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ALGORITHMS FOR SKELETONIZING THREE-DIMENSIONAL DIGITIZED BINARY PICTURES
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_Abstract

In this paper several algorithms for skeletonizing a three-dimensional (3-D) pigtorial
data are proposed with experimental results to provide ideas on what kinds of opergtlons are
required and what the computation time amounts to for processing 3-D images. Algor;thms dis-
cussed here include shrinking, thinning, distance transformation and border following.

1. Introduction

Recent progress in generating three-dimensional (3D) pictorial data such as CT images
and a set of microscopic images strongly requires computer analysis and recognition of 3D
digitized pictures. However, algorithm resources available for 3D images is extremely
limited compared to the enormous methods which have been developed for two-dimensional image
processing. In this paper several algorithms for skeletonizing a three-dimensional (3-D)
binary image are proposed with experimental results to show what kinds of operations are
required and what the computation time amounts to for recognizing and interpreting 3D images.
Algorithms discussed here include shrinking, thinning, distance transformation, and border
following, most of which were developed by authors and their colleagues.

2. Definitions and basic properties

A digitized 3-D picture defined on a 3-D square grid is a stack of 2-D digitized images
and theoretically modelled as a 3-D array of small cubes called voxels. A voxel located in
the i-th row and the j-th column of the k-th plane is denoted by X = (i,j,k). 1In this paper
only binary pictures with K planes including I rows and J columns are considered. (Fig. 1)
Voxels with values 0 and 1 are called 0-voxels and l-voxels, respectively. The set of all
l-voxels in a given 3-D picture is called a (3-D) object. It is assumed that the first row,
the I-th row, the first column and the J-th column of each plane, the first and K-th plane
are all filled with O0-voxels.

(6) (18)

(X), N (x),

and N(26)(X) are defined as below and are called the 6-neighborhood (6-n.), 1l8-neighborhood
(18-n.) and 26-neighborhood (26-n.) of X, respectively. (Fig. 2)

[Definition 1] For any voxel X = (i,j,k), three sets of voxels N

N ) = {(p,q,0); |p-i| + |q-3| + |r-k| = 1}
N8 (%) = ((p,q,m); 0 < |p-i|? + |g-3|2% +|r-k|% s 2} (1)
8% (%) = ((p,q,0); max( |p-il, |g-3], |r-k| ) = 1}

Basing upon these definitions of the neighborhood, three types of connectivity (k-connecti-
vity or k-c., where k=6, 18, or 26) are defined in the same way as those of 2-D pictures [1].
In order to keep theoretical consistency we should introduce the fourth type of connectivity
called the 18'-connectivity, and should adopt a set of connectivity types for l-voxels and

0-voxels as in Table 1. For details see Ref. [2]. By regarding above neighbors as of unit
distance from the voxel X, three distance functions are obtained. They are denoted by d6’
(k)

d18’ and d26’ respectively. Consider a particular l-voxel X in an object. Let E (X)

and E(k) (X) denote the Euler number (genus) of the object before and after changing the
value of the 1-voxel X into 0 (i.e., deleting X), respectively. A superfix k represents the
type of connectivity (k=6, 18, 18', and 26).

[Definition 2] The connectivity number of a l-voxel X, Nc(k) (X) is defined as
S vam— -
e =e® @ -® () +1 (2) where k=6, i8, 18', or 26.

The genus E(k) (X) is obtained by the triangulation method or the simplex counting
method [2]. Formulas to calculate the connectivity number are explicitly given in [2] and
[3] for all of four connectivity cases.

If changing a l-voxel X to a 0-voxel causes no change in any of three kinds of numbers,
numbers of connected components, holes and cavities, then it is said that the l-voxel X is




deletable (strictly speaking, k-deletable where Table 1 Consistgny pairs of
k (=6, 18, 18', 26) means the type of connecti- connectivity types
vity). Obviously, if a l-voxel X is k-deletable,

n
Nc(k) (X) = 1. However, the converse is not (for ?—voxel) (for o-voxel)
always true. In order to guarantee invariance
of topological structure, the following three 6 26
features must be taken into consideration. 18 18"
(Fig. 3) 1g* 18
[Definition 3] Component index R(k) (XZO) 20 6

= number of k-connected components which are
connected to X and exist in the 18-n. for k=6 and 18' (in the 26-n. for k=18 and 26).

