =
1, — 8*%2)8(2) is the matrix of a non-negative quadratic form for
all z in the strict upper half-plane and almost all . Conversely, it
is also established that any such matrix represents the scattering
description of a linear, passive, time-invariant n-port & such that
the domain of ®, contains all of Hilbert space. Such matrices are
termed “‘bounded real scattering matrices’” and are a generalization
of the familiar positive-real immittance matrices.

When & and &1 are single-valued, it is possible to define two
auxiliary positive-real matrices ¥(2) and Z(z), the admittance and
impedance matrices of ®, respectively, which either exist for all z in
Im z > 0 and almost all w or nowhere. The necessary and sufficient
conditions for an n X n matrix A.(z) to represent either the scatter-
mg or immittance description of a linear, passive, time-invariant
n~-port ® are derived in terms of the real frequency behavior of Ay (w).

Necessary and sufficient conditions for ®, to admit the repre-
sentation

i(h) = f_ : AW (e(t — 1)

for all integrable e(t) in its domain are given in terms of S(z). The
last section concludes with a discussion concerning the nature of the
singularities of S(z) and the possible extension of the theory to
active networks.

KENT E. ERICKSON, A New Operation for Analyzing Series-
Parallel Networks—Page 124

The operation * is defined as A * B = AB/A + B. The symbol *
has algebraic properties which simplify the formal solution of many
series-parallel network problems. If the operation * were included
as a subroutine in a digital computer, it could simplify the pro-
gramming of certain network calculations.
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DAVID A. HUFFMA-N t, GUEST EDITOR

N THE SEARCH for understanding of the theoretical

capabilities of computers and other decision-making
" logical machines, two abstract models have been
found useful: finite-state machines and Turing machines.
Roughly speaking, a finite-state machine emulates a col-
lection of elemental bistable devices interconnected so
that they exhibit a memory. A Turing machine consists of
a finite-state circuit operating in conjunction with an
infinite tape which it scans and upon which symbols are
read, erased, and rewritten. Since the finite-state model is
a component of even the Turing machiné, a significant
amount of effort has gone into the study of its organi-
zation, internal communication problems, and the com-
plexity requisite to accomplishing various general trans-
formations on the sequences of digits which constitute its
input data. In the role of a sequence transducer between
its input and output-data streams the finite-state circuit
(also called sequential eircuit, or finite-state automaton,
etc.) acts somewhat analogously to an electrical filter
operating on voltage or current waveforms. That is the
primary reason that the papers of this issue are found here
rather than in, say, a mathematics journal.
* One need go back less than twenty-five years to find
‘the earliest papers on the theory of logical machines.
Turing’s paper, “On Computable Numbers,” published
in 1936' is perhaps, even today, the single most important
one, creating as it does the relationship between logics!
propositions and associated idealized machines. Lafer
‘McCulloch and Pitts, in “A Logical Caleulus of the Ideas
Immanent in Nervous Activity,” (1943) established the
possibility of simulating the logical aspects of nervous
‘activity by nets of neuron-like hypothetical digital
elements. :

The important idea of “state’ as it applies to finite-state
circuits was developed independently by Huffman (“The
Bynthesis of Sequential Switching Circuits,” 1954), Kleene
(“Representation of Events in. Nerve Nets and Finite
Automata,” 1956), and Moore (“Gedanken Experiments
on Sequential Machines,” 1956). The necessity for a pre-
cise definition of state was implicit in the prohlems to
which they devoted themselves. Huffman gave an explicit
procedure for synthesizing finite-state circuits from net-

t Mass. Inst. Tech., Cambridge 39, Mass.
U'Nearly all of the papers referred to here and other important
ones as well may be found as references in or as papers com rising
_ “Automata 8Studies,”” Annals of Mathematics Studies Ng. 3,
Princeton University Press, Princeton, N. J.; 1956.

works of switching elements whose response times were
not uniformly the sarhe, and this required an exaet speci-
fication of the desired terminal action. Kleene investigated
in detail the capabilities and limitations of arbitrary
networks of artificial neurons, putting the earlier work in
the area in a neat mathematical form. Moore required a
precise characterization of the terminal behavior of finite-
state circuits for his investigations of the equivalence of
various forms of an automaton as determined by external
experiments.

The “state” of a finite-state machine refers to the set
of signal responses existing at any time at the output ends
of the feedback loops within the circuit. The set of signals
at the inputs of these loops will then determine the next
state of the circuit. The signals which the cireuit receives
from and those which it delivers to its outside environment
also enter into its operation. In fact the key statement in
the theory of finite-state machines is merely that.the next

state and the output of the machine are functions deter-

mined by its present state and its input. S

In this issue the paper by Seshu, Miller, and Metse
investigates a matrix formulation of this statement and
of some of its consequences. Unger examines in some
detail the effects of stray delays in the elemental switching
devices making up asynchronous sequential eircuits. Simon
shows some special properties of some sequential trans-
ducers which have simple forms of memory. In Cadden’s.
paper the question of equivalence of cireuits whose data
are presented in various forms, but which have the same
ultimate design objective, is treated.

A formal analysis of a quite general class of one~dimen-
sional iterative circuits is set forth by Hennie. Since one
subclass of these circuits is analogous to the conventional
finite-state machine this paper may eventually lead to a
better understanding both of finite-state circuits and also
of uniform arrays of logical elements in more than one
dimension. A comprehensive review of the present state
of the art in linear sequential networks is the end-product
of the paper by Elspas. The subject matter of the papers
by Friedland and Hartmanis is the extension of previous
work on linear binary circuits to other number bases.

“The guest editor wishes to acknowledge gratefully the
copious assistance of the assistant editors of ‘this issue:
Prof. Dean Arden, M.I.T.; Dr. William H. Kautz, Stan-
ford Research Institute; Dr. E. F. Moore, Bell Telephone
Laboratories; Prof. D. Muller, University of Illinois; and -
Prof. G. W. Patterson, University of Pennsylvania,
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Transition Matrices of Sequential Machines”

S. SESHUt, R. E. MILLER{, ano G. METZE§

I. DEFINITIONS

INCE the terminology in switching theory is far from
S standardized, it is well for us to begin with a few
basic definitions. Following Moore' we define a
sequential machine M as consisting of o finite collection of
1) states, 2) possible inputs, and 3) possible outputs, and
satifying the conditions: 1) the present output is uniquely
deterinined by the present state, and 2) the present state
is uniquely determined by the previous state and the
previous input.

In this definition, oue considers the words state, input,
and output to be undefined concepts. The terms input
and oulput have the familar interpretations in terms of
practical machines. The state may be interpreted as
the set of states of the internal components of the machine,
in which case the description above applies only to a
small subset of practical machines; or it may be interpreted
as the combined state of the internal components and the
input, thus encompassing a larger class of machines.
In terms of the flow table of Huffman® the first interpreta-
tion corresponds to calling each row a state, and the
second interpretation corresponds to calling each circled
entry a state. We shall, however, restrict our discussion
to well-behaved or deferminisiic machines.

