Compatible
Fortran

A. Colin Day

Compatible
Fortran

A. Colin Day

" Computer Consultant, University College London

Cambridge University Press
Cambridge

London New York Melbourne

Preface

One of the chief advantages of a standardised language is its
compatibility, i.e. its independence of the computer on which it is run.
After some experience in writing portable Fortran programs, it soon
became apparent to me that conformity to the Fortran Standard is not
enough. The subset which constitutes Compatible Fortran is sufficiently
different from American National Standards Instituté (ANSI) Standard
Fortran to require a separate description.

The need for such a description of Compatible Fortran was brought
home to me by working in a University which possesses several quite
different computers, and where programs may be developed on one of
these and sent to another for production running. The need became more
urgent when the local computer was to be replaced by equipment made

by a different manufacturer.

' This book was written with the hope that experience gained in trying
10 run programs on more than one machine might be useful to others.
That my experience is limited, and therefore that my advice suffers from
many shortcomings, is readily admitted. However, my experience is
enough to show me that limited advice in this area is nevertheless much
to be preferred to no advice at all.

I am greatly indebted to a number of people for the help they have
afforded me (by their published writings or by their comments) in the
prodyction of this book. First and foremost among these is Brian
Shearing, who was to have shared in the writing of the book. When this
unfortunately proved impossible, he graciously made over his material to
me, for which I am deeply grateful. Mention must also be made here of
David Muxworthy, and of Andrew D. Hall Jr, whose help and advice
have been greatly appreciated.

_ ~ A.COLIN DAY
October 1977

Contents

O© 00 N e BN

v—-'»—-n—-v—-—*»—-—-»—-"‘
= O S O N

Preface

Introduction ' 1
Building blocks 6
Statements 17
Specification statements‘ 22
The DATA statement 32
Statement functions 34
Transfer of control 36
DO loops o o 41
Input/output ‘ 45
Formats 53
Expressions and assignment 59
Program units ‘ 6'i
Numerical matters A 75
Character manipulation 78
An example 84
Basic Standard Fortran - ~ 88
Media problems o 91
Aids to conversion ' ‘96
Appendix: Intrinsic and basif: external functions 100
Bibliography . ' 101 -

Index 103

1 Introduction

There is no computer language as potentially compatible as Fortran.
Despite this, few programmers are able to make use of this potential.
Compiler writers constantly produce compilers with new ‘goodies’ and
manufacturers seldom point out that using these features can prevent a
program from running on a competitor’s machine.

This book describes a dialect of Fortran (‘Compatible Fortran’, or ‘CF’
for short) which is acceptable to most compilers, so that programs
written in it will run on many different machines.

Lest some basic terms be misunderstood, it is necessary to clarify them
at the outset. A language which is acceptable to more than one type of
computer is said to be comparible. A program written in such a
compatible language is described as porzable (or mobile).

It is assumed that the reader is already fully conversant with Fortran
on at least one machine. It is not assumed that he is an expert on Fortran
standardisation or Fortran dialects.

Advantages of portability

Often programs are written using the facilities available on one machine
with no thought of transferring them. However, news of good programs
travels fast. You may receive a request for one of them from someone
who uses a quite different machine. Even if you are careful to keep the
virtues of your program secret, the day may well come when you have to
move from your present machine (because it is closing down, being
replaced etc.), and the new machine may not be the same as the old one.

In these days of computer networks, you may find it advantageous to
debug a program on one computer, then send it down the line to a larger
mainframe for production running. Obviously, this is only possible if it
is portable. ' - '

The main advantage of portability is that it enables you (or others — or
both) to bypass the problems of adapting a program in order to transfer it
to another machine. If it seems to you to be a nuisance learning about a
new Fortran dialect and conforming to its rules; be well aware of the

2 , COMPATIBLE FORTRAN

immense nuisance that adaptation can be. The program must be adapted
for every new computer on which it is to be run. If incompatible features
have been deeply embedded in the code, it may be necessary to
restructure the basic logic. Countless people have discovered that
without portable programs there are times when you have to run very
fast indeed, like Alice, in order to stay where you are.