0
(kf(xzo) = number of holes newly generated by deleting the l-voxel X0 in the
3x3x3 local area of Fig. 3.

Hole index H

Cavity index Y(k)(xzo) = number of cavities newly generated by deleting the l-voxel X20 in

the 3x3x3 local area of Fig. 3.
The superscript k denotes the types of connectivity. The set of three features (R(X), H(X),
Y(X)) is called the connectivity index. Then the following theorem holds.

[Theorem 1] The necessary and sufficient condition that a 1-voxel X is k-deletable is
t s -
that R k)(X) = 1 and H(k)(x) = Y(k)(x) = 0, or equivalently Nc(k)(X) = R(k)(x) =1,
Derivation of Theorem 1 is shown in [2] with several experimental results. .All
possible values of the connectivity number and the connectivity index are shown in [2] and
[3] with several examples.

3. shrinking of a 3-D object

Shrinking is a procedure to reduce any 3~D simply connected object into an isolated
point without changing topology (without causing split and merge of any connnected compo-
nents, without generating any of holes and cavities, and without losing any of existing
holes and cavities). A shrinking algorithm for 3-D objects is derived immediately as
follows by converting l-voxels into 0-voxels sequentially.

[Algorithm I] (Shrinking) Scan a given 3-D picture by the mode I in Fig. 4, check
deletability at each l-voxel, and change any deletable l-voxel into the 0-voxel as soon as
it is found. Repeat all these steps until all voxels are found to be undeletable.

Any simply connected object inthe 3~D space is reduced to an isolated l-voxel. If an
object has a cavity of a hole, a thin figure preserving its cavity and hole is obtained.
A procedure to check deletability of a l-voxel is given in Ref. [2] and [3] with examples.

4. Thinning

A thinning algorithm is the one to transform a 3-D object into a figure with l-voxel
width almost everywhere, preserving the topological structure and preventing excessive
degenration of the object. A sequential type of thinning algorithm is derived basing upon
the same principle as that of the shrinking algorithm presented above. Before presenting
the algorithm, let us clarify our objective more by defining a digitized 3-D surface figure.

[Definition 3] An object in a 3-D digitized picture is called a 3-D surface figure if
and only if it satisfies at least one of the following (a) and (b).

(a) An object does not contain any of 3-D simplexes (Fig. 5).

(b} An object does not contain a deletable l-voxel.

We consider that 3-D thinning is a procedure to transform any object in a given 3-D

image into a 3-D surface figure and that the 3-D thinning procedure should satisfy all of
the following requirements.

{Requirements] (1) Topological properties of the original object should be preserved.
(2) A resulting figure should be the 3-D surface figure. (3) A resulting figure should be
located along the center line (center surface) of an original object. (4) An original
object should not degenrate excessively during a thinning procedure.

Let us present an algorithm which was derived by the authors and their colleagues [4].



[Algorithm II] (Thinning)

Input: £(1,3,k)} : A 3-D binary picture
where £(i,j,k) denotes a density
value at the voxel (i,j,k).

m: The type of connectivity (m = 6,
18', or 26)
Output: F = {f(i,j,k)} :

A set of voxels with positive den-
sities are regarded as an object.
All objects have been changed into

surface figures.

Voxel-preservation condition (VPC)

VPC 1: A voxel (i,3j,k) is not contained
in any of 3-D simplexes.
VPC 2: A voxel (i,j,k) is not deletable.

A voxel satisfying VPC 1 or VPC 2 is called a

preserved-voxel.

18,

[STEP 1] Detection and grouping of border
voxels
for all (i,j,k)'s do*
if £(i,3j,k) = 1 then
begin
% f(i,j,k+1) = 0 then £(i,j,k) < 7;
f £(i,j+1,k) = 0 then £(i,j,k) « 6;
If f(i+l,j,k) = 0 Then £(i,j,k) <« 5;
If £(i-1,3j,k) = 0 then f£(i,j,k) <« 4;
if £(i,j-1,k) = 0 then f(i,j,k) « 3;
if £(i,3j,k-1) = 0 then f£(i,j,k) <« 2;

end
else no operation is performed

A 3-D ternary picture.