With a sequential machine as defined above, we can
associate a weighted directed graph or a net,® called the
transition diagram by Moore.! Each vertex ¢; of the net
corresponds to a state of the sequential machine and each
edge corresponds to a transition between states. The
output associated with a state is assigned to the corre-
sponding vertex of the net as the weight of the vertex.
Similarly the input that causes a given transition is
assigned as the weight of the edge corresponding to the
transition. The net associated with a sequential machine
i8 known as the stafe diegram of the machine. The assump-
tion that the machine is deterministic (rather than
probabilistic) is reflected in the state diagram by the
fact that no two edges with the same initial vertex have
the same weight. An example of a state diagram is shown
in Fig. 1.

* Manuscript received by the PGCT, December 23, 1957. The
work of Seshu was sponsored by the graduate college of the Uni-
versity of Illinois in 1955.

1 University of Toronto, Toronto, Ont., Can.

§ IBM Corp., Yorktown Heights, N. Y.

Digital Computer Lab., University of Illinois, Urbana, Ill.

L E. Moore, ‘“Gedanken-Experiments on Sequential Ma-
chines,”” in ‘“Automata Studies,”” Princeton University Press,
Princeton, N. J., Study 34, pp. 120-153; 1956.

* D. A. Huffman, ‘“The synthesis of sequential switching circuits,”’
.119 Franklin Inst., vol. 257, pp. 161-190, 275--303; March and April,

54,

3 F. E. Hohn, S. Seshu, and D. D. Aufenkamp, ‘“The theory of
nets,”” IRE Trans. oN ELecTRONIC CoMPUTERS, vol. EC-6, pp.
154-161; September, 1957.

It is convenient to define the terms synchronous and
asynchronous in terms of the state diagram. The machine
M is a synchronous machine if for each permissible input
7 and each state g¢; of M, there is an edge with weight ¢
leaving vertex q; of the state diagramn. The machine is
asynchronous if no edge leaving vertex ¢, has the same
weight as any edge entering vertex ¢;. In other words
any input 7, may follow any input 7, (¢, = %, or f, = t,)
in a synchronous machine whereas 7, = 7, is not permissible
in an asynchronous machine. The words ‘“‘entering’”’ and
“leaving” are used in the geometrical sense implied by
the arrowheads in the state diagram. (This definition
differs from that of Aufenkamp and Hohn.*)

Fig. 1—Example of a state diagram.

Aufenkamp and Hohn have devised a matrix scheme
for discussing state diagrams based on the connection
matriz. (They have applied the connection matrix tech-
nique to Mealy’s® model of a sequential machine, but the
application to Moore’s model is certainly possible.) The
conneection matrix simply describes the structure of the
net and is defined as follows. The connection matrix hes
one row and one column for each state and is given by:

C = [cl'i]n.n (1)
Ci; = Z w’:i 2

where w’; takes state ¢ into state 7 when input w* oceurs
and the summation is over all such inputs (with the
interpretation OR for the sum).

The transition matriz on the other hand describes the
distribution of edges of a given weight (input). More
precisely, we associate with each input 7 (that is permis-
sible) a transition matrix T* defined by

+D. D. Aufenkamp and F. E. Hohn, “Analysis of sequential
machines,”” IRE TraNs. oN Erecrronic Computers, vol. EC-6
pp. 276-285; December, 1957.

8 G. H. Mealy, “Method for synthesizing sequential circuits,”’
Bell Sys. Tech. J., vol. 34, pp. 1054-1079; September, 1955.
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= [l 3)

where &i; = 1 if input 7 takes ¢, into g¢;, &; = 0 otherwise.

_ nets,” Bull. Math.

Thus T° is square and has the same order as C, namely
the number of states of M. The transition matrices are
evidently related to the connection matrix by®:

) C = E w, T’ 4)

where w, stands for the ith input:

With suitable correspondences it can be seen that these
transition matrices are the same as the relatton matrices
defined .by Copi°® for the calculus of binary relations.
Very similar matrices have also been used by Shimbel’
who called them structuxe matrices.

II. ELEMENTARY PROPERTIES OF TRANSITION MATRICES

Without further statement we shall assume that,
except for the concluding remarks at the end of the paper,

all machines being considered are synchronous machines.

Theorem 1

Every row of the transition matrix T* contains exactly
one nonzero entry 1.

This theorem is an immediate consequence of the defini-
tions of “synchronous” and “deterministic.”

Theorem 2

The property given in Theorem 1 is an invariant under
multiplication of transition matrices (the multiplication
being performed in the usual way withO +1 =140 = 1,
1.0=01=00=0,1'1=104+0=0). °

Proof: Let T' and T’ be transition matrices. Then we
~have to prove that each row of T°-T’ contains exactly
one 1, all other entries being zero. This follows immedi-
ately, since each row of 7" contains exactly one 1 and so
the rows of T'- T are chosen from the rows of T, which
has the required property. The result extends by mductlon
to the product of any finite number of matrices.
©If g, g ) , q» are the states of the machine and
@i, W, *-* , w, are the corresponding outputs, then we
define the state vector @, and the output vector Q, by:

QI wy
Q=% Q = | (5)
qn Wy

Theorem 3

If the machme is in state ¢, and the input ¢ is applied,
the next state and the next output are given by the kth

¢I. M. Copl, “Matrix develosment of the caleulus of relations,”

J. Symbolic , vol. 13, pp. 193-203; December, 1948
7 A. Shimb “A;g)hcatxon of matrix algebra to commumcatlon
wphys ., vol. 13, no. 3, pp. 165-173; 1951.

M arch

‘rows of T°Q, and T* 'R, respectxvely, where T® is the
transition matrix for input 7. )
This result is obvious. - ‘ 1

Theorem 4

If the input sequence 17,7, (t.e.,

after 7,47, are given by the kth rows of T“T"Q, and
T T*'Q,, respectively.

Proof: Let 7, take g, into ¢, and let ¢, take ¢, into ¢q,.”

Then by the definition of a transition matrix, the kth
row of T** contains a 1 in column r and the rth row of
T** contains a 1 in column p. Therefore, the kth row of

T"T'* is merely the rth row of T°*. Therefore the kth -

row of (T"*T**)Q, is g, and the kth row of (T T**)Q, is w, .

(The multiplication is associative, the parentheses being .

included merely to illustrate the argument.)
This result may be extended by induction to yield the
following.

Theorem &

If the input sequence ¢,¢, - - -
in state ¢., the final state and output are given by the
kth rows of T"T* ... T°Q, and T*'T** TQ,,
respectively.

We may remark here that the order in which the tran-
sition matrices are multiplied in Theorems 4 and 5 is

the reverse of what one would expect intuitively.. If, for-

instance, we were to develop an operator algebra, one

would expett the operator for the first input 7, to operate .

on Q,, the operator for the next input 4, to operate on
the result, etc. Results that are very similar to Theorems
3-5 have also been obtained by Shimbel’ Who uses row
ve%:,ors rather than column vectors.

e can also observe that the information obtained by
multiplying transition matrices is somewhat analogous
to the multiple experiment of Moore,' who considers
taking n copies of a machine, all of them in the same
initial state, and performing different experiments on them.
Congidering transition matrices on the other hand is
equivalent to taking n copies of the machme, each in a
different initial state, and performing the same expenment
on all of them.

