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FOREWORD

The present volume contains the papers to be presented at the 21st
Conference on Radar Meteorology. Familiarity with its contents will
make the exchanges at the Conference so much more effective.

The format of the Conference incorporates some innovations: about
half of the sessions are in parallel (with reviews) and half in series;
the durationfof the sessions is uneven. This flexibility was the solu-
tion of this Program Committee to the problem of incorporating into a
finite (and constant) time period an ever increasing number of contri-
butions. In order to make the Poster Session more attractive and free
of connotations it was made optional to everybody. If you feel that the
contents of your paper are more adequate for a Poster please use it!

Finally, in the name of the Canadian radar meteorology community and
our host and cosponsor, the Alberta Research Council, let me welcome
you again to this country.

Isztar Zawadzki
Program Chairman
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Robert G. Humphries
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1.1

DOPPLER RADAR STUDY OF THE ANVIL REGION
ASSOCTATED WITH A SQUALL LINE

R. C. Srivastava, T. J. Lorello* and T. J. Matejka*#
Labcratory for Atmospheric Probing, Department of the Geophysical Sciences

University of Chicago, Chicago, Illinois

1. INTRODUCTION

Long~lived intense squall lines are sustained
and propagated by the initiation of discrete con-
vection on their leading (downshear) faces. As
the convective cells mature and decay, they are
sometimes observed to merge into a mesoscale re-
gion (area = 10° km?) of relatively homogeneous
cloud and precipitation (hereafter called anvil)
which trails the line of active convection. Such
squall lines have been observed in middle lati-
tudes (e.g. Newton and Newton, 1959; Sanders and
Paine, 1975; Ogura and Liou, 1980; and Matejka
and Srivastava, 1981, 1982) and in the tropics
(e.g. Zipser, 1969, 1977 and Houze, 1977)., New-
ton and Newton conjectured that mesoscale descen-
ding air motions occur throughout the depth of the
anvil. Zipser, and Houze, however, postulated
that mesoscale descent is confined to the lower
levels, while mesoscale ascent occurs in the
upper levels. The existence of the descent was
deduced from the divergent nature of the wind
below the cloud base and because the wet-bulb
potential temperature in the lower levels was
found to be characteristic of the air in the mid-
troposphere. The descent was attributed to
cooling due to evaporation (Riehl, 1965, 1969 and
Zipser, 1969, 1977). The mesoscale ascent in the
upper layers was postulated to explain the persis-
tence of clouds and widespread light precipitation
for several hours after the cessation of the ac-
tive convection. The physical reason for the
ascending motion is not clear, although it has
been reproduced in certain numerical simulations
(Brown, 1979). The descent in the lower levels

has also been reproduced in the numerical simu-
lations and shown to be probably due to evapora-
tive cooling.

Sanders and Paine (1977) and Ogura and Liou
(1980) were among the first to make calculations
of winds and vertical air motions in the anvil from
observations. These authors used radiosonde obser-
vations to provide strong evidence for the exis-
tence of mesoscale ascent and descent of some tens
of em s™! in the upper and lower levels, respec-
tively, of the anvil. 1In their analysis, they
used the technique of compositing a time-sequence
of radiosonde observations to deduce spatial
variations of the wind from which the divergence
and vertical air velocity could be computed;
therefore, their results depend upon the assump-
tion of steadiness (in a frame of reference
attached to the squall line).

Matejka and Srivastava (1981) studied an
anvil associated with a squall line, observed du-
ring Project NIMROD with three Doppler radars, by

60637

an extension of the VAD method (EVAD) and found a
region of widespread descent and ascent in the
lower and upper levels, respectively, of the anvil.
The EVAD method uses single Doppler radar data and
yields practically instantaneous profiles of winds,
divergence, and vertical air velocity and, there-
fore, is not dependent upon an assumption of
steadiness; however, the computed profiles are
horizontal averages over the VAD analysis circle.
In this paper, we use triple Doppler radar data

for the same anvil to calculate horizontal winds,
divergence and vertical air velocity over an area
120 km x 120 km by 9 km deep. The objectives of
these calculations are to verify the results of

the EVAD analysis and to provide a more detailed
picture of the variations of winds, divergence and
vertical air veleocity in the anvil behind the
squall line.

2. THE SQUALL LINE

According to satellite imagery (not shown
here), the squall line began to intensify rapidly
at about 1630 CDT, approximately 250 km northwest
of the Project NIMROD network (Fig.l), along a
nearly stationary cold front that stretched from
the Great Lakes to the Texas Panhandle. By 2000
CDT, the convection formed a band over 2000 km in
length, from northeast to southwest, and varying
in width between 70 and 200 km. The line moved
southeastward through northern Illinois at approx-
imately 15 m s‘l, faster than the cold front; as a
result, the line and the anvil passed through the
network between 2100 CDT on 17 June and 0300 CDT
on 18 June well before the c¢old frontal passage
at 0700 CDT on 18 June.

The synoptic situation in which the squall
line formed is shown in Fig.2, At the 850 mb
level, a tongue of warm air was being advected
over the lower midwest ahead of a well defined
trough. At the 700 mb level and the 500 mb level
(not shown), the flow above the warm tongue was
westerly, and cold air advection was occurring well
ahead of the surface cold-frontal position. The
squall line therefore formed in a zone where dif-
ferential advection was destabilizing the atmos-
phere, ascent on the eastern side of a short-wave
trough and frontal zone was probably occurring, and
the vertical shear of the wind was directed south-~
eastward-conditions favorable for the organization
of the squall line.