[STEP 2] Subcycles
for bordertype « 2 to 7 do

begin
[STEP 2.1] Detection of preserved-voxels

for all 11 j.k)'s do

egln
ii(f(l,J,k) = bordertype N (VPC1U VPC2)
then f£(i,j,k) « 10

else no operation is performed

end

[STEP 2.2] Elimination of deletable voxels
for all (i,j,k)'s do
begin
(i,j,k) = bordertype and
(i,3,k) is deletable
then £(i,j,k) « 0
else f£(i,j,k) <« 10
end
end

[STEP 3] Test of the terminating condition
if no point changed through [STEP 2}

then stop

else go to [STEP 1]

* By the statement "for all (i,j,k)'s do"
we mean that every voxel is processed
sequentially according to the mode I in
Fig. 4.

The step 1 classifies every border voxel into six groups accordlng to which side of the

voxel a 0O-voxel is located.
the Step 2.

times exactly. The first requirement is
satisfied since only a deletable voxel is
eliminated in the Step 2.2. The second requ-
irement is obviously satisfied since the
voxel preservation conditions is coincident
with Def.
of 3-D simplexes) is performed by pattern
matching on the 2x2x2 local area. The VPC 2
(deletability) is tested by calculating the

connectivity index using pseudo-Boolean expre-
Thus,

ssions defined on the 3x3x3 local zrea.
the above algorithm is implemented by an
iterative 1local operation of the sequential
type with the 3x3x3 neighborhood.

Another algorithm was proposed by Y.F.
Tsao and K.S. Fu [5]. Characteristics of
both methods are compared in Table 2.

5. Distance trasformation

3. - The test of the VPC 1 (detection

Only one of these groups is processed in each of subcycles in

This garantees that the third re-
quirement is satisfied approximately and some-

Table 2 Comparison of 3-D thinning methods

method KYT [1982] [4] TF [1981]1 [5]
type sequential parallel
connectivity]6,18,18',26 6,26

deletability] connectivity check plene

test index
subcycle 6 6
topology preserved preserved

a little more.
mainly crossing
part of hyper-
planes

degeneration]a little less.
mainly one layer
along the object
surface

spurious

branches a little less

a littel more

and- skeleton

General theory of the distance transformation on a 2-D digitized picture was presented

in Ref. [6].
a stralghtforward way.

The theory and algorithms shown there are extended to a 3-D digital image in
Here let us give a sequential algorithm of the 3-D distance transfor-

mation which is most suitable for conventional digital computer.

[Algorithm III] (3-D distance transformation-sequential type)

Input: F {f
Output: G

} ; 3-D bianry picture

{g } Distance picture, in which 955

= {dlstance value, if fijk

0, if £

il

il
o
.



(1) Initialization
gijk = {M, if £,.., =1
0, if £.., = 0, for Y(i,3j,k)

where M is a sufficiently large positive integer.
(2) Iteration

(1) (2}

A picture G and G are calculated as follows.
Ly _ . ; (1) V(i 4
(a) gijk = min {gijk’ (p?&?r)ex {gpqr} + 1} for (i,3.k)
(1

Computation of the value g,
. \ . i
scanning mode I in Fig. 4.

(2) (1) . (2) ..
953k i3k’ (p™&0r)ey (Ipgr! + 1} for ¥(i,3,k)

The scanning mode II in Fig. 4 is adopted in this step.

jL for each voxel is made according to the

(b) = min {g

Two sets of voxels X and Y should be selected as in Fig. 6, corresponding to the_type
of distances, d6’ d18' and d26 used here. Physically the same memory area may be assigned

to all of G, G{1)and G(z), if G and/or G{1) need not be preserved.
A parallel type algorithm of the distance transformation is presented in [6].

6. Border following

Border follwoing is a procedure to trace all border pixels systematically. It trans-
forms a digitized 3-D picture into a table (list)of coordinates of all border voxels arranged
according to the neighboring relation in the original picture. Border following algorithms
have been extensively studied by G. Herman et al. [7]. Let us present here a different
method for border following, which traces l-voxels (border voxels) themselves only instead
of tracing surfaces of l-voxels such as the method in Ref. [7].

[Definition 4] A voxel (with the density value m (= 0 or 1)) of an n-connected compo-
nent C is called a border voxel if and only if it has the density value m and has at least one
voxel with the density value m = 1 - m in its n-neighborhood.

