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Foreword

The ADAPTIVE Communication Environment (ACE) toolkit has achieved enormous suc-
cess in the area of middleware for networked computing. Due to its flexibility, perfor-
mance, platform coverage, and other key properties, ACE enjoys broad acceptance by the
networked application software community, as evidenced by its use in thousands of applica-
tions, in scores of countries, and in dozens of domains. ACE has also received considerable
attention beyond the middleware community since it’s an open-source role model for high-
quality and well-designed pattern-oriented software architectures.

But why is ACE so successful? Addressing this question properly takes some thought.
To start off, let’s reconsider the Foreword from C++ Network Programming: Mastering
Complexity with ACE and Patterns (C++NPv1) and resume the mass transit analogy pre-
sented there by my colleague Steve Vinoski. Steve’s right that a high-quality mass transit
system consists of more than just aircraft, airports, trains, train stations, and rails. It also
needs less obvious infrastructure, such as scheduling, routing, ticketing, maintenance, and
monitoring. But even a complete collection of ingredients is still not sufficient to develop
an effective mass transit system. Arranging these ingredients so they seamlessly fulfill their
primary objective—fast and reliable transportation of people—is equally important. Would
you use a mass transit system whose ticketing was located in a train maintenance location
or an airport hangar, or whose planned and actual scheduling and routing weren’t available
to the public? I doubt it!

The success of mass transit systems depends on more than the knowledge of the infra-
structure parts that are provided—it depends on how these different parts must be connected
and integrated with their environment. This knowledge enables architects of mass transit
systems to integrate individual parts into higher-level building blocks and to connect these
building blocks effectively. For example, ticketing, information points, baggage offices, and
boarding are integrated in train stations located at city centers or major suburban centers.
Likewise, airports are often located near large cities and connected by frequent express
trains.
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Even mass transit centers themselves are arranged so that activities can be performed
effectively. For example, when you enter a train station or airport via the main entrance, you
find ticket agents, information centers, and timetables. You also find shops to satisfy your
travel needs. As you enter the main train hall or airport concourse, you find other informa-
tion centers, up-to-date scheduling information, and the platforms and gates for boarding
the trains and planes. Mass transit centers thus not only provide all necessary services
to begin and end a journey, they also organize their internal “control flows” effectively.
While the core structures and control flows in most train stations and airports are sumilar,
their concrete realization can differ widely. Yet we all recognize these mass transit center
patterns immediately since they follow key invariants that we’ve learned through years of
experience.

So what’s the connection between successful mass transit system design and the success
of ACE? The answer is simple: In addition to the basic network computing ingredients (the
wrapper facades that Doug and Steve introduced in C++NPv1), ACE also includes use-
ful object-oriented frameworks that build upon these wrapper facades and provide useful
higher-level communication services, such as event demultiplexing and dispatching, con-
nection management, service configuration, concurrency, and hierarchically layered stream
processing. The ACE framework services satisfy many networked software needs by or-
ganizing the structures and internal control flows of your applications effectively via key
patterns learned through years of experience.

The ACE frameworks offer you a number of important benefits:

¢ You needn’t develop the capabilities provided by ACE, which will save considerable
time and effort. You can therefore focus on your key responsibility: implementing
the application functionality required by your customers and end users.

o The ACE frameworks reify the extensive network programming expertise that Doug,
Steve, and their colleagues have gained over several decades. In particular, the ACE
frameworks efficiently implement the canonical classes, class relationships, and con-
trol flows common to networked applications. The ACE frameworks are tested reg-
ularly by thousands of users from around the world, which has yielded many useful
corrections and improvements. As an ACE user, you can directly leverage the cor-
rectness, effectiveness, and efficiency of the ACE frameworks in your applications.

e A framework isn’t a framework if it can’t be adapted to specific user needs. This
means you can adapt the ACE frameworks at key points of variation in networked
applications. For example, the ACE Reactor framework can be adapted to use dif-
ferent event demultiplexer functions, such as WaitForMultipleObjects () or
select (). Likewise, the ACE Acceptor-Connector framework can be configured
with different IPC mechanisms. While this adaptability is beneficial by itself, ACE
goes a step further: for many adaptations you can configure the desired strategies
from available and interchangeable implementations. In addition to the different Re-
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actor implementations mentioned above, for instance, ACE provides wrapper facades
for various IPC mechanisms, such as the Sockets, SSL, TLI, and shared memory, that
help to configure the ACE Acceptor-Connector framework for specific platforms and
applications.

o Last but not least, the ACE frameworks don’t exist in isolation. You can therefore
combine them in novel ways to create networked applications and entirely new types
of middleware. For example, you can integrate the Reactor framework with the
Acceptor-Connector framework to separate connection establishment from service
processing functionality in event-driven applications. You can likewise introduce
various forms of concurrency into your applications using the ACE Task framework.

