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Preface

Whenever the coefficients or right-hand constants of a system of
linear algebraic equations are not known exactly, we have a system of
approximate linear algebraic equations. This is the case, for example,
when the coefficients and right-hand constants are obtained from
measurement.

A number of methods are given in this book for obtaining the uncer-
tainties in the unknowns due to the uncertainties in the coefficients and
constants.

There is, however, no simple answer to the question: Which is the
best, most practical, or recommended method? This depends on the
magnitude of the given uncertainties, on the given coefficient matrix, on
how accurately the uncertainties in the unknowns are required, and
on the order of the given system of equations. For in certain cases,
the volume of computation required to obtain the true intervals of
uncertainty (Method IX) can become very large and indeed pro-
hibitive. Under these circumstances, one must be satisfied with the
results of methods leading to intervals containing the true intervals of
uncertainty. Of these, Method VI or VIII leads to the best results,
i.e., gives intervals of smallest width containing the true intervals of
uncertainty.

In particular, it will be seen that the methods that give the best
estimates of the true intervals of uncertainty require the most com-
putation.

There is thus no simple answer as to which is the best method. But
in many cases the statistical approach to approximate linear algebraic
equations is the most appropriate (Chapter 12).

In order to make the book self-contained, certain mathematical
topics with which all readers may not be familiar are dealt with briefly,
namely, vector and matrix norms and the convergence of matrix series.
Also, brief but adequate introductions are given to interval arithmetic,
linear prograinming, and statistics, so as to make the important topic
of approximate linear algebraic equations more easily accessible to a
large readership.

Finally, let us say that the style was chosen so as to be best suited for
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the average reader on his first reading, bearing in mind that the book
contains much source material.

Department of Applied Mathematics and Computer Science,
University of the Witwatersrand,
May, 1970 Israel B. Kuperman
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CHAPTER 1

1 ntroduction

1.1 Introduction

We shall say that a system of linear algebraic equations is approximate
if any or all of the coefficients and right-hand constants are not known
exactly. If the values of the coefficients and right-hand constants depend
upon physical measurements then clearly the values- are not known
exactly. If the measured values are expressed in decimal notation then it
may safely be assumed that there is an uncertainty of at least one half-
unit in the least significant position given, and usually by convention
the uncertainty is one unit in the least significant position given, The
uncertainties in the measured values may of course be considerably
larger, but then the values of the uncertainties should be clearly stated.
We call the study of the effects of the uncertainties in the coefficients
and constants on the solution approximate equation analysis. ,

During the process of solution, the approximate equations are assumed
to be exact, a solution having to be found which satisfies the accuracy
requirements set, i.e., correct to the number of significant figures
required. Solving a system of equations by two different methods or by
using two different precisions, i.e., wordlengths, and comparing two
such solutions may enable one to determine empirically the number of
correct significant figures. Alternatively, interval arithmetic or theore-
tical error bounds may be used to determine the noise introduced by
rounding. Thus, in solving the approximate system of equations, it is
assumed that a sufficiently long wordlength is used, so that allowing
for the effects of rounding noise leaves us with a solution correct at least
to the required number of significant figures. Then, deciding to what
accuracy the solution can be meaningfully used in view of the approxi-
mate nature of the equations is app-oximate equation analysis.

The uncertainties in the values of the urkknowns are estimated from
the uncertainties in the coefficients and constants. This facet of error
analysisshould form an integral part of a program for solving approximate
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linear algebraic equations and this is particularly important when
small changes in the coefficients cause relatively large changes in the
unknowns, i.e., in systems of equations which tend to become 7/l
conditioned, a term which we define later.

- Now, it is well known that if we have a singular coefficient matrix,
i.e., one whose determinant is zero, then the existence and nature of the
solutions depend on whether the system is consistent or not. If the
equations are inconsistent then there is no solution. And if the equations
are consistent then there is an infinity of solutions, it being possible to -
choose the value of at least one of the unknowns arbitrarily. Thus, in a
consistent system of equations with a singular coefficient matrix, at least
one unknown can be chosen as large as we please in magnitude. We
therefore assume the coefficient matrix of the approximate system of
equations to be nonsmgular, for otherwise the problem of finding a
solution with finite uncertamnee in the unknowns fails at the very
beginning.

