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Symbols and Notation

block code of block length n» with M codewords
largest integer smaller than or equal to a
cardinality of set X

integers modulo n )
multiplicative interse of a, modulo n; a-a'lsl(mod n)
polynomials in indetermine x, with coefficients from Z,
equivalence class containing polynomial g(x)

et of all equivalence cla:ses in Z,[x] under
congruence modulo the polynomial f(x);
sometimes denoted Z,[xY f(x)

Galois field (finite field) with ¢ elements;

q is a prime or a power of a prime number

order of a field element

F\{0}, the set of non-zero elements of F

minimal polynomial of o; ,
sometimes m;(x) is used to denote m_;i(x) or mss(x)
(with o or B implied by the context)

vector reresentation of polynomial a0+a]x+azx2
Zech’s logarithm of W'; o?®=1+0of

=0, by notational convention

set of k-tuples over F

linear code of block length n and dimension &

~ linear code of block length n and dimension &,

with distance d

orthogonal element of linear code C ("C perp")
determinant of matrix D

cos 2nip)+i sin(2n/p), where i?=—1

first-order Reed-Muller code of block length 2"
kth-order Reed-Muiier code of block len;"1 2"
reciprocal polynomial of h(x)

cyclotomic cost (of ¢ modulo n) containing i

set of cyclotomic costs (of ¢ modulo n)
greatest common divisor
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Foreword

The field of Ermror Correcting Codes had its roots in Shannon’s development of Information
Theory in the 1940’s. Research on coding was very active in the 50°s and 60°s and most of the
major results known today were developed in that period. Most ‘‘practical engineers’” of that
¢ra regarded coding as useless and impractical, while many of the researchers despaired of the
field every becoming more than an academic playground.

Apylications for error correcting codes started in the 70’s in very expensive communica-
tions systems such as deep space probes. As hardware costs dropped and as development
engineers saw the benefits of real coding systems, applications expanded quickly. Today very
sophisticated coding is used in ordinary consumer compact dxsg; players, in storage technology,
and in a broad range of communication systems.

This text develops the topic of error com:ctmg block codes at an undergmduatc level. It
manages to do this both by being rather selective in the set of topics covered and by having an
unusually clear organization and style of presentation. There are some sophistcated mathemati-
cal topics in the text and the authors develop them honestly, but the arguments are made accessi-
ble by using insight rather than excessive formalism.

One might wonder about the merits of an undergraduate course on error correcting block
codes given the intense pressure to include more and more material in the curriculum for under-
graduates in engineering, computer science, and mathematics. Wouldn’t it be preferable to have
a course covering convolutional codes as well as block coding and also covering many other
communication topics? The type of course represented by this text, however, has many impor-
tant advantages over a survey type course, not least of which is that survey courses are invariably
boring. The major advantage of studying error correcting codes is the beauty of this particular
combination of mathematics and engineering. The student, even if never involved with the field
later, gets an example of applied mathematics and engineering at their best.

Robert G. Gallager, Consulting Editor

Fujitsu Professor of Electrical Engineering
Massachusetts Institute of Technology
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l_’reface

An Introduction to Error Correcting Codes with Applications is a text intended for an introduc-
tory undergraduate course. in error-correcting codes. It should be of interest to a wide range of
students, from mathematics majors to those in computer science and engineering. The book deals
almost entirely with codes that are linear in nature, and the necessary algebraic tools are
developed, where necessary, to make the presentation self-contained. It is intended for students
who are familiar with the fundamental concepts of linear algebra (solution of systems of linear
equations, vector spaces, etc.). Background in abstract algebra (groups, rings and fields) would
be of use, but is not assumed. In general, interested students with reasonable mathematical
maturity will find the material to be at a suitable level.

While the underlying mathematics is completely developed, the book emphasizes the practical |
considerations of efficient encoding and decoding schemes for various codes. Most books in the
area either emphasize the theoretical aspects of the subject (to the exclusion of practical con-
siderations), or go to the other extreme, presenting implementation details at the circuit level. It
is the purpose of this book to fill the void between the two, considering codes of pragtical
interest, but stopping short of hardware-level implementation details. Codes which cannot be
efficiently implemented are given little emphasis, and the temptation to discuss non-practical
codes with “‘cute’’ mathematical properties has been resisted.