We shall conclude this section with: the statement of a
very simple invariant prpperty of transition matrices
that characterizes combinational machines thus hinting
at an invariant theory of sequential machines.

Theorem 6

For every 1, let the nonzero entries of transition matrix
T* be in the same column r, (r; may vary with £). Then
the product of any number of these matrices also has the
same property.

This result is obvious. The rows of 7" are identical
and hence so are the rows of 7°7".

This particular invariant characteristic really charac-
terizes combinational machines. At the outset this remark

] i, followed by %,) is
applied to the machine in state gi, the state and output

. i :
i, is applied to the machine
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may seem misleading as “state” is usually associated with
" a memory and a combinational machine has no memory.
However, if we take ‘“‘state” in the larger sense (see remarks
at the beginning of Section I), each of the states repre-
sented in the transition matrix may be just an input state,
the machine having no memory. In any case, any machine
with the property assumed in Theorem 6 can be replaced
by an equivalent combinational machine (with at most a
different delay in the output).

III. INvARIANT THEORY OF EQUIVALENCE OF STATES

To avnid certain logical circles (such as in the example
of Huffman") we define two types of equivalences of states.
Neither of them agrees with Moore’s' definition of indis-
tinguishability except for the classes of strongly connected
machines and machines with a natural snitial or cleared
state (which encompass most practical, useful or well-
designed machines). Moore chooses to define indistinguish-
ability with respect to a given experiment; so that two
states may be indistinguishable by one experiment but
-distinguishable by another. Although this definition is
more general and more in keeping with the “gedanken-
experiment”’ point of view, the more restricted definition
that we shall give is more amenable to theoretical treat-
ment. In general, for machines for which the definitions
do not agree, Moore’s definition would lead to a simpler
rediiced machine than the other more restricted defini-
tions.” Our first definition, that of simple equivalence, is
similar to those of Mealy® and Aufenkamp and Hohn.*

States g¢;,, q.., y ¢i. of machine A are simply
equivalent if and only if 1) the outputs associated with
those states are identical, and 2) every input sequence
applied to M with M in any one of ¢;,, q.,, - -+ , q... leads
to the same output sequence; with 2) being independent
of the outputs associated with states other than
iy Qisy " 5 Qime

As Aufenkamp has pointed out to the authors, this
definition is slightly peculiar, in that a proper subset of a
simply equivalent set may not be simply equivalent. For
example, in the state diagram of Fig. 2, the states 1, 2, and
3 form a simply equivalent set. But under the given defini-
tion states 1 and 2 are not simply equivalent, .e., independ-
ently of the output associated with state 3. However, there
are no theoretical difficulties introduced by this peculiarity
since simple equivalcnce has not been defined as a binary
relative.

Theorem 7

Let the rows and columns of the transition matrices 7"
be ordered such that 4,. ¢,, -+ , ¢,, are the first m rows
and columns; and let the matrices be partitioned after
the first m rows and columns, as:

Ti — {Til T;z:l
T:,
8 Huffman, op. cit., p. 182.

T,
® The authors are indebted to Moore for this clarification.

(6)
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Fig. 2—TIllustration of Al;fenkamp’s remark.

Then the property that the rows of T, are identical for
1 < j < k (where k is the number of permissible inputs)
is an invariant under multiplication of transition matrices.
Proof: Tet1 < j<k 1 <p <k Let
T.z] @
T

T = [Ti} } and T < [T:n
T;l Téz ) T;l

satisfy the condition that the rows of the (1, 2) submatrix
are identical. Let
’ TpTi — {TU 712}.
Ta1 T2

(All the matrices are partitioned after m rows and columns.)
Then

®)

Tiz = fosz + szTéw (9)
Since T” contains exactly one 1 per row and 7%, has
identical rows, either T%, = 0 or 7%, = 0 but not both.
Now if T?, = 0, then the rows of r,, are identical since
the rows of T}, are identical and 7, = T%,Ti,. And if
P32 = 0, 7y, = T%,Ti,; so that the rows of 7,, are selected
from identical rows of T'},. Hence, the rows of r,, are identi-
cal. An obvious induction step completes the proof.

Theorem 8

Let the transition matrices be arranged and partitioned
as in Theorem 7. Then the states g¢.,, ¢:,, *++ , ¢:.. are
simply equivalent if and ouly if they have the same output
and the rows of T}, are identical for 1 < j < k, where &k
is the number of permissible inputs.

Proof: The sufficiency follows from the invariance of
the property proved in Theorem 7. To prove that the
given condition is necessary for equivalence, we make use
of the fact that equivalence must be independent of the
outputs associated with the other states and so the first
m rows of

TiQO(j=l,2,--- :L)
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will be equal if and only if the rows of 7'}, are identical for
1<j<k

The second type of equivalence that we shall consider
is that of multsple equivalence. This is the case where the
equivalence of one set of states depends on the equivalence

of another set of states and conversely. (Of course, the
. cyele may include more than two sets of states.) ’

Let 8,, Ss, -+ , Sw, Sas1 be a partition of the states of
a machine M. Wlthm agiven S,, 1 < p < m, let the
outputs associated with all the states be the same. Suppose
every input sequence applied with the machine in state

" g; ¢ S, leads to the same output sequence for all g; e S,

1 < p < m; independently of the outputs associated with
the partitions S,, S,, --- , S, and the states in S....
Then the states in S,, S,, -+ - , S, are mulliply equivalent.

We might remark here that the states in S, and S,
might be multiply equivalent without the states in
S, (or 8S.) being simply equivalent.

Theorem 9

Let the statesin S,, S,, - - - , S, be multiply equivalent.
Then the simultaneous identification of the states in S,,
1 € p < m, i.e., replacement of each set by a state, leads
to an equlvalent machine in Moore’s definition.

_ This result is obvious.

i

Theorem 10

Let Sy, Sz, - -+, Sm, Sms: be a partition of the states of
M. Let the rows and the columns of the transition matrices

. be ordered correspondingly, and partitioned as:

. Ti. o0 Tim Thmn
¢ ) 14 )
Tz.z 2,2 et 2,m 2, m+1
T = ) .‘ ............. (10)
1 )
m,1 mz . °°° Tvn.m m,om+l
] < : ] i
m+l,1 m+t,2 " m+l,m m+l, m+} o~

where T';; corresponds to S;, 1 < j < m + 1. Further let
the transition matrices satisfy property P:

The nonzero entries in any one of the first m rows of the
partitioned matrix T‘ are all in the same submatrix,
1 <1 < k;and therows of the submatrix T’} .., are identical
forl1 < j < m, foreachz,l i<k

Then property P is an invariant under matrix multi-
plication.

The invariance of property P follows from a computation
gimilar to that of Theorem 7.