But suppose it is possxble to find a singular coeﬂicnent matrix within
the limits of the uncertainties in the coefficients. Then we say that such a
system of equations is critically ill-conditioned; and in this case the true
coefficient matrix may be singular within the limits of our knowledge.

Therefore, we -ignore any solution of a critically ill-conditioned
system of equations if a solution is sought with finite uncertainties and
we say that for the given uncertainties in the coefficients no worthwhile
solution can be found. We should then make quite sure that the physical
situation giving rise to the equations can be expected to give n linearly
independent equations in 7 unknowns. If this is the case, then a usable
solution can only be obtained if the coefficients can be found more

accurately, i.e., with smaller uncertainties.

1.2 A Critically Ill-conditioned System of Equations
Asa numerical:example of a system of equations
‘Ax = ¢, =(ay) x=(x) c=()

in which there is an uncertamty of one unit in the least significant
position given, consider the system of equations

0:974x;, + 0-790x; + 0-311x; = 2-075 ]

—0-631x, + 0-470x, + 0-251x; = 0-090 (1.1)

0-455x, + 0-975x, + 0-425x5 = 1855,
the uncertainty in each coefficient and right-hand constant bemg 0-001.
The solution by Gaussian elimination (pivotal condensation) is given in
Table 1.1 and is self-explanatory. -
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TaBLE 1.1 Solution of (1.1) by Gaussian Eliminationt

X X X3 c Row and explanation

0974 0790 0311 2075 R,
-0:631 0470 0251 0090 R,
0455 0975 0425 1855 R,

1 0-81109 0-31930 2-13039 R, = R, = 0974
098180 0-45248 1-43428 R; = R, -+ 0-631R,
0-60595 0-27972 0-88567 R = R; — 0-455R,

1 0-46087 1-46087 R, = R; -+ 098180
0-00045 0-00045 Rg = R; — 0:60595R,

1 1-00000 Rg = Rs =+ 0-00045

1 . 1-00000 R,, = R, — 0-46087R,
1 1-00000 R,; = R, — 0-31930R, — 0-81109R,,

+ The solution is rounded to 5 decimal places, the solution having been obtained
using a wordlength of 10 significant figures.

Referring to the table, we see that division of rows occurred on
three occasions (rows R,, R,, and Ry). The divisors are called the pivots
of the Gaussian elimination process, the three pivots in our case being
0-974, 0-98180, and 0-00045. Our procedure is to choose the coefficient
of largest magnitude in the first column as the first pivot (underlined in
row R,) and to eliminate the unknown x; from the other equations,
thereby obtaining the reduced system of equations in rows R; and Rq..
Then we choose the coefficient of largest magnitude in the first column
of the reduced system of equations (underlined in row R;) and eliminate
%, from the other equation in the reduced system of equations.

The third pivot is now 0-00045 in row R, and dividing by this pivot
we obtain the value of x3 in row R,. This is the end of the so-called
forward procedure of the Gaussian elimination process. And we may
mention that the above method of choosing the pivot at each stage as
the coefficient of largest magnitude in the first available column is
called partial pivoting. '

Inrows R, and R;, we in effect substitute the values of the unknowns
obtained at each stage into previous equations until all the unknowns
are found, the solution in our case being x, = x; = x3 = 1-00000. This
part of the solution is known as the back-substitution procedure of the
Gaussian elimination process.