[Definition 5] (surface neighbor) Given a l-voxel g)and an integer M, a set of all 1-
voxels P, satisfying the following conditions (i) and (ii) is called the (m-connected) sur-

face neighbor of Py for M, and denoted by NB(m) (Pl’ M).

(1) P, e Nm(Pl), if P, is a l-voxel. P, ¢ Nm(Pl), if P, is a O-voxel.
(ii) For voxels located relative to the voxel Pl as shown in Fig. 7, it holds that
fPl = fP2 # fql = fq2 and (fql = fq2 =MforM=0, 1) n (qul = qu2 = M for
M#£O0, #1) .

Using these concepts, a border following algorithm is described as follows.

[Algorithm IV] (Border following - voxel trace type)
Input: F =1fijF : binary picture m: type of connectivity

Output: OUTPUTLIST: List of coordinates of border voxels )
Work area: TEMP : a queue, W: a voxel corresponding to the coordinates currently processed

(I) Initialization MARKO + -1, MARK]l +« 1
(IT) Starting voxel search

Start scanning of an input picture F from the previous starting voxel (from the north-
west corner of the first plane, for the first search) according to the mode I raster scan.
If a starting voxel pair (S0, Sl1) is found, go to (I11), where (S0, S1) is a pair of a 0O~
voxel and a l-voxel 6-adjacent each other in the same scan line. Denote by P the object
including S1, and the compliment of P by 0.
(III) Branch

MARK 1 « MARK1+1l, MARKO + -MARK1
If the voxel SO0 has a mark, go to V, otherwise go to 1V.
(IV) Tracing of border voxels of the set Q. (Marking of 0-voxels)

(1) Add the coordinates of S0 to the queue TEMP,

(2) Mark of SO + MARKOQ

(3) If TEMP has no element, then go to V, else go to (4)

(4) Take one element out of TEMP and denote the corresponding voxel by W.

(5) Extract all voxels in NB(m)(w, 1) having no mark in the input picture F.
Give them the mark MARKO, and add their coordinates to TEMP.

5



(6) Go to (3).
(V) Tracing of the desired border voxels
(I) Set a segmentation code in the OUTPUTLIST.
(2) Add the coordinate of S1 to the queue TEMP and OUTPUTLIST, and give mark MARK1 to
sl.
(3) If TEMP has no element, then go to II, else go to (4).
(4) Take the first element out of TEMP and denote the corresponding voxel by W.

(5) Extract all voxels in NB(m)(W, mark of S0) which do not have the MARK1l in the input
picture F. Give them the mark MARK1 and add their coordinates to TEMP and OUT-

PUTLIST.
(6) Go to (1).

This algorithm has several desirable properties as follows.
(1) All border voxels are extracted. They are grouped together corresponding to each surface.
(2) Every voxel contained in the same surface appears exactly once in the output list. If a
particular voxel is included in n different surfaces, the voxel is passed n times.
(3) Border voxels extracted have a tree (or graph) structure, in which a node corresponds to
each border voxel and a branch is drawn from a node A to a node B if A is in the neighbor-
hood of B and B is visited just after A.
(4) The algorithm is applicable for any of 6-, 18-, 18'- and 26-connectivity.

The original object is exactly restored from the output list (tree of border voxels)
and the coordinates of starting voxel pair. (For a reconstruction algorithm, see Ref. [8]).
Both of coordinate representation and chain encoding are available for the output list.

Concluding remarks
Features of algorithms considered are compared with those for a 2-D picture in Table 3,

through 7 including experimental results in Fig.8.
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Table 3 3D-2D comparison - basic concept
3-D 2-D

connectivity/ | 6,18,18°,26 4,8

neghborhood

local area 3x3x3, 2x2x2 3x3, 2x2

sampling grid | cubic(cube), square (square)

(voxel) face~centered cubic hexagonal (he-
(rhonbic dodecahedron) | xagon)