As a result of advising and leading many software projects over the years, I've found
that ACE greatly simplifies the task of employing reusable middleware that can be cus-
tomized readily to meet the needs of networked applications. Not all networked applica-
tions need heavyweight middleware, such as application servers, web services, and complex
component models. Yet most networked applications can benefit from portable and efficient
host infrastructure middleware like ACE. This flexibility is the core of ACE’s success since
you needn’t commit to an entire middleware suite if you don’t use all of it. Instead, you
can combine just the essential ACE middleware classes you need to compose applications
that are small, but as powerful as necessary. For this reason, I predict that ACE will still be
widely used long after the influence of today’s heavyweight middleware has waned.

ACE’s tremendous flexibility also needn’t lead to a sea of incompatible middleware
implementations. For example, if you build an embedded system that speaks the CORBA
Internet inter-ORB protocol (IIOP) to the outside world, you can use The ACE ORB (TAO),
which is a CORBA-compliant, open-source, real-time object request broker (ORB) built
using the ACE wrapper facades and frameworks. If CORBA is overkill for your application
needs, however, you can build custom, yet interoperable, middleware using the appropriate
ACE classes. Both solutions can be based on the same core structures and protocols, such
as the ACE Common Data Representation (CDR) classes and its TCP/IP Socket wrapper
facades. They can therefore communicate seamlessly with one another, just as you can
take a train from Paris to Istanbul—the famous Orient Express—and travel through many
European countries without having to change trains due to incompatible railroad networks.

As Steve Vinoski and I have pointed out, there are many similarities between high-
quality mass transit systems and high-quality networking middleware. To me and thousands
of other C++ developers around the world, ACE is the toolkit for building the latter! Af-
ter saying so many good things about ACE, however, let’s return to the main intent of this
foreword: introducing the second volume (C++NPv2) of the C++ Network Programming
series. As with all software technologies and middleware, the more you understand your
tools, the better you’ll be able to apply them. It turns out that using ACE in your appli-
cations is just one aspect of improving your networked software. To benefit significantly
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from ACE’s many advantages, you therefore also need a sound understanding of the core
concepts, patterns, and usage rules that underlie its powerful frameworks.

For years, a common way to learn ACE involved studying its code, comments, and ex-
ample applications. Clearly, this process was time consuming and error prone. Moreover,
even after managing to read the several hundred thousand lines of C++ code in ACE, it was
easy to miss the forest for the trees. As the Greek philosopher Thucydides noted two mil-
lennia ago: “A man who has the knowledge but lacks the power to clearly express himself
is no better off than if he had never any idea at all.”

We're therefore fortunate that Doug and Steve found time in their busy schedules to
create such a high-quality book on the ACE frameworks. C++NPv2 explains the ideas
and concepts underlying the ACE frameworks in an easily accessible form using the popu-
lar concurrency and networking patterns from the POSA [POSAL, POSA2] and “Gang of
Four” [GoF] patterns books. These patterns, in turn, reify thoughtful and time-proven solu-
tions to common networking problems. For example, they tell you what the problems are,
why these problems are hard, what the solutions to these problems are, and why these solu-
tions applied to ACE are of high quality. If you want thorough coverage of the patterns and
frameworks in ACE that are shaping the next generation of networked application software
then read this book. I've learned much from it and I’m sure you will too.

Frank Buschmann

Senior Principal Engineer
Siemens Corporate Technology
Munich, Germany
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Software for networked applications must possess the following qualities to be successful
in today’s competitive, fast-paced computing industry:

Affordability, to ensure that the total ownership costs of software acquisition and
evolution are not prohibitively high

Extensibility, to support successions of quick updates and additions to address new
requirements and take advantage of emerging markets

Flexibility, to support a growing range of multimedia data types, traffic patterns, and
end-to-end quality of service (QoS) requirements

Portability, to reduce the effort required to support applications on heterogeneous
OS platforms and compilers

Predictability and efficiency, to provide low latency to delay-sensitive real-time ap-
plications, high performance to bandwidth-intensive applications, and usability over
low-bandwidth networks, such as wireless links

Reliability, to ensure that applications are robust, fault tolerant, and highly available

Scalability, to enable applications to handle large numbers of clients simultaneously

Writing high-quality networked applications that exhibit these qualities is hard—it’s
expensive, complicated, and error prone. The patterns, C++ language features, and object-
oriented design principles presented in C++ Network Programming, Volume 1: Mastering
Complexity with ACE and Patterns (C++NPv1) help to minimize complexity and mistakes
in networked applications by refactoring common structure and functionality into reusable
wrapper facade class libraries. The key benefits of reuse will be lost, however, if large
parts of the application software that uses these class libraries—or worse, the class libraries
themselves—must be rewritten for each new project.
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Historically, many networked application software projects began by