Theorem 11

Let the states of the machine M be partitioned into
sets S, S;, --- , Sa, Sm.i. Let all the states in a given
partition S; ha,ve the same output for 1 < j < m. Then
the invariant property P of Theorem 10 is a necessary
and sufficient condition for the multiple equivalence of
the states in S,, S,, - , Sa.

The necessity follows from the’ condition that;miﬂtiple
equivalence be independent of the outputs as stated.
The sufficiency follows from the invariance of property P.

IV. RepucTion Awomnus AND THEOREMS CoN-
CERNING THE REDUCED MACHINE

For the sake of completeness we shall state the formal
procedure for the reduction of state diagrams containing
equivalent states. The formal procedure may be readiiy
automated.

Let the states q.., ¢:., - , ¢:. be simply equivalent.
Let the rows and columns of the transition matrices T
be arranged so that these states correspond to the first
m rows, and are partitioned after the first m rows and col-
umns as:

T = [T?} T{*]., an
oor T :

We now obtain the reduced machine M’ by replacing the
states g;,, ¢:,, * ** , ¢i, by & single state ¢’ with an output
equal to the common output of the deleted states. The
transition matrix S° of M* (for mput %) 18 defined by:

N 3 ¥
Si — [ 11 12] (12)
: S;I S;z '
where
83 =T, of (11),
Si, = one row of T},,

S5 0 if T, is a zero matrix
r 1 if T}, is not a zero matrix,
Z columns of T, (Boolean sum),

S

t.e., S;, is a single column matrix, each entry of which is
a Boolean sum of the entries in the corresponding row
of T;,.

Theorem 12

The reduced machine is synchronous and is equivalent
to the original machine under Moore’s definition.

This theorem is obvious on observing that each row of
the reduced transition matrix contains exactly one 1
(remembering that T}, = 0 implies that T§, = 0 and
T;, # 0 implies T, = 0), the equivalence follows directly
from the deﬁnition. ' ]

Since the reduced machine is synchronous, one can again
apply the reduetion process if there are any more equiv-
alent states. Of course if one wishes to use this procedure
in practice, one wotild group together the states that
have the property of Theorem 7. Needless to say, this

process is not the fastest method of finding eqmvalent .

states. Nonetheless 1t is routine.

F vy
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Example 1.

As a simple example of reduction of state diagrams with
simply equivalent states, consider Fig. 3. With rows and
columns arranged in the order ¢, ¢,, ¢s, the transition
matrices are:

"0,130“ ”0051'
T =10 1.1 0 T = Q_M(Li_l
00! 1 1 0! 0
[0 01 1] [0 1 E 0]
T‘°=OOil T”=01.:0.
00! 1 0 1! o]

It is seen that these transition matrices possess the invari-
ant property of Theorem 7, with the partitioning shown.
Since ¢, and g, also have the same output, they are simply
equivalent. The reduction process now gives:

_q [1 0} g @ [0 1]
g L0 1 g L1 0
q’ [0 1J g = ¢ [1 OJ.
g LO 1 ;L1 0

The reduced machine is shown in Fig. 4.

The reduction process for multiple equivalence is very
similar. Here let the original matrices be given by:

SOO

l

SIO =

i i i
T;,l T;.z e Tl.m Tl,m+1
2.1 T,., T; . Ts mir
A e e (13)
T:n.] T:n,2 T:n.m T:rumi»l
1 i i i
T:n+1.l ’11:n+1‘2 tre 'm‘#l‘m m4+l.m+1

where the first m vows and columns correspond to sets of
multiply equivalent states. Then, of course, the matrices
T' have the invariant property P of Theorem 10. Now
we obtain the reduced machine as fellows. Each of the
sets Sy, Sy, -+, S, is replaced by a state ¢/ with the
output corresponding to the set S;. To get the transition
matrix 7* of the reduced machine, each of the submatrices
Ti;,1 <k <m,1<j<m,isreplaced by a single element,
0 or 1, determined from T';.; being zero or nonzero, respec-
tively. Each submatrix T} ,..,, 1 < k < m, is replaced by
one of its rows. Each submatrix 7%, ; is replaced by the
Boolean sum of its columns [see remark below (12)].
Finally T..., .1 is left unaltered. Then we have, as in
simple equivalence the following theorem.

Theorem 13

The machine obtained by the reduction process above
(for multiply equivalent states) is synchronous and is
equivalent to the original machine under Moore’s defini-
tion.

Seshu, Miller, and Metze: Transition Matrices of Sequential Machines 9
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Fig. 3—Example for simple equivalence.

°° oo

Fig. 4—Reduced machine of Example 1.

Since the reduced machine is synchronous, one can
again apply the reduction process. We may also remark
here that the simple and multiple equivalence reductions

. may be intermixed arbitrarily. Also, if one were to identify

only a proper subset of the states in an equivalence class,
the remaining states, together with the state obtained by
reduction, still form an equivalence class. Further, an
identification of sets in equivalence classes cannot generate
new sets of equivalence classes® in a “completely specified
machine,” to use Huffman’s terminology. Therefcre, the
machine obtained by an arbitrary sequence of reductions,
provided only that it contains no equivalent states, will
be unique. Thus:

Theorem 14

The reduced machine M, obtained by the reduction
process, if it contains no equivalent states, is synchronous
and unique (up to an isomorphism).

This theorem, which is similar to results obtained by
Mealy® and Aufenkamp and Hohn,* was provable only
because of our more restricted definition of equivalence.
Moore’s' general definition permits him to prove such a
theorem only for strongly connected machines.

Ezample 2

As an example of the reduction process for multiple
equivalence we consider the state diagram of Fig. 5.
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@{1-0 050

q,‘000510 '
=00 0101

@il o 050 0

el1 0 0{0 0]

&[0 0 051 0]

(0 O 1i0 0}
T = ¢, |0 1_059(_)'

2007100 \
o 0 1 010 0]

It is evident that although g, has the same output as ¢,
and ¢, the set of states (¢,, ¢, ¢») is not a simply equivalent
set. If, however, we rearrange the rows and columns as
92y 93, Qs s, ¢: and partition after ¢, and qs, wWe get

qz(o 0 :' 1 0‘:' 0]'
210 0010
T = ¢, |0 0‘:0'015 1
200 0100 1)
a0 000! 1]
[0 1 100 ) 0]
“|10100:0
T"=q,0150'0§0. ’
%/1.010010
@«l0 0.1 01 0j

With this partitioning we see that the sets of states
{g2) @2} and {q., ¢;) are multiply equivalent by Theorem
11 and neither pair is simply equivalent. The reduction
process now yields: .

#fo 1 o #f1 g
00 1] +<gqgl1
(11001‘ 410

‘The state diagram of the teduced machine is given in Fig. 6.

A4 o
T—-q4

| I )
(= N =}

VI. StroNGLY CoNNECTED MACHINES

The concept of a strongly connected machine wasg
introduced” by Moore' and plays a fundamental role in
Moore’s theory. In terms of the state diagram, we may -
define strong connectedness ag follows: . :

- The state diagram (or in general a directed graph) is
. strongly connected if for every ordered pair of states a and
b (vertices for the general case) there exists a path from
@ to b in which the orientations of the edges agree with the
orientation of the path (in other words an oriented path
or a “bahn” in Koenig's® terminology).