Fortran standards and Fortran 77

Standards for the Fortran language have been drawn up ‘for the purpose.
of promoting a high degrec of interchangeability of . . . programs for use
on a variety of automatic data processing systems’ (ANSI 1966a, p.7).
The main reason why Fortran has such potential compatibility is the
existence of complete and well-defined standards. Much of this book will
be taken up 1P describing what the standards have laid down, since
unfortunately many Fortran programmers appear to be unaware of them.

For a history of Fortran standardisation, see Muxworthy (1972). The
American National Standards Institute (ANSI) are responsible for the
best known standard for Fortran, American Standard Fortran, defined in
their document X3.9-196 (ANSI 1966a). This is the language
commonly known as ANSI Fortran, or (in loose parlance) Fortran IV.
Unfortunately, ANSI have had trouble in standardising their own name.
They were at one time the American Standards Association (ASA), and
. then the United States of America Standards Institute (USASI), so one
- finds references to ‘ASA Fortran’ or to “‘USASI Fortran’, meaning the
same as ‘ANSI Fortran’, i.e. the language defined in X3.9-1966.

ANSI also published another standard alongside X3.9. This is called
American Standard Basic Fortran, and is defined in ANSI ‘document
X3.10-1966 (ANSI 1966b). The language is a subset of X3.9, and
corresponds in power to the old Fortran IIL..

ANSI produced two articles clarifying the Fortran standards at certain
pomts which had been open to various interpretations (ANSI 1969
1971).

The European Computer Manufacturers Association (ECMA) have
produced an ECMA standard for Bortran which is intermediate
between the two American standards (ECMA 1965). The International
Organisation for ’ Standardisation (ISO) produced a recommendation
which incorporated these three levels of Fortran (ISO 1972). 4

INTRODUCTION ' | 3

Technically the two ANSI standards lapsed in 1971, since they were
not revised or reaffirmed within five years. An ANSI subcommittee,
X3]J3, has been at work on a new ANSI standard, called Fortran 77,
which has now been adopted. Fortran 77 has two levels. The higher of
these retains almost all of X3.9 as a subset, but has considerable
extensions. (See the next section.)

As far as compatibility is concerned, the standards are a great help, but
are not enough. Some parts of the standards remain open to
interpretation, and many compilersy while purporting to accept ANSI
Fortran, are in fact more restrictive’ Later extensions, whether allowed
by a compiler or introduced by a new standard such as Fortran 77, must
be avoided if compatibility is to be maintained.

There are also areas where compatibility is possible even though the
standards (in their most literal interpretation) would deny it. One such
area is character manipulation (chapter 14). In such a case Compatible
Fortran is less restrictive than the standards.

. The standard which comes nearest to Compatible Fortran is (and w1ll/
continue to be for some time to come) American National Standard
Fortran. In the remainder of this book, whenever ‘Standard Fortran’ or
‘the Standard’ is mentioned, it will refer to this standard. As far as
possible, the terms used in this book will be those used in the Standard.
Those places where Companble Fortran differs from the Standard will
. be pointed out.

Many problems in the area of compatibility’ have their origin in
introductory textbooks and courses for Fortran where either the Stan-
dard was not known to the teacher, or the temptation to introduce ‘use-
ful’ extensions could not be resisted. The teaching of Standard Fortran
in programming courses is strongly recommended. (See, for instance,
Day (1972a) and the videotape course which those notes accompany.) _

Because Compatible Fortran ‘lies so closely alongside Standard
Fortran, much of this book will be occupied with teaching what
constitutes the Standard. For this reason, it is much more convenient to
adopt the nomenclature which the Standard uses, even though this is
often at variance with commonly used terms. It is not possible to alert the
reader whenever such terms occur. Nor is it possible to paraphrase them
on each occurrence. However, the index does give explanations of these
terms, and should be consulted frequently until the reader acquires
familiarity with the Standard’s terminojogy.

4 COMPATIBLE FORTRAN

Although this book seeks to clarify the differences between common
(incompatible) Fortran usage, the Fortran Standard and Compatible
Fortran, it does not repeat all of the elementary rules of Fortran, which
every introductory textbook describes and which every compiler checks.