1. Designing and implementing demultiplexing and dispatching infrastructure mecha-
nisms that handle timed events and IO on multiple socket handles

2. Adding service instantiation and processing mechanisms atop the demultiplexing and
dispatching layer, along with message buffering and queueing mechanisms

3. Implementing large amounts of application-specific code using this ad hoc host in-
frastructure middleware

This development process has been applied many times in many companies, by many
projects in parallel. Even worse, it’s been applied by the same teams in a series of projects.
Regrettably, this continuous rediscovery and reinvention of core concepts and code has kept
costs unnecessarily high throughout the software development life cycle. This problem is
exacerbated by the inherent diversity of today’s hardware, operating systems, compilers,
and communication platforms, which keep shifting the foundations of networked applica-
tion software development.

Object-oriented frameworks [FIS99b, FIS99a] are one of the most flexible and pow-
erful techniques that address the problems outlined above. A framework is a reusable,
“semi-complete” application that can be specialized to produce custom applications [JF88].
Frameworks help to reduce the cost and improve the quality of networked applications by
reifying proven software designs and patterns into concrete source code. By emphasiz-
ing the integration and collaboration of application-specific and application-independent
classes, frameworks enable larger scale reuse of software than can be achieved by reusing
individual classes or stand-alone functions.

In the early 1990s, Doug Schmidt started the open-source ACE project to bring the
power and efficiency of patterns and frameworks to networked application development.
As with much of Doug’s work, ACE addressed many real-world problems faced by pro-
fessional software developers. Over the following decade, his groups at the University of
California, Irvine; Washington University, St. Louis; and Vanderbilt University, along with
contributions from the ACE user community and Steve Huston at Riverace, yielded a C++
toolkit containing some of the most powerful and widely used concurrent object-oriented
network programming frameworks in the world. By applying reusable software patterns and
a lightweight OS portability layer, the frameworks in the ACE toolkit provide synchronous
and asynchronous event processing; concurrency and synchronization; connection manage-
ment; and service configuration, initialization, and hierarchical integration.

The success of ACE has fundamentally altered the way that networked applications
and middleware are designed and implemented on the many operating systems outlined in
Sidebar 2 (page 16). ACE is being used by thousands of development teams, ranging from
large Fortune 500 companies to small startups to advanced research projects at universities
and industry labs. Its open-source development model and self-supporting culture is similar
in spirit and enthusiasm to that driving Linus Torvalds’s popular Linux operating system,
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This book describes how the ACE frameworks are designed and how they can help
developers navigate between the limitations of

1. Low-level native operating system APIs, which are inflexible and nonportable

2. High-level middleware, such as distribution middleware and common middleware
services, which often lacks the efficiency and flexibility to support networked appli-
cations with stringent QoS and portability requirements

The skills required to produce and use networked application frameworks have traditionally
been locked in the heads of expert developers or buried deep within the source code of
numerous projects that are spread throughout an enterprise or an industry. Neither of these
locations is ideal, of course, since it’s time consuming and error prone to reengineer this
knowledge for each new application or project. To address this problem, this book illustrates
the key patterns [POSA2, POSA1, GoF] that underlie the structure and functionality of the
ACE frameworks. Our coverage of these patterns also makes it easier to understand the
design, implementation, and effective use of the open-source ACE toolkit itself.

Intended Audience

This book is intended for “hands on” C++ developers or advanced students interested in
understanding how to design object-oriented frameworks and apply them to develop net-
worked applications. It builds upon material from C++NPv1 that shows how developers
can apply patterns to master complexities arising from using native OS APIs to program
networked applications. It’s therefore important to have a solid grasp of the following top-
ics covered in C++NPv1 before reading this book:

e Networked application design dimensions, including the alternative communica-
tion protocols and data transfer mechanisms discussed in Chapter 1 of C++NPv1

¢ Internet programming mechanisms, such as TCP/IP connection management and
data transfer APIs [Ste98] discussed in Chapter 2 of C++NPv1

o Concurrency design dimensions, including the use of processes and threads, iter-
ative versus concurrent versus reactive servers, and threading models [Ste99] dis-
cussed in Chapters 5 through 9 of C++NPv1

e Synchronization techniques necessary to coordinate the interactions of processes
and threads on various OS platforms [KSS96, Lew95, Ric97] discussed in Chapter
10 of C++NPvl

e Object-oriented design and programming techniques [Boo94, Mey97] that can
simplify OS APIs and avoid programming mistakes through the use of patterns, such
as Wrapper Facade [POSA2] and Proxy [POSA1, GoF] discussed in Chapter 3 and
Appendix A of C++NPv1
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The ACE frameworks are highly flexible and powerful, due in large part to their use of
C++ language features [Bja00]. You should therefore be familiar with C++ class inheritance
and virtual functions (dynamic binding) as well as templates (parameterized types) and
the mechanisms your compiler(s) offer to instantiate them. ACE provides a great deal of
assistance in overcoming differences between C++ compilers. As always, however, you
need to know the capabilities of your development tools and how to use them. Knowing
your tools makes it easier to follow the source code examples in this book and to build and
run them on your systems. Finally, as you read the examples in this book, keep in mind the
points noted in Sidebar 7 (page 46) regarding UML diagrams and C++ code.