Table 4 3D~2D comparison -~

thinning
2-D 2-D
connectivity|6,18,18',26 1 4,8
local area 3x3x3 3 x3
type sequential sequential
parallel(6 |} parallel
-c, 26-c)
deletabilityfconnectiv- connectiv-
ity index, ity number,
check plane | crossing
number
subcycle [ 4, 2
Table 6 3D-2D comparison -
border following
3-p 2-D
connectivity{ 6,18,18',26 4 4,8
local area 2 x2x 2 2x2/3x%3

ocutput

tree, graph

linear list

chain code

6 or 26
directions

4 or 8
directions

variations

voxel trace
face trace

pixel trace
edge trace
vertex trace

topology numbers of components, | numbers of holes
holes and cavities and components
deletability | same as the above Euler number
local pattern | 285288 for 3x3x3 51 for 3x3 region
region(10] [10]
distance three basic types, and | two basic types,
measure four variations(1l] few variations
Table 5 3D-2D comparison -
distance transformation
3~-D 2-D
neighborhood } general general
local arca general general
type- 6-,18-,26~- | 4-,8-neighbors,
sequential neighbors | octagonal
parallel general, general,
variable variable
reconstruc- proved[6] proved[6]
tion from
skeletons
Table 7 Experimental results -
computation time in sec.
Border Edge detection
Thinning1 Shrinking following? filterinq*3
3D 6-c. g 34.4 73.7 11.9 2,00 1.30 1.02
18-c. § 37.3 25.0 7.31 2.00 1.20 8.72 10.3
26-c. § 36.0 5.97 1.70 23.2 18.9
2D 4-c. 4.07 1.18 1.13 3.37 4.96
8-c. 3.65 3.23 1.18 1.07 4,97
Input : Brain CT image (binarized) 128x128x20 voxels

including 13801 1-voxels

(*Brain CT image (grey) 128x128x35 voxels)

For
Methods : |

2D cases, 20(35) images of 128x128 pixels.
KYT (left) and TF (right)

2 Voxel trace (left) and voxel-face trace (right)
Pixel trace (left) and vertex trace (right)
3 Prewitt type (left) and Laplacian (right)

Computer :

FACOM M-200. Coded by FORTRAN.
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Picture size : 20 x 20 x 14 ( Edge of the picture is filled
with O-voxels )

square = l-voxel, point = 0-voxel,
square with a white circle = skeletonized result.
Figures show the plane numbers.

Fig. 8 Example of thinning by Algorithm II
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Abstract

Many methods have been proposed to enhance and detect edges in gray-level images. Most
of these are based on spatial differentiation to enchance gray-level changes, and have the
common problem of being very sensitive to noise. 1In order to surpress the noise, some spa-
tial averaging has been combined with the differentiation. This, however, tends to compli-
cate the definition of the operator and also results in not very sharp edges.

In this paper, we consider the characteristics of edges and the statistical properties of
noise in gray-level histograms taken from local regions of an image. The noise can then be
regarded as a blurring process on the gray-level histograms. Therefore, the problem of edge
detection for noisy images can be reduced to the problem of invariant feature extraction
under one-dimensional blurring. By applying a theory of blurring-invariant feature extrac-
tion, a new family of nonlinear edge detectors is derived. The resultant operators are sim-
ple, based on central moments of the gray levels within a local window, and definable inde-
pendently of edge orientation in the window. The operators are quite insensitive to noise,
and their effectiveness has been confirmed by experiments.

Introduction

Edge extraction is one of the most essential techniques in image processing and computer
vision, for example, for segmenting an image into different regions. Contours are intuitive
features to ourselves. Generally, edges are defined as boundaries of regions where we can
observe a sharp and remarkable change of some characteristic, for example gray level, col-
our, or texture. Therefore, edge extraction is performed by enhancing the change of such
characteristics. Edge detection is performed by scanning an entire image with a local oper-
ation window. However, there are also edges which we may see in an image due to our under-
standing of the scene and recognition of the objects within it. Such edges may be too sub-
tle for any local operator to detect.

Many edge extractors have been proposed [1~4]. Most of those are based on spatial dif-
ferentiation, and the variety is mainly due to the diversity of definitions of the differen-
tiation operation for digitized images. First-order derivatives are frequently used for
extracting edges in a specified direction. Gradient operators are used for direction-free
edge extraction [1]. Second-order derivatives (Laplacian type operators) are also commonly
used, since they are sensitive not only to edges but also to corner points and isolated
points. Edge operators based on differentiations are generally sensitive to noise, there-
fore some averaging operation to smooth out noise needs to be combined in practical applica-
tions to noisy images. However, extension of local window size for smoothing tends to com-
plicate the definition of differentiation and also results in not very sharp edges. In
order to obtain sharper and thinner edges, an iterative use of a Laplacian type operator has
been proposed [2].