»

March

Fig. 6—~Reduced machine of Example 2.

In order to prove theorems about strongly connected
machines similar to Moore’s theorems, we first need to
characterize strong connectedness in terms of transition
madtrices. Since strong connectedness is equivalent to the
existence of input sequences which take any given state
a into any given state b; since the length of the longest
proper path equals the number of states, we can state
this characterization as follows.

Theorem 15

Let T°, T, .- , T* be the transition matrices of the
machine M containing n states. Then M is strongly
connected if and only if : .

x - E L
2T+ X TT ok TP ... T = F (19)
=1 o

€, i~} fj=Y

 where the sums are Boolean and E is the universal mairiz,

E = [e.-;], €ij = 1: an 'i’ j

This result is true since the nonzero entries in T°7" - . . Vidd
correspond to the paths (proper and intersecting) with
edge sequence 4, j, - -+ , p and so all the proper paths are
accounted for in (14). (When an intersecting path connects
a to b, there is also'a shorter proper path from q to 4.°)

Theorem 16
" If a machine M is strongly connected and contains m
simply equivalent states, then the reduced machine

10 D. Koenig, “Theorie der Graphen,” Chelsea Publishing Co.,
New York, N. Y.; 1950, ' .

I



1959

obtained by the procedure of Section IV is also strongly
connected.

Proof: This fundamental theorem is knewn and was
stated and proved by Moore.! The proof based on tran-
sition matrices is much too long to be given here. We shall
therefore be satisfied with an outline of the matrix proof.

Let T° and S° stand for the transition matrices of the
- original and reduced machines, which are assumed to be
partitioned as in (1) and (12), respectively. The proof
consists of proving, by induction on the number of factors,
that the properties,

1) S;Q = ;2, i

2) 8}; = one of the identical rows of T4,

3) S;; = Z columns of T;, [see comment below (12)},
4) S;, = 0if T;, is a zero matrix, S, = 1 otherwise,

are all invariant under matrix multiplication. Several
. cases have to be considered depending on the location of
the nonzero entries in 7° which makes the ‘proof long.
Once this invariance is established it follows that the S*’s
satisfy (14) whenever the 7*’s do, thus making the reduced
machine strongly connected.

A similar method of proof establishes the next theorem.

Theorem 17

If machine M is strongly connected and contains
multiply equivalent states, then the reduced machine
obtained by the reduction process of Section IV is also
strongly connected.

Finally, Theorems 16 and 17 can be combined to yield
Moore’s result.' '

Theorem 18

If a machine M is strongly connected, then the corre-
sponding reduced machine containing no equivalent states
is strongly connected, synchronous, and unique (to within
an isomorphism). ‘

VI. ConcLupiNg REMARKS

Although no startlingly new results have been obtained
using transition matrices, they seem to bring in a new
point of view to the theory of sequential machines, inas-
much as several of the interesting properties of sequential
machines are invariants of the transition matrix (under
matrix multiplication). Thus is posed the problem of
finding whether the transition matrices have any other
invariant properties.

In order to bring about this closer correspondence
between the transition matrix and the behavior of the
sequential machine we have had to introduce an uncon-
ventional concept of equivalence. Simple and multiple
equivalences, as defined here, are not binary relatives as
is conventional, but are properties associated with sets.

However, the concepts of simple and multiple equiva-~

lence as defined here can be compared with the reduction
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procedures defined by Huffman,” Mealy,® and Aufenkamp
and Hohn.* This comparison is possible only under the .
assumption that the machine is completely specified and
under suitable interpretations of states. Thus we observe,
quite obviously, that simple equivalence is the same con-
cept as mergability of two rows of the flow table’ and
Rule III of Mealy.® Multiple equivalence on the other
hand is analogous to rule II of Mealy® and the equivalence
argument of Huffman.® To see the relationship of multiple
equivalence to the Aufenkamp-Hohn theory* we have to
construct the connection matrix. Aufenkamp and Hohn
partition the connection matrix further than we have done
in Theorem 10. Namely, each of the states in S,.,, is
assigned a separate row and column in the pattitioned
matrix. Once this is done, we see that the property P of
Theorem 10 is the same as the Aufenkamp-Hohn con-
dition' that each submatrix be a 1-matrix. The invariance
of property P under matrix multiplication is the same as
Theorem 1 of Aufenkamp and Hohn.'

Thus, with completely specified machines, the reduced
machine obtained by using the procedures given here
would agree with those obtained by Huffman, Mealy,
and Aufenkamp and Hohn. All of these would agree with
Moore’s scheme for strongly connected machines and for
machines with a natural initial or cleared state (see
remarks at the beginning of Section III).

The paper has been concerned exclusively with syn-
chronous machines and so one might ask whether the
theory as formulated can be extended to include asyn-
chronous machines as well. There are two possible methods
in which this extension can be accomplished. In the first
method we merely write down the transition matrix of the
asynchronous machine from the definition. If we did,
we would find several rows of zeros in the transition
matrix. In fact, whenever column j contains a 1, row j
i3 & zero row. Such zero rows would be reflected in all the
products, output vectors and state vectors, showing that
an unpermissible sequence of inputs has been applied.
It may be seen that many of the theorems as stated here
would apply with minor changes in wording to take care
of the zero rows. However it is more elegant (from the
theoretician’s point of view) and more natural, to reduce
the case of the asynchronous machine to that of the
synchronous one by suitably modifying the state diagram.
Since an asynchronous machine recognizes only changes
in the input, one might consider an input following itself
as an input that has not changed. Thus we can add loops
at each state corresponding to the inputs that bring the
machine to that particular state.'* In terms of the tran-

1 Aufenkamp and Hohn, op. cit., see theorem 2.

1 This fact is not particularly surprising since the work of Aufen-
kamp and Hohn was inspired by a preliminary draft of the present
paper.

13 If we draw a Moore state diagram for ar asychronous machine,
considering the stable states (circled entries of Huffman) as the
states of the machine, we would obtain precisely this diagram; in
this sense the procedure is natural rather than a force fit.
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sition matrices, whenever we have a zero row, we insert
a 1 on the main diagonal. It is seen that the new machine,
‘obtained by such a process, is synchronous and is re-
strictedly equivalent to the original machine. That is,
as long as we apply only those sequences of inputs as are
permissible sequences for the original machine, the two
machines produce the same output sequence. Now, of
course, all the results of this paper apply to this modified
machine. It is easily seen that the loops remain loops
through all "the reduction processes. There will be no
additional loops introduced; for, as we can easily observe,
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these additional loops appear when some input permutes
the equivalent states, which is impossible if the original
machine is agynchronous. Thus we can remove the loops
after -the reduction, making the machine once again
asynchronous, and thus extend Theorems 12-14 to com-
pletely specified asynchronous machines (which have
completely filled flow tables). -

We might make, in conclusion, one small claim in favor
of the transition matrix. Transition matrices provide a
more formal language for proofs and are thus free of the
seman|tic problems involved in sequential machine theory.