The book covers the basic principles involved in error-coding, and presents a thorough introduc-
tion to linear codes. It introduces cyclic codes in general, and progresses to the more sophisti-
cated BCH codes, and the very practical Reed-Solomon codes. Applications of error-correcting
codes to deep-space probe communications and to the increasingly popular compact disc players
are emphasized. The goal is to provide a basic understanding of practical error-correcting codes
and the principles they rely on. The development of an appreciation for the elegant mathemati-
cal concepts making efficient implementations possible is a most welcome byproduct.

The majority of the. material presented is widely available in standard references, in various
forms. Many of these we have included in our list of references; a most extensive bibliography
can be found in [MacWilliams 77], although this of course does not contain the more recent
results. Some results which we have included are less widely available, and are perhaps worth
- singling out. These include the results by van Lint and Wilson on bounds for cyclic codes
(§6.3); the material dealing with coding techniques used in commercial compact disc players
(parts of Chapter 7); and some factoring techniques (§5.9, $6.5) due to Berlekamp, which can be
found in [Berlekamp 68) but are not typically included in other coding theory books.

Because of the importance of finite fields to a serious introduction to algebraic codes, the text
provides a basic but thorough introduction to finite fields, assuming no prior knowledge of field
theory. With the exception of a few sections which may be omitted at the instructor’s discretion,
the material can be covered in a one-semester course (thirteen weeks of lectures). It has been
taught at the University of Waterloo for the past eight years to junior and senior undergraduate
mathematics, computer science and engineering students. To aid instructors, we have denoted
with a dagger (f) those sections which we feel may be omitted safely, if time is short. Inclusion .
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of these sections, together with some of the theory developed in the exercise sets (eg. further
bounds for linear codes, higher-order Reed-Muller codes, shortened Reed-Solomon codes),
makes the text suitable for an introductory course at the graduate level, or for advanced under-
graduates. '

We have made a conscious effort to limit the amount of material in this book to that which one
can reasonably expect to grasp in an introductory course. Unfortunately, this has meant that -
some areas meriting discussion have been left out. Perhaps the most notable of these is an intro-
duction to convolutional codes, for which we refer the reader to [Blahut 83] or [Lin 83].

The text contains over 300 exercises, which range from routine to very challenging. We feel this
is an essential component of an introductory course. A separate solution manual giving com-
plete and detailed solutions to all exercises is currently being written.

(xiv)
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Chapter 1

INTRODUCTION and FUNDAMENTALS

1.1 An Introduction to Coding Theory

The theory of error. detecting and correcting codes is that branch of engineering and’
mathematics which deals with the reliable transmission and storage of data. Information media
are not 100% reliable in practice, in the sense that noise (any form of interference) frequently
causes data to be distorted. To deal with this undesirable but inevitable situation, some form of
redundancy is incorporated in the original data. With this redundancy, even if errors are intro-
duced (up to some tolerance level), the original information can be recovered, or at least the
presence of errors can be detected. A small example serves to illustrate the concepts.

Suppose the information we are to transmit-comes from the set of symbols {A,B,C,D}.
For practical considerations we associate sequences of 0’s and 1’s with each of these symbols.
A - 00
B - 10
C - 01
D - 11

Hence, if we send a 00 sequence, the receiver is to interpret this as the message A. The proce
can be represented by the following simple schematic diagram.

source source
- = — = — >
encoder channel decoder

The source emits symbols from the information set which in our example is {A,B,C,D}. The
source encoder associates each piece of information with a binary (0,1) sequence and then
transmits it. The channel may be any information medium. For example, it may be a radio wave
channel, a microwave channel, a cable, a digital integrated circuit or a storage disk. The source
decoder reccives the binary sequences from the channel, converts them back to the source alpha-
bet and then passes this data to the user.