Now, it is instructive in our example to examine the effect of the
uncertainty in @z on the pivots. A little consideration of Table 1.1
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shows that a change da,, in the coefficient ag; = 0-425 changes the
value of the last pivot 0-:00045 in row R; by das, and leaves the other
pivots unchanged.
Denoting the three pivots in rows R,, R;, and Rg by p,, p,, and p,,
respectively, let us then consider the effect of a change dag; given by
dass € [—0-001, 0-001],
i.e., let us consider the effect of an uncertainty of 0-001 in a;3. Because
a change day, in ag; produces a change 8ags in py and leaves p, and p,
unchanged, it follows that for
ags € [0-425 — 0-001, 0-425 + 0-001]
and all the other coefficients exact we have
s € [0-00045 — 0-001, 0-00045 -+ 0-001],

ie.,.

ps € [—0-00055, 0 00145), (1.2)

while p, = 0-974 and p, = 0-98180.

Thus, it is possible for the last pivot to be zero because the interval
in (1.2) includes zero.

But in any Gaussian elimination process, the product of the pivots is,
apart from sign, equal to the determinant of the coefficient matrix.

For one of the methods of evaluating a determinant is to reduce it by
elementary row operations to the unit matrix, the determinant of the
unit matrix being 1. And it may be recalled that in this procedure of
evaluating determinants:

1. a P (permutation) elementary operation involves interchanging rows
and changes the sign of the determinant,

2. an M (multiplication) elementary operation involves multiplying
a row by a scalar and this multiplies the value of the determinant by

the scalar, and

3. an 4 (addition) elementary operation involves adding to any one row
multiples of any of the other rows; this does not change the value of
the determinant.

But these elementary operations are involved in the Gaussian elimi-
nation process. The P elementary operation occurs if the coefficient
chosen as pivot is not the first one in its column, and this then changes
the sign of the determinant. The M elementary operation occurs when a
pivotal row (i.e., a row containing a pivot) is divided by the pivot, the
value of the determinant being divided by the pivot. And the A elemen-
tary operations occur during the elimination of the unknowns. These do
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not change the value of the determinant. Comparing Tables 1.1 and 1.2
may clarify the above. In Table 1.2, the whole system of equations is
rewritten after each elementary opcration, the original coefficient -
matrix being finally reduced by elementary operations to the unit

matrix.

TaBLE 1.2 The Gaussian Elimination Process in Full for (1.1)}

T

Corresponding opefation
Coefficients Constants in Table 1.1
0974 0-790 0311 2075 R,
—0-631 0-470 0-251 0-090 R,
0-455 0-975 0-425 1-855 R,
1 0-81109 0-31930 2-13039 Ry =R, + 0974
—~0-631 0-470 0-251 = 0-090
0455 04975 0425 1-855
1 0-81109 0-31930 2-13039 _ .
0 098180 0-45248 1-43428 R; = R, + 0:631R,
0455 0975 0-425 1-855
1 0-81109 0:31930 2-13039
0 098180 0-45248 1-43428
0 0-60595 0-27972 0-88567 Ry, = R; — 0455R,
1 0-81109 0-31930 2-13039
0 1 0-46087 1-46087 R, = R; <+ 0-98180
0 0-60595 0-27972 0-88567
1 0-81109 0-31930 213039
0 1 0-46087 1-46087
0 0 0-00045 0-00045 R; = Ry — 0-60595R,
1 0-81109 0-31930 2:13039
0 1 0-46087 1-46087
0 0 1 1-00000 R, = R; <+ 0-00045
1 0-81109 0-31930 2-13039
0 1 0 1-00000 Ry, = R; — 0-46087R,
0 0 1 1-00000
1 0 0 1-:00000 R,; = R, — 0-31930R, — 0-81109R,,
0 1 0 1-00000
0 0 1 1-00000

4 The system of equations is repeated after each elementary operation, showing
clearly that, apart possibly from sign, the determinant of the coefficient matrix
is equal to the product of the pivots. (In our example there is, however, no
change of sign.) :

ALAE—B
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Thus, in going from the given coefficient matrix to the unit matrix in
Table 1.2, the value of the determinant is altered in magnitude whenever
we divide by a pivot. Since the value of the determinant of the final unit
matrix is unity, it follows that apart from sign (which depends on our
choice of pivots) the value of the determinant of the coefficient matrix
is equal to the product of the pivots.