Hazards and Delays in Asynchronoﬁs Sequehtial |

Switching Circuits”

o

S. H. UNGERf{

I. INTRODUCTION

switching circuits which has been treated by
Huffman, Caldwell, and others.!™* We shall not
_discuss clocked systems. The reader will be expected to
be familiar with the essential ideas contained in these
references, and so no effort will be made to review the
material presented there.

Switching circuits can be physically realized with a
wide variety of devices, ranging from electromechanical

THIS paper is concerned with the class of sequential

relays to transistors and cryotrons. The problems that we
shall attack, and otur results will not depend on the nature

of the devices used. However, it will sometimes be conve-
nient to think in terms of specific circuits, and in such
cases we will refer to gate-type logic, which can be realized
with diodes or transistors.

An inherent property of all physical systems is delay.
Signals- are never transmitted instantaneously, and

* Manuscript received by the PGCT, August 19, 1958. This
paper is based on an Sc. D. dissertation, bept. Elec. Eng., M.IT,
Cambridge, Mass.; April, 1957. The work was performed at the
Res. Lab. of Electronics, M.IT. and was supported in part by the
U. 8. Army (Signal Corps), the U. 8. Air Force (Office of Sci. Res.
Air Res. and Dev. Command), and the U. 8. Navy (Office of Nav.

Res.). - .

t Bell Telephone Labs., Inc., Whippany, N. J. )

1 D. A. Huffman, ‘“The synthesis of sequential awitching circuits,”’
J{) 5I";rtmlclin Inst., vol. 257, pp. 161-190, 275-303; March and April,
1954. ’

8. H, Caldwell, “Switching Circuits and Logical Design,”
MecGraw-Hill Book Co., Inc., New York, N. Y.; 1958.

$D. A. Huffman, “Design of hazard-free switching circuits,” J.
Assoc. Computing Machinery, vol. 4, pK‘. 47-62; January, 1957,

¢D. A. Huffman, “A Study of the Memory Requirements. of
Circuits,” Res. Lab. of Electronics, M.L.T.,
ech. Rep. No. 293; March, 1955.

Sequen.tial Switchin
Cambridge, Mass.,

;o

devices never react in zero time, but nevertheless it is
frequently possible to ignere relatively small (or sometimes
even large) delays when analyzing or designing systems. In
the case of sequential switching ¢ircuits, early studies
took into account only certain first-order effects of delays.
Otbher effects were generally swamped out by the deliberate
ingertion of delay elements at key points in the circuits.
The large delays inherent in certain deviees, such as relays,
served, in a fortuitous manner, to prevent malfunctioning
that might otherwise have been caused by delays due to
second-order effects such as stray reactances. However,
modern electronic components operate at such high speeds
that the blanketing effect due to inherent delays may be
lost, and the deliberate introduction of delay elements
becomes necessary.

This may entail an added expense and, when great
efforts are being made to develop faster components, it
seems somewhat incongruous to have to put back some of
the delay that was so painstakingly removed. It is therefore

. desirable to understand the nature of the troubles caused

by unwanted delays. In particular it might often be
important to know how to combat these troubles with a
minitaum amount of additional delay elements.

We shall demonstrate here that a certain eclass of -
sequential functions (which we shall specify preeisely)
can always be realized physically in a trouble-free manner
without introducing delay elements. It will also be proved
that circuits corresponding to all other functions will be
subject to malfunctioning due to unwanted delays if no
delay elements are specified in the design. Finally, a
proof will be presented that any function can be realized
in a trouble-free manner by a circuit containing just one
delay element. We shall also indicate some simple tech-:

\
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niques that might prove useful in designing circuits with
few or no delay elements for functions not so pathological
as to call for the all-powerful methods used to prove the
.theorems for the most general cases.

In the next section we shall describe more precisely

the kind of functions and problems we are going to study,”

and define & number of concepts and terms which will be
employed in the main body of the paper.

The material presented here is based on a report by the
author® which deals somewhat more -extensively with
some of the topics.

IT. Basic CoNCEPTS AND TERMINOLOGY

A. Systems Under Consideration

Asynchronous, level-type sequential switching circuits
are characterized by the fact that the signal at each input
terminal is at all times in one of two distinct states—
zere or one—except for brief intervals during which a
transition from one state to the other is oceurring. Such
input changes may be made to occur at any time, subject
only to the restriction that a minimum time interval,
determined by the reaction times of the components,
must separate successive changes.

The discussion here will be restricted to ‘sequential

functions in which no single input change is required to
produce more than one change at any one output terminal.
In flow table terminology (which will be presented shortly)
this is equivalent_to saying that if an uncircled j appears
in any column of the flow table, there must also be a circled
" j in that same column and the output states must be the
same for both total states. :

Unless otherwise stated, it will be assumed that only
one input variable at a time is permitted to change.

B. F’low Tables

The terminal characteristics of sequential switching
circuits (sequential functions) are deseribed by flow tables
such as Table I, where the columns correspond to input

TABLE I
) Ts
00 01 11 19
1 o 210 oL 40
2 1% @t @u 310
3 4u @w 10 @
4 @n 300 20 @

stales, that is, states of the input variables z, and z,.
The rows represent internal states of the system and the
cells of the tablé represent tofal states. Entries in the

_* 8. H. Unger, “A Study of Asynchronous Sequential Switching
Circuits,” Res. Lab. of Flectronics, M.I.T., Cambridge, Mass., Tech.
Rep. No. 320; April, 1957,
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centers of the cells indicate the next internal state, which
in the case of circled entries is the same as the present
internal state. These are the stable states. Output states
for each total state are specified by the entries in the upper
right corners of the cells.

We shall often be focusing our attention on the effects
of changes in a single input variable. In such cases it will
be convenient to refer to the input state as being in column
L (left) or R (right) and total states will be described as
L3 or R5, meaning, for example, the state corresponding
to the left-hand member of the pair of columns under
discussion and the third row or the right column, fifth row,
respectively.

C. Circuit Models and Flow Matrices

The circuits that will be considered here will be in the
form shown in Fig. 1(a). All signals are binary valued,

O—— —=0
INPUTS : : QUTPUTS
COMBINATIONAL
CIRCUITS

(b)

Fig. .1.

and the box labeled “combinational circuits” contains no
feedback paths. The elements in the box are all of the type
shown in Fig. 1(b), that is, devices with one output ter-
minal whose signal is a combinational function of the
signals at the one or more input terminals. The only other
components allowed in our model are delay elements.

Those delays deliberately introduced by the designer
are defined as delay elements and appear only in the
external feedback branches of Fig. 1(a). It is assumed that
every circuit lead, including those inside the box may
contain a stray delay, defined as a delay not under the
control of the designer. :

Any sequential switching circuit composed of the type
of elements mentioned here can be represented in the
form of Fig. 1(a) (but not always uniquely).