2 Error Correcting Codes

If the channel were 100% relia’le, that is, if whatever the source encoder put on the chan-
nel was precisely what the source decoder received, then there would be no need for error
correction. Unfortunately, most channels are not entirely reliable and there is a certain probabil-
ity that what the decoder receives is not what was sent. If the source encoder sends 00 and the
source decoder receives 01, then a single error has occurred. The decoder has no way of know-
ing this since 01 is a valid piece of information. The decoder has no choice but to pass the sym-
bol C to the user. The challenge is to improve the: reliab;hty of message transmission. .We do
this by adding redundancy to each message. A major. problm in coding theory is to determine
how to add this redundancy to messages in order to dcwct and possxbly corréct channel errors.
In our example, we might make the following associations. - % . -

A — 00 — 00000
B - 10 - 10110
C — 01 - 01011
D - 11 - 11101

Now, if the receiver reads 01000 it knows that an error has occurred, since this sequence is not
one which the encoder put on the channel. If we assume that errors are introduced randomly to
the binary digits (bits) of the sequence, then it seems reasonable for the decoder to assume that
the transmitted sequence was 00000, since the received sequence can be obtained from this by
the introduction of a single error. At least two errors would have to occur to transform any one
of the other three sequences to 01000. One can easily check that altering a single bit in any one
of the above 5-bit sequences results in a unique séquence. Hence if (at most) a single bit is
altered, the resulting sequence can be uniquely identified with one of the original sequences.
Thus our 'simple example has the capability to correct a single error. The following diagram
schematically illustrates the new coding process.

‘ source source
encoder decoder

channel | channel

encoder channel =] decoder




Introduction and Fundamentals ‘ 3

One of the problems ta be resolved then is to determine how the channel encoder should
add redundancy to the source encoder output. Another problem is to determine how the channel
decoder should decide which sequence to decode to. We shall address these problems and others
in later chapters. In §1.2, we indicate some specific applications of error-correcting codes, and
in §1.3 we formalize the concepts just introduced. '

The study of error-correcting codes is one branch of coding theory, a more general field of
science dealing with the representation of data, including data compression and cryptography.,
These three areas are related in that they involve the transformation of data from one representa-
tion to an alternate representation and back again via appropriate encoding and decoding rules.

The objective of data compression is to transform data into a representation which is more
compact yet maintains the information content (meaning) of the original data, to allow for more
efficient use of storage and transmission media. This is possible by removing redundancy from
the data. The traditional goal of cryptography has been to ensure privacy in communication by
transforming data to render it unintelligible to all but the intended recipient. This is achieved
through the use of an encoding scheme that relies on a secret key known only by the sender and
intended recipient. As discussed above, the purpose of error-correcting codes is to increase the
reliability of communication despite noise in the data medium, by adding redundancy in a uni-
form and efficient manner. '

It is interesting to note that whereas cryptography strives to render data unintelligible to all
but the intended recipient, error-correcting codes attempt to ensure data is decodable despite any
disruption introduced by the medium. Data compression and error correction also contrast one
another in that the former involves compaction and the latter data expansion. In this book we.
will be concerned mainly with error detecting and correcting codes.

If data compression and cryptographic encoding were to be used in conjunction with error-:
correcting codes, then the coding process as outlined in the above diagram would be modified
slightly. A data compression stage might precede or replace the source encoding stage, and
cryptographic encoding would be best performed just prior to channel encoding. Corresponding
decoding stages would then be necessary at the appropriate points at the decoding end. Note that
the removal of redundancy by data compression and subsequent addition of redundancy during
channel encoding are not contradictory, as the redundancy that is removed by data compression
serves no useful purpose, whereas that added by the channel encoder is of use for error control.