It therefore follows that:

If any of the pivots in a Gaussian elimination process can

become zero within the limits of the uncertainties in  (1.3)
the coefficients then the system of equations is critically
ill-conditioned.

In our example, the last pivot in Table 1.1 can certainly become zero
for changes in the coefficients within the limits of their uncertainties; in
fact, the last pivot can become zero within the limits of the uncertainty
in ag, alone. Hence, the given system of equations in (1.1) is critically
ill-conditioned for an uncertainty of 0-001 in each coefficient.

But it is not always possible to test for critical ill-conditioning by
changmg only one coefficient; simultaneous changes may have to be
introduced in all the coefficients. We investigate this problem in
Section 1.4, while we now introduce notation and state our problem
more precisely in the next section.

1.3 Statement of Problem

Suppose that we are given a system of # linear algebraic equations in
n unknowns
Ax = C, A= (a,-,), X = (x{), C = (C‘) (1.4)
in which the coefficients a;; and the right-hand constants ¢; are the
approximate values, the true values not being known exactly. Then,
restricting ourselves to the case where A is nonsingular, the solution of
(14)is
x = Bc (1.5)
where
B=A-1, B-=_(b).
If, in fact, the true system of equations corresponding to (1.4) is
A*x* = c* (1.6)
let us suppose that the coefficients and right-hand constants of the
true system of equations are known no more precisely than that given by
a:; € [a;; — e, ai; + €44, ¢ €lei — &, €+ &, .
ij=1,2..4n (17



Ry

§1.3] STATEMENT OF PROBLEM 7

where the &, and the ¢, are clearly nonnegative quantities. We call the
&4 the uncertainties in the coefficients and the ¢, the uncertainties in the
right-hand constants. And we call the intervals in (1.7) the intervals of
uncertainty in the coefficients and the intervals of uncertainty in the right-
hand constants, respectively.

We have thus chosen the approximate system of equations in (1.4)
to correspond to the midpoints of the intervals in (1.7).

It may be pointed out that had the intervals of uncertainty in the
coefficients and constants been given in the form

a§ € [fu, g4, ¢ €[uy, v, 5,j=12,...,mn, (1.8)
then, to correspond to the form in (1.7), we must take
ay; = §(fis + gu), &y = ¥(&is — fu)s Lj=14,2..,n (19
and
¢ =¥u; +v), & =¥v—uw), i=1,2,..,n (1.10)

Now, our first task in approximate equation analysis is clearly to
satisfy ourselves that the true coefficient matrix A* cannot become
singular within the limits of the uncertainties ;.

If, in fact, the approximate system of equations is not critically ill-
conditioned, suppose that the x} are given by

x“ € [x{ — 8gy X3 + d‘], i = 1, 2, « e ey N (1.11)
And let us note that the d; and ¢, in the intervals are clearly nonnegative
because one possible set of values of the af is xf = x, (1 = 1,2, .. ., )
(see (9.2)). ‘
Then, we call the intervals in (1.11) the intervals of uncertainty in
the unknowns and we denote them by U; (i = 1,2, . . ., n), i.e,,
U,- = [x'- — & x; + d,‘], i= I, 2, ey N (1-12)
Now, the width or length of an interval [a, ] is (b — ) (see (9.4)).
Hence the widths of the intervals of uncertainty denoted by
wU), i=12...,n
are given by
wU)=d;+e, i=12,...,n (1.13)
And for each unknown x; we call the larger of ¢; and d; in (1.11) the

uncertainty Ax, in the unknown, i.e., the uncertainties in the unknowns
are

Ax; = max(ei, d,-), i=12...n (1.14)
Clearly, we have by (1.12) and (1.14) that
Ui o= [x,' - Ax,', X + Ax,—], i= 1, 2, TR (] (1.15)