The external feedback branches in Fig. 1(a) will be



than. e and if all delay element values are greater than §,
then the circuit will operate in accordance with the given
flow table, provided that successive input changes are
separated by some minimum finite time interval m,
which is a function of ¢ and the mazimum delay element
value. Roughly speaking, a circuit is proper if it operates
in a.consistent manner despite variations in all delay
values, provided that a suitable margin is maintained
between the values of stray delay and delay element
magnitudes and provided that the circuit is allowed to
settle ddwn after each input change before the next mput
change is permitted to occur.

(The nature of the relationships among the various
bounds for a proper circuit may be surmised from the
following statements: A conservative value of 5§ would be
the maximum time for a signal to propagate from any
input terminal to any output terminal of the portion of
the cireuit labeled “combinational circuit’” in the model
of Fig. l(a), assuming that a stray delay of magmtude €
is placed in every branch of the circuit. If B is the maxi-
mum delay element value in the circuit, then let L; be

- the sum of all delay values in the sth loop of the circuit
. when all delay element values are set at 8 and all stray
“delays are set at ¢, and designate L as the maximum of
the L’s. Let T be the maximum number of y-states,
including the final one, traversed. during any transition in

the Y-matrix of the circuit as a result of any one input’

change. Then LT will be a safe value for m. Note that

\
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called “‘state-branches” and are defined as follows. A set of TABLE 11
branches of a sequential circuit is a state-branch sel (and T %1 .
its members are stafe-branches) if the set contains all 100 01 1 10 b BWn
" delay elements in the circuitrand if at least one member is 1 ® 9 s e 0 0
included in every feedback loop. Such. a set is obviously 1 1 1
- not generally unique. The signal at the output end of each 2 ' 1 ® 3 o 0 1
state-branch is defined as a sfafe-variable and will be 1 1 0
represented by y,, for the ith state-branch. The y-state 3 4 ® . 0 1 1
of a circuit at any given time is given by the set of values 1 0 0
" assumed by all of the state-variables of the circuit at that 4 ® 5 9 0 ’ 1 0
time. Siafe-variable excitations are defined as the signals 1 0 1
at the input ends of the state-branches and are represented
by Y.’s. They may differ from the y,’s in cases where the s _
; branches contain delays.
The bridge between the flow table, descrlbmg the B . TABLE II
external characteristics of the circuit and the detailed : :
circuit, is the flow matriz. Each row of the flow table P ’
(internal state) is associated with ‘one or more y-states, 00 01 11 10 nooc oy 7]
defined as row-sets. The flow matrix of Table II illustrates R R
such a row assignment for the flow table of Table I. Each 000 001 000 010 0 0 0
row set is comprised of two y-states. Given a flow matrix, 111 110 111 101 1 11
& terminal description of the corresponding combinational 000 001 01 o1l 0 "0 L
circuit box can be obtained in the form of a Y-matrix.
This is a table of combinations giving the ¥, values as ur - 10 110 100 -1 1 0
functions of the y states and can be obtained directly from 010 011 11r 011 -0 1 1
the flow matrix."* Table III is the ¥ matrix for-Table II. .101 00 000 100 3 o 0
D. Hazards 010 01° 110 010 0 10
A circuit will be defined as proper if, for any ¢ > 0 101 100 001 101 1 Q 1
there exists a & such that if all stray delay values are less Ty - '
L1 2 3

the bounds given here are not the tightest ones possible:)
If a circuit is not proper in the above sense then one or
more hazard conditions will be said to exist.

Two types of hazards will be distinguished. A transumt
hazard is present if momentary false outpdt signals occur
at one or more output terminals following certain changes
in the input state. If it is possible for a circuit to enter the
wrong internal state after certain input changes, then a
steady-state hazard will be said to exist.

Transient hazards can exist ip combinational circuits,

- but Huffman has shown that they can always be avoided

by appropriate design techniques.®* Henceforth we shall
assume that all of the combinational functions which we
must realize will be designed in a hazard-free manner.
(This is possible in general only when just one input at a
time is permitted to change.).

Another form in which a hazard can appear in a sequen-
tial circuit is a critical race condition.'**** This is a con-
dition in a flow matrix where two or more state-variables
become unstable simultaneously as a result of an input
change and Wwhere the next stable state of the system
depends on the order in which the unstable .variables
thange. This source of hazards can be eliminated by
design procedures described elsewhere' " and will not be
considered here.
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Two types of delays will be defined. A pure delay is one
which converts on input signal f(¢) into an output f(t — D),
where D is the value of the delay. An inertial delay
(defined only in terms of binary signals) behaves like a
pure delay, except that input changes persisting for a
time less than D, the delay magnitude, are ignored.
Thus, rapid signal fluctuations are filtered out by such a
device, which is somewhat analogous to a low-pass filter.
While few if any physical devices behave exactly in accord-
ance with either of the above descriptions, many real
components closely approximate pure or inertial delays.
Transmission lines and certain LC ladder networks
resemble pure delays, whereas electromechanical relays
behave like inertial delays. Stray delays, generally domi-
nated by wiring reactances, possess important inertial
characteristics and we shall assume that they are repre-
sentable as inertial delays. This assumption will be used
in the proof of the theorem of Section IV.

A typical hazard situation is depicted in the circuit
of Fig. 2. If we assume that the stray delays in the B,
and B, branches are large compared to the delays in the
other branches, then the circuit behavior will be correctly
characterized by the flow matrix shown in Table IV.
(In fact, one -way of assuring proper operation is to insert
delay elements in B, and B,.)

Suppose now that a relatively large delay appears in
the branch labeled H (how large will become clear
during the subsequent discussion). Then if, while the
system is in the state labeled a in Table IV, z, is turned
- on (switched from zero to one) the next stable state will
be in row 4 and not in row 2, as indicated in the flow
matrix. This comes about as follows.

- The switching of x, first changes to unity the output of
the multiplier gate labeled M, in Fig. 2, and this switches
on y,, the output of A,, which is connected to one input
lead of M,. The other input to this gate remains at unity

since the delay in H prevents the z,-change from having’

an immediate effect at this point. Therefore a one-signal
appears at the output of M,, penetrates through 4,, and
turns on y,. A feedback path through M, and A4, now
holds y, on independently of the output of M,. A second
effect of y, changing to unity is that a zero appears at
the output of I, thus preventing anything but zeros from
appearing at the outputs of M, and M,. Nowy, = g, = 1,
and the system is in the state marked b in Table IV. But
only the output of M, is holding y, on, and as soon as the
effect of the original z,~-change penetrates I, and the delay

in H, a zero appears at the output of M, causing the output-

of 4, to go to zero, and the system is in row 4 as stated.
The possibility of such behavmr could have been pre-
dicted from the structure of the flow matrix. When Z,
changes, y; becomes unstable and also switches. If the
effects of the y,-action penetrate to y, before the direct
effect of the z,-change (which is the case in our circuit),
then as far as ¥, is concerned, the system state switches
from a to ¢, where y, is unstable. This causes y, to switch
to one and moves the internal state of the system to row 3
and, once this occurs, y, remains at unity value even after
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TABLE 1V
T Ts )

01 11 10 /] Y2
1 @° 2 @° @° ] 0
2 3 @ @ 3 0 1
3 & 4 2 @t 1 1
4 o D! 1 1 1 0

the effect of the z,-change reaches it. Finally, since y, is
unstable in state b, it changes again and the system settles
down in state e. v

We shall see later that such behavior will always be
possible in circuits realizing functions corresponding to
flow matrices such as Table IV, unless delay elements
are used.