Structure and Content

Our C++NPv1 book addressed how to master certain complexities of developing networked
applications, focusing on the use of ACE’s wrapper facades to avoid problems with oper-
ating system APIs written in C. This book (which we call C++NPv2) elevates our focus
to motivate and demystify the patterns, design techniques, and C++ features associated
with developing and using the ACE frameworks. These frameworks help reduce the cost
and improve the quality of networked applications by reifying proven software designs and
patterns into frameworks that can be reused systematically across projects and enterprises.
The ACE frameworks expand reuse technology far beyond what can be achieved by reusing
individual classes or even class libraries.

This book presents numerous C++ applications to reinforce the design discussions by
showing concrete examples of how to use the ACE frameworks. These examples provide
step-by-step guidance that can help you apply key object-oriented techniques and patterns to
your own networked applications. The book also shows how to enhance your design skills,
focusing on the key concepts and principles that shape the design of successful object-
oriented frameworks for networked applications and middleware.

The chapters in the book are organized as follows:

e Chapter 1 introduces the concept of an object-oriented framework and shows how
frameworks differ from other reuse techniques, such as class libraries, components,
patterns, and model-integrated computing. We then outline the frameworks in the
ACE toolkit that are covered in subsequent chapters.

o Chapter 2 completes the domain analysis begun in C++NPv1, which covered the
communication protocols and mechanisms, and the concurrency architectures used
by networked applications. The focus in this book is on the service and configuration
design dimensions that address key networked application properties, such as dura-
tion and structure, how networked services are identified, and the time at which they
are bound together to form complete applications.
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e Chapter 3 describes the design and use of the ACE Reactor framework, which imple-
ments the Reactor pattern [POSA2] to allow event-driven applications to demultiplex
and dispatch service requests that are delivered to an application from one or more
clients.

e Chapter 4 then describes the design and use of the most common implementations
of the ACE_Reactor interface, which support a wide range of OS event demul-
tiplexing mechanisms, including select (), WaitForMultipleObjects (),
XtAppMainLoop (), and /dev/poll.

e Chapter 5 describes the design and use of the ACE Service Configurator framework.
This framework implements the Component Configurator pattern [POSA2] to allow
an application to link/unlink its component service implementations at run time with-
out having to modify, recompile, or relink the application statically.

o Chapter 6 describes the design‘and effective use of the ACE Task framework. This
framework can be used to implement key concurrency patterns, such as Active Object
and Half-Sync/Half-Async [POSAZ2].

e Chapter 7 describes the design and effective use of the ACE Acceptor-Connector
framework. This framework implements the Acceptor-Connector pattern [POSA2] to
decouple the connection and initialization of cooperating peer services in a networked
system from the processing they perform once connected and initialized.

e Chapter 8 describes the design and use of the ACE Proactor framework. This frame-
work implements the Proactor and Acceptor-Connector patterns [POSA2] to allow
event-driven applications to efficiently demultiplex and dispatch service requests trig-
gered by the completion of asynchronously initiated operations.

¢ Chapter 9 describes the design and use of the ACE Streams framework. This frame-
work implements the Pipes and Filters pattern [POSA1] to provide a structure for
systems that process streams of data.

o The book concludes with a glossary of technical terms, a list of references for further
study, and a general subject index.

The chapters are organized to build upon each other and to minimize forward references.
We therefore recommend that you read the chapters in order.

Although this book illustrates the key capabilities of ACE’s most important frameworks,
we don’t cover all uses and methods of those frameworks. For additional coverage of ACE,
we refer you to The ACE Programmer’s Guide [HJS] and the online ACE reference doc-
umentation, generated by Doxygen [Dim01]. ACE’s reference documentation is available
at http://ace.ece.uci.edu/Doxygen/ and http://www.riverace. com/
docs/.
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Related Material

This book is based on ACE version 5.3, released in the fall of 2002. ACE 5.3 and all the
sample applications described in our books are open-source software. Sidebar 3 (page 19)
explains how you can obtain a copy of ACE so you can follow along, see the actual ACE
classes and frameworks in complete detail, and run the code examples interactively as