Fortran 77

Some may consider that the recent emergence of a new standard for
Fortran largely undercuts the need for this book. A little thought will
show that this §s not so. Now that the new standard has been approved,
some compilers will be written for it, but not every compiler will be
- changed. The compatible subset will still be the lowest common
denominator, and since Fortran 77 will be a larger hoop, programs '
which get through the smaller hoops should get through that one also.
There are, however, the problem areas where Fortran 77 does not
retain full compatibility with X3.9. These have been noted as areas
where Compatible Fortran is more restrictive than the 1966 Standard.

The environment

It must be emphasised that the portability of a program does not consist
solelv in conforming to certain grammatical rules. A program may make
certain demands on its environment which can only be satisfied by very
few machines, and this may severely limit its portability.

A program requiring a large number of peripheral devices, or unusual
and specialised equipment, obviously may not be very portable. v
However, a program which needs real values to be held to great precision
is also making demands from its environment which not many machines
can fulfil. A very large program may also be non-portable for the same
reason, however well it is written.

Fortran dialects

Different compilers accept slightly different kinds of Fortran, and so
different ‘dialects’ have sprung up. A dialect causes problems in two
ways. It may be more permissive than the Standard, and so may
encourage programmers to use features which are not available with
more than one compiler. Or, on the other hand, it may be more

INTRODUCTION _ 5

restrictive than the Standard, and so the compiler concerned will not
accept programs which ought to be portable. Therefore Compatible
Fortran will need to be different from the language defined in the
Standard.

Mention should be made here of another attempt to provide a
compatible Fortran dialect. This is PFORT, described in Ryder (1974).
In general, CF is more restrictive than PFORT, and therefore
compatible over a wider rangé of compilers.

It is rarely possible to give details here of specific compilers which
cause trouble in particular areas. There are many reasons for this.
Compilers change, and to try to name the culprits is to try to hit a host of
moving targets. It is not sufficient to pin down the problems by referring
to a particular type of computer, because the compilers available on that
computer exhibit differences among themselves.’ Not the least of the
reasons for not naming particular compilers is, without doubt, my own
ignorance. It will certainly be discovered that, because of the
shortcomings of my knowledge, Compatible Fortran is not as compatible
~as it could be. Nevertheless, such an’ attempt, though incomplete, is
better than no attempt at all.

Some comparisons have been made between various Fortran
compilers. Those interested should consult Stuart (1969), and
Muxworthy and Shearing (1970). .

Although it has not been possible in general to name the compllers, I
have attempted to give reasons for restrictions and words of caution.
These have usually been phrased in terms of machine architecture, or in
terms of the habits of certain unnamed compilers.

Some may object that CF is itself just another dialect, helping to swell
the number of non-standard varieties of Fortran. One might as well
object that a master-key is just another key. So it is, but it may drastically
reduce the number of other keys which one has to carry around.

2 Building blocks

This chapter deals with some of the basic cdmponents of Compatibie
Fortran, namely the character set, symbolic names, constants and array
elements (including subscript expressions). Other expressions are dealt
with in chapter 11. '

Character set

The character set consists of digits, letters and special characters. At this
point it is necessary to introduce the special flowcharts which are used
here to indicate permitted forms. The first flowchart shows that a digit is
any of the ten characters 0, 1,2, 3,4, 5,6,7,80r 9.

digit

4

5351
533
555

- N f \

—p

This kind of flowchart is similar to a maze. You start at the top left-
hand corner, and come out at the bottom right. Boxes are like turnstiles.
You may only pass through them in one direction (indicated by the
arrow), and'then only on ‘payment’ of the required item. Rounded boxes

6

BUILDING BLOCKS 7

require the literal characters shown on them. Rectangular boxes require
an entity which has been defined elsewhere. The paths should be treated
like railway lines. Shunting backwards past, a sharp corner is not
permitted. Sometimes a chart must be modified by verbal restrictions
placed underneath it. I believe that M. D. Mcllroy of Bell Laboratories
was the first to use such charts for Fortran, in Mcllroy (1974).

The name above the entrance shows the entity which the flowchart
defines. You can get through the flowchart of digits above only if you
have one of the ten digits to give in ‘payment’.