On the other hand, several methods are based on least square model fitting. Heuckel pro-
posed a method of estimating the parameters of a step edge model in a circular local region
[3]. However, the method is complicated and requires considerable computation. In the
regression analysis type of approach [4], a regression plane ax+by+c (or quadratic plane) is
fitted within the local window in the least square sense. The coefficients a and b are
utilized as smoothed x and y derivatives, respectively, and the square root of a? +b?* or
/a/+/b/ can be regarded as a smoothed gradient. The least square error might be considered
as a smoothed version of Laplacian. This approach is interesting in the sense of automati-
cally generating some kinds of smoothed differential edge operators in a unified manner.
However the window size problem still remains, namely; the larger the local window to smooth
out noise the less sharp the edges will be. Therefore, the essential problem of edge
extraction is how to enhance edges (signals) while reducing noise, i.e., how to construct
edge operators which achieve high signal-to-noise (S/N) ratio.

In this paper, we shall propose a new family of nonlinear edge extractors, formulating

the problem of edge extraction for noisy images as a problem of feature extraction under a
one-dimensional blurring process on the histograms of a chracterizing measure.
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Blurring-invariant feature extraction

Noise and blurring on histograms.

We shall consider classification of objects in general. A basic approach woyld be to
measure any characteristic of the objects and to observe its histogram. If the objects con-
sist of two different classes and the characteristic is capable of discriminating the two
classes, then the histogram will show a bimodal distribution. As an extreme, if the two
classes are both completely uniform, the histogram will show two separate sharp peaks
(spikes). On the other hand, if the objects of each class have variance, the variations
will reflect themselves as a scatter around each peak. Such a scatter on the histogram will
approach the normal distribution if the original variations of the objects are due to many
superimposed effects caused by various probabilistic factors. Namely, the ideal histogram
of two classes, as represented by two distinct and separate delta-functions, starts to
resemble a distribution resulting from the convolution of the delta-functions with a normal
distribution function (blurring process). The measurement of the characteristic itself is
generally accompanied by error {(noise) and results in similar blurring of the histogram.
Consequently, the one-dimensional Gaussian blurring process on a histogram may be regarded
as an essential process encountered in object classification in noisy circumstances.

In the case of the edge extraction problem in image proccessing, the histogram of any
Ccharacteristic of the pixels in a local region (observation window), for instance the gray-
level histogram, will show two distinct sharp peaks when an ideal step edge is located
there. The histogram will show one unique sharp peak when the local region is flat (no
edge). The typical histograms, however, in practice show blurred shapes due to the presence
of additive noise (See Figure 1).

\’~Adjr“~““ 155555 T Y SNy,

(a) (b)

freq. freq.

Figure 1. Examples of histograms for a step edge (a) and a flat region (b).

Therefore, the problem of stable edge extraction in noisy circumstances will be reduced
to the problem of one-dimensional blurring invariant feature extraction from the histograms,
or how to extract features which are invariant to the blurring of histograms and which are
capable of discriminating the differences of such histogram patterns.

Blurring invariant histogram-moments.

Let x be any characteristic measured on the objects, and f(x) be its distribution func—~
tion (histogram). Then the blurring transformation T{(b) on f£(x) is given by the following
convolution with a normal distribution function treated as a point spread function.

T(b)f(x) = 1//37D exp(-x%/4b)*£f(x) (1)

According to the theoretical results on blurring invariance [5], it has been shown that
linear invariant features of one~dimensional distribution patterns under the Gaussian blur-
ring transformation are limited only to integrals and centers of gravity, i.e. Oth- and
1st-order moments. In the case of gray-level histograms, those respectively correspond to
the number of pixels and the average gray-level within a local window, and are of no use for
edge extraction. Therefore, we must consider nonlinear invariant features. In the present
paper, we¢ shall consider moment-invariants by applying the construction theory of nonlinear
invariants [6] to the moments, because the moments are simple to compute and are also basic
as admissible features of various invariant transformations. The moments of pth-order are
defined by

my =jxpf(x)dx ={xP, £(x)) (2)

where, for simplicity, <g(x), f(x)) hereafter symbolically represents an integration with
respect to x. The blurring transformation is self-conjugate, and its generator (infini-
tesimal transformation) and its conjugate, t and t* in this one-dimensional case, are given
by the second-order differential operator d2/dx2 . The induced generator 2 on m is,
therefore, obtained as follows. P