4 . Error Correcting Codes

1.2 Applications of Error Correcting Codes N

The increasing reliance on digital communication and the emergence of the digital com-,
puter as an essential tool in a technological society have placed error-correcting codes in a most
prominent position. We cite here a few specific applications, in an attempt to indicate their prac-
ticality and importance. '

The use of a parity-bit as an error-detecting mechanism is onc‘of the simplest and most
weéll-known sghemes used in association with computers and computer communication. Data is
partitioned into blocks of n bits, and then to each block, an additional bit is appended asaQora
1, s0 as to make the number of bits which are 1 in the block, inciuding the appended bit, an even
numbser (for even parity). If during transmission then, a single bit-error occurs within the block,
the parity of the block (i.e. the number of 1’s in i) becomes odd, and checking the parity thus
allows for detection of single errors. ‘

Many computers now have error-correcting capabilities built into their random access
memoric’s; it is less expensive to compensate for errors through the use of error-correcting codes
than to build integrated circuits that are 100% reliable. The single error-correcting HMng
codes, and linear codes in general, are of use here. These will be considered in Chapter 3. Disk
storage is another area of computing where error-coding is employed. Storage capacity has been
greatly increased through the use of disks of higher and higher;iensity. With this increase in
density, error probability also increases, and therefore information is now stored on many disks
using error-correcting codes.

In 1972, the Mariner space probe flew past Mars and transmitted pictures back to earth,
The channel for such transmissions is space and the earth’s atmosphere. Solar activity and
‘atmospheric conditions can introduce errors into weak signals coming from the spacecraft. In
order that most of the pictures sent could be correctly recovered here on earth, the following cod-
ing‘ scheme was used. The source alphabet consisted of 64 shades of grey. The source encoder
encoded each of these into binary 6-tuples and the channel encoder produced binary 32-tuples.
- The source decoder could correct up to 7 errors in any 32-tuple. We shall discuss this system in
.mpore detail when we consider Reed-Muller codes in Chapter 4.

In 1979, the Voyager probes began transmitting colour pictures of Jupiter. For colour pic-
tures the source alphabet needed to be much larger and was chosen to have 4096 colour shades.
The source encoder produced binary 12-tuples for each colour shade and the channel encoder
produced 24-tuples. This code would correct up to 3 errors in any 24-tup1e, and is the Golay
code discussed i Chapter 4. A

1

»
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The increasing popularity of digital audio is due in part to the powerful error-correcting
codes that the digitization process facilitates. Information is typically stored on a small alumin-
ized disk as a series of microscopic pits and smooth areas, the pattern representing a sequence of
0’s anid 1’s. A laser beam is used as the playback mechanism to retrieve stored data. Beca
the data is digital, error correction schemes can be easily incorporated into such a system. Given
an error-coded digital recording, a digital audio system can on playback, correct errors mtro-
duced by fingerprints, scratches, or even imperfections originally present in the stgrage mediw
The compact disc system pioneered by Philips Corporation of the Netherlands 1n coopcra‘:ion
with Sony Corporation of Japan, allowing playback of pre-recorded digital audio disks, is an
excellent example of the application of error-correcting codes to digital communication; cross-
interleaved Reed-Solomon codes are used for error correction in this system. These ideas are
pursued in Chapter 7. Digital audio tape (DAT) systems have also been developed, allowing
digital recording as well as playback.

1.3 Fundamental Concepts

In this book we shall be primarily interested in block codes. We begin with a few defini-
tions, in order to develop a working vocabulary. Let A be an alphaber of q symbols. For exam-
ple, A ={a,bc,...,z} is the standard lower case alphabet for the English language, and A = {0,1}
is the binary alphabet used in the example of §1.1. i

Definition. A block code of length n containing M codewords over the alphabet A is a set of M
n-tuples where each n-tuple takes its components from A. We refer to such a block code as an
[n.M]-code over A. ‘

In practice, we most frequently take A to be the binary alphabet. We often refer simply to an
[n.M]-code, the alphabet A being understood. We reserve round brackets () for special types of -
codcs, the linear codes, to be introduced in Chapter 3. Given a code C of block length n over an
alphabet A, those specific n-tuples over A which are in C are referred to as codewords. Note -
that while the channel encoder transmits codewords, the n-tuples received by the channel
decoder may or may not be codewords, due to the possible occurrence of errors during
transmission. We use the terms vector and word interchangeably for n-tuple.

In §1.1, we constructed a [5,4)-code over a binary alphabet. That is, we constructed a code
with 4 codewords, each being a 5-tuple (block length 5), with each component of the 5-tuple, _
being O or 1.