The letters may be defined in a similar way.

letter

A

7

OO

OOOED
[Esioee
QOO

OOQ

[Slelstelcle

8 S ‘ COMPATIBLE FORTRAN

Now that we have defined digits and letters, the full character set may
be defined usirg these, together with the ten special characters.

character

\

letter m

digit

i
Slolo
oJelo
oJclole

- \ \ \,

The box containing no character is to be traversed on payment of a
blank. o . '
Standard Fortran also includes the currency symbol ($), but the
Standard does not give any indication of how this symbol is 1o be used in
. the language. Some compilers interpret it as an extra alphabetic
~ character. Others use it to separate two statements on the same line. The
character itself is hard to pin down in terms of a punched-card code. For

- ... these reasons it should be avoided.

‘The Standard allows non-Fortran characters in three places:

(1) In comment lines. These will cause problems on transfer to other
card codes. Use only characters from the Compatible Fortran character
set in comments. ' '

(2) In a Hollerith datum (e.g. in a DATA statement or a FORMAT
statement). Once again, problems will be caused on transfer, and °
characters other than those in the CF character set should be avoided
here also.

(3) On data cards. If the data is to be transferred along with the

BUILDING BLOCKS _ 9

program, then non-Fortran characters should be avoided. If the data
cards are solely used for running the program on one machine and no
other, no harm results from having non-Fortran characters in the détas.

Symbolic names

A symbolic name is the name of a variable, array, common block,
statement function, function, subroutine or external subprogram. Such a
hame is constructed as shown here.

symbolic
name

letter - —»

letter

o

digit

Restriction: No more than six characters in the name

Examples: A 1 X2 Y58902 K2S04

Note that symbolic names may not be longer than six characters, even
though some compilers allow eight, or even 31 characters.

The Standard allows a name to be used for more than one. purpose
within the same program unit, within certain limits. For instance, a
variable may have the same name as a COMMON block. Also, according
to the Standard, variables may have the same name as intrinsic functions .
which are not referred to in that program unit. Some compxlers do not
permit this, however.

The Standard does not restrict one from using symbohc names which
are identical to Fortran keywords, e.g. END or REWIND. Some
compilers cannot cope with this. In particular, compilers have been

10 ~ COMPATIBLE FORTRAN

known to treat all statements beginning with the characters FORMAT(as
a FORMAT statement, so forbidding a sequence of statements like

DIMENSION FORMAT (10)
FORMAT (1)=0.0

Safer rules for symbolic names are as follows:

(1) A name for a COMMON: block should not be used for any other
purpose in the same program unit.

(2) The name of any intrinsic or basic external function should not be
used for any other purpose in any program unit.

(3) A symbolic name should not be the same as any Fortran keyword.

Constants

" This section will be concerned merely with the form of constants. For a
discussion of the limits on the size of their values, see chapter 13.
Integer constants are defined as follows.

integer
" constant

digit .

Examples:1 O 17 68458

Note that the term ‘integer constant’ (as used by the Standard) refers to
an unsigned constant. This is also true for real and double precision
constants. Where a sign is permitted, this will be specifically shown in
later flowcharts. '

Real and double precisipn. constants are defined in terms of an
intermediate construct which the Standard calls a basic real constant.

T

- BUILDING BLOCKS

basic real
constant

S

Np| integer

constant

k : . integer
constant

Examples: 002487 5. .0 7.2 865.489

Now we can define a real constant in terms of this.

real
constant.

basic real
constant

\’ integer | "E

constant

integer
constant

Examples: 5E-32 2E5 0. 7.2 7.2E+48

11

12 _ COMPATIBLE FORTRAN
A double precision constant has a similar definition.

double
precision
' constant

N

k, basic real

constant
+
integer | D integer
constant constant

Examples: 5.0-32 2D5 7.20+8 0DO

Note that a double precision constant must have a D exponent. Some
compilers also consider a basic real constant with more than a certain
number of digits to be double precision, but this is neither compatible
nor Standard.

BUILDING BLOCKS 13
Complex constants are defined in terms of real constants.

complex
constant

real
constant

real]
~ constant

Examples: (0.,0.) (-5.6E3,.25) (-1.0,—-2.0E-1)

Double precision complex constants are not Standard.
There are only two logical constants.

logical
constant

‘\

FALSE.