%mp = (xP, tf(x)) =<t*xp,f(x)>=<d2/dx2xp,f(x)> = plp-1)m,_, (3)
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Let any nonlinear quantity (feature) be represented by a scalar funcFipn of moweyts
h(mg,m;, ...,my). Then, by applying the theory [6], a necessary and suff1c1en§ condlt}on
for h to be invariant under the blurring transformation is given by the following partial
differential equation.

—%m. =0 (4)

This can be reduced to the following equivalent subsidiary differential equation system.

dmg dm; dm, dmj dm y

—9=————= — = —— = L, 40e. = —————— (= db) (4')
0 0 2m0 6m1 M(M—l)mM_z

The elementary invariants are given by M independent solutions of this equation. The

first and second terms yield dmp=0 and dm; =0 , which confirms the previous statement that
the Oth- and lst-order moments are invariant to blurring. The third and fort&lterms show
that the second and third moments change additively like My = my + 2mob and My = my + 6my
b, respectively by the blurring transformation, where the symbol ™~ denotes the value trans-
formed by the blurring transformation. Elementary invariants are, for example, obtained
from the third and forth terms as 6mj;dm;=2mpdmjy therefore I4=mgm4-3m;m, , and also from the
third and fifth terms as 12mydm,=2mgdm,, therefore, I,=mym,-3m,/ , and so forth. The above
discussion is also valid for the normalized central moments, whiéh are invariant to transla-
tion (uniform shift) of x and amplitude change of f£(x),

ap= {(x=my/m)", £(x)/mo > >

because my and mj are invariant under the blurring transformation. Of course, we have the
identities jyp=1 and m;=0 in this case. Consequently, for the central moments we obtain
the following blurring invariants.

2

13 = M3 14 = M, = }pz s e (6)
The second-order central moment, i.e. variance, is shown to change its value additively as

B, =m, +2b (7)
where 2b=0"2 ig just the same in value as the variance of noise. This means that we might
use the 2nd-order central moment as a quasi-invariant in edge extraction, since it only
increases in value uniformly by increased blurring. The one-dimensional blurring-invariant
moment features obtained above will be widely applicable as blurring-invariant nonlinear
features not only to edge extraction in noisy images but also to various recognition pur-
poses for one-dimentional patterns which are under blurring transformation.

Application to edge extraction in noisy images

We shall apply the blurring-invariant histogram-moments (hereafter denoted simply by
BIHM) in general to edge extraction from noisy images. Let the size of the local window
(mask) scanning over an entire digital image (size N by N} be M by M, for instance M=2L+1
(L=1,2,3,...). Denote the characteristic values of the pixels within the local mask, for
example the gray-levels, by x; € [o.1,...,kK] (i=1,2,...,M2). Then BIHM are simply given by
the following terms.

m, = $2x,? ( mg= u?) (8)
Pi= 0 )
By = }EZ(xi— ml/mo)p/M ( pp=1, npy=10) (9)

i=|
It should be mentioned that these are moments of the values within the local mask and can be
defined quite independently of the mask size and also of the direction of the edge located
there. It should also be noticed that such definitions are straightforward also for one-di-
mensional cases, such as edge detection in gray-level image profiles or signals in time,
where the patterns and masks are given as 1 by N and 1 by M, respectively.

The histogram of the characteristric values within the local mask will show two distinct
sharp peaks when the mask is located on the ideal step-edge and will show one unique sharp
peak for ideal flat regions. Therefore, if such a difference can be discriminated in terms
of BIHM, we can construct edge detectors which are expected to be quite insensitive to noise
in images. Consequently, the problem is how to represent the "edge value" in terms of BIHM,
or how to construct a measure which takes on a larger value for more distant two peaks and
takef a lesser value for two closer peaks in the histogram (desirably zero for one unique
peak).
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