&« 1L Funcrions REavizaBLE WitHoUT DELAY
ELEMENTS

A. Definitions and Lemmas

Each definition and lemma in this sectlon is'numbered,
and the first time the term or lemma is used in the main
body of the text it will be italicized and the reference
number will follow.

1. Definition—Essenttal Hazard: A sequential function
contains an essential hazard if there exists a stable state S,
and an input variable z such that, starting with the system
in S, three consecutive changes in z bring the system to a
state other than the one arrived at after the first change in
z. The function corresponding to the matrix of Table IV in
the previous section has three essential hazards. One
starts in state a with z, as the relevant input variable
(and was discussed in the example). A second has its
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initial state labeled b, with z, as the input variable. Can
you find the third?

2. Definition—Mod Sum: The mod sum of two positive
integers a and b, written as a(+) b is the arithmetic sum,
of those powers of two appearing in the binary representa-
tion of a or of b, but not both. For example, 3(+)7 = 4
and 5(+) 3 = 6. This operation is clearly associative and
commutative, and z(+)z = 0 for any z. :

8. Definition—Hamming Row-Set: A y-state will  be
said to, belong to the Hamming row set S; if, and only if,
the ¢'s determined by the parity relations (involving
modulo-two addition).

9% =t @%@yo®y1

=1 ®uPudy

| 4=tOuDrdy
(correspond to the digits of the number ¢ written in binary

form, that is if ¢ = ¢,2° + ¢.2' + ¢2°. For example,

~ 0110111 belongs to S;. These sets, which can be generated

from any set of 2" — 1 binary variables, are related to
Hamming error correcting codes,’ and were first applied
'to sequential switching circuits by Huffman.* They have
the property that, given any state in S, changing y,,,;
converts the state to one belonging to S;. For example,
changing y, when the system is in state 0001101 (in set Sy)
changes the state to 0101101 which is in 9, [6(+)4 = 2].
‘Transitions from any set to any other set thus require a
-change in only one variable. It will sometimes be con-
venient to refer to y, ; as the variable separdting the states
assigned to rows ¢ and j. Where S, and S, are Hamming
sets assigned to rows ¢ and j, respectively,

Yiii = Yitnri-

4. Definition—d-trio: Three rows of. a flow table Ty, Ta,
and ry constifute a d-trio if, for some pair of input states
L and R differing only in the value of one input variable,
the next-state entries in L are r,, r;, and 7y in rows ry, r,,

and r,, respectively, and the next-state entries in R are .

r2 for all three rows. Part (d) of Table VI in the next

section depicts a d-trio (and a glance at this illustration

will no doubt be more edifying than the tongue twisting
. definition given above.) '
8. Definition—d-Transition: A d-transition is the ac-
tivity oceurring as a result of an input change from L and R
with the system originally in row r, of a d-trio.
6. Definition~Trap Row: An auxiliary row added to a
flow matrix to guard against’ malfunctioning during a
~ particular d-transition. The row-set assigned to the trap
row for each d-trio corresponds to the y-states other than
those assigned to the d-trio which might be seen during the
d-transition due to the effects of stray delays. The next-
state entries assigned to the trap rows assure proper
termination of the d-transition. o

¢ R. W. Hamming, “Error detecting and error correctixig cédes,”
Bell Sys. Tech. J., vol. 29, pp. 147-160; April, 1950,
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. 7. Lemma: If a, b, and ¢ are three integers no two of
which are equal, then there is no integer d such that 2¢ = 2°
(+)2°(+)2-. ‘ o .

Proof: a) From the definition of (+) (see Section
III-A, 2) it ig clesr that 2°(4)2°(4)2° = 2° 4 2° + 2°¢
since ea?h term in the sum is & unique power of two.

b) The sum 2° + 2° 4 2° can be written as a binary
number with exactly three nonzero bits, one corresponding
to each term. . . , ,

¢) If there existed an integer d such that 2° = 2* 4
2" + 2°, then the sum referred to in b) couid also be
written as a binary number with one nonzero bit corre-
sponding to 2°. But this is impossible since the binary
form of any number is unique. Hence there cannot be

- any d such that 2° = 2° 4 2° 4 2°. (QE.D.) -

8. Lemma: If a, b, ¢, a*, b*, and c* are positive integers
witha < b < c'and a* < b* < ¢*, then 2%(+)2%(+4)2° =
2°(4)2"°(4)2°" implies that ¢ =:a*, b = b* and ¢ = c*. v

Proof: First note that, from the definition of the (+)
operation (Section III-A, 2), 2° + 2° 4 2° = 2= 4 2°*°
+ 2°°. If we write the sums on both sides of the eqéation in
binary form we can see that each term corresponds to :
one binary digit, so that each term on one side must be .
matched by a term on the other side, and hence the
exponents must be equal. (Q.E.D.) :

B. Them'em on Seqﬁential Functions Without Essential
Hazards 4 '

If @ sequential function. has no essential hazards (Section
ITI-A, 1) then it can always be realized by a circust without
delay elements, and this circuit will be free of steady-state
hazards. Transient hazards may occur in some cases.

There will be two parts to the proof. First we shall
describe a method for assigning row-sets to the rows of
an augmented version of the flow table describing the
function, and then’we shall demonstrate that this assign-
ment will result in proper operation without reliance on
delay elements. (It is assumed that hazard-free combina-
tional eircuits will be used to realize the flow matrix.)

Let us assign the Hamming row-set (Section I1I-A, 3) S,
torowi(t = 1,2,3, - - -). For every d-frio (Section II1-A, 4)

-with rows a, b, and ¢ form an auxiliary row of the flow ma-

trix [called a trap row (Section III-A, 6)] and assign to it
the row-set S,, where t = 2°(4-)2°(+)2° = 2° + 2° + 2°.
[See definition in Section III-A, 2 for meaning of (+)
operation.] From our first lemma (Section ITI-A, 7) we note
that ¢ cannot be expressed in the form 2° (d an integer), so
8. could not have been assigned to any of the original rows
of the table. Our second lemma (Section I1I-A, 8) implies
that every d-trio will have a-trap row with a unique row-set
assigned to it since 2°(+4)2°(+4)2° = 2°°(4)2"(4)2°
implies @ = a* b = b* and ¢ = ¢*.

The entries in the trap rows of the matrix ave filled as
follows. For-the input states in which the d-transitions
(Section 1II-A, 5) of the corresponding d-trios terminate we.
fill in numbers corresponding to the final states of the
d-transitions. [That is the state labeled 2 in Table VI (d).]