Bell Laboratories, Naper-
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#% Laboratory for Atmospherie Sciences, NASA/GSFC,
Maryland, 20771
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Fig.1(top left). The NIMROD network. The CP3
radar is at Yorkville, the CP4 radar near O'Hare
atrport and the CHILL radar is near Monee.

Fig.2(lover left). 850 mb (a) and 700 mb (b)
symoptic analysis for 1900 CDT on 17 June 1976.
Loigitude (°W) and latitude (°N) are indicated.
Height contolirs (dam), solid lines, and isotherms
(°c), broken lines, are shouwn.

Fig.3(right). PPI display of CP3 radar reflecti-
vity factors. Maximum range from CP3 radar (+) is
108 km. Top figure is for 2215 CDT, elevation
angle 4.5 deg. Bottom figure is for 2346 CDT,
elevation angle 3.5 deg. The square is the 120 km
2 120 km avea of multiple Doppler radar analysis.
Note there is a change of range scale between the
two figures.



A study of radar data showed that the indivi-
dual thunderstorm constituting the squall line
moved northeastward nearly parallel to the line.
The southeastward advance of the line was due pri-
marily to the formation of new convective elements
up to 25 km ahead of the line. The southeastward
propagation of the line combined with the north-
eastward motion of the individual thunderstorms
was apparently responsible for the merger of the
decaying thunderstorms into the anvil behind the
line. Fig.3a shows the squall line at 2215 CDT
at a stage when the anvil is just starting to
become extensive. By 2346 CDT (Fig.3b), the
line of convection has weakened, and the anvil
has spread to a distance of at least 150 km
behind the line.

The rainfall rate, wind speed and direction,
and wet bulb potential temperature measured at two
of the PAM (Portable Automated Mesonetwork) sta-
tions are shown in Fig.4. Fig.4a is for a site
over which the core of a thunderstorm happened to
pass. The burst of heavy rainfall occurred shortly
after the characteristic wind shift and thermody-
namic changes signalling the passage of the gust
front. A thunderstorm core did not pass over the
PAM site of Fig.4b. It is seen that light preci-
pitation occurs for a considerable time after the
passage of the line of active convection.

3, METHOD OF ANALYSIS OF DOPPLER RADAR DATA

3.1 The Extended VAD (EVAD) Method

The VAD method can yield average values of
winds and divergence over the VAD circle. For the
calculation of the divergence, it is necessary to
use VAD scans at low elevation angles, so that the
contribution of the particle fall speed to the Dop-
pler velocity can be neglected (Browning and Wex-—
ler, 1968). 1In the EVAD method, scans at several
elevation angles, and not confined to low eleva-
tionsonly, are used to calculate both the particle
vertical velocity and the horizontal divergence.
This method is described in Matejka and Srivastava
(1981). The height profiles of divergence and
vertical air velocity computed by this method
using CP3 radar data for a period of approximately
9 minutes are reproduced from Matejka and Srivas—
tava in Figs.5 and 7. The profiles are averages
over a VAD circle of radius approximately 30-40 km
centered over the CP3 radar.

3.2 The Multiple Doppler Radar (MDOP) Method

The method of analysis of multiple Doppler
radar data, developed at the Laboratory for Atmos-
pheric Probing, and as applied to the present
problem is briefly as follows: An analysis
volume is first selected (in this case an area 120
km x 120 km x the cloud depth, see Fig.3b). The
data lying in the volume are classified into nar-
row height intervals and transferred to different
“height" files of a random access medium. Each
layer is divided into a 120 x 120 grid with a grid
size, 1 km x 1 km. Each grid point is numbered,
and each data point is then tagged by an ID# equal
to the number of the nearest grid point. The data
for each "height" file is then rearranged in order
of ascending ID#. After this operation, all the
data in any desired neighborhood of a given point
can be readily accessed.

The next step in the analysis procedure is
editing and unfolding of the Doppler velocities.
The unfolding methods described in the literature
unfold Doppler velocities for each radar indivi-
dually. Here we considered all the radars
simultaneously in an automated and objective un-
folding method. The unfolding process is started
by prescribing a range of expected wind vectors.
For a given wind vector, the expected radial velo-
city is calculated and the observed Doppler velo-
city is "unfolded" to be within the unambiguous
velocity range centered at the expected radial
velocity. The mean square deviation of the "un-
folded” radial velocities, about the expected
radial velocity, is computed for a number of wind
vectors over small volumes. The wind vector which
minimizes the mean square deviation is accepted as
the one which is used to unfold the Doppler velo-
cities in that volume. Large values of the mini-
mum mean square deviation indicate regions of
sharp shear, questionable data, or noisy data, the
last being the case if the mean square deviation
approaches that of a uniform distribution of Dop-
pler velocities over the unambiguous velocity
interval. Such data are examined and edited or
unfolded using an interactive graphics procedure.
In the present case, the objective unfolding scheme
worked successfully on almost 100% of the data.

After unfolding and editing, the contribution
of the particle fall speed is removed from each
radial velocity. The particle fall speed was
estimated from the radar reflectivity factor and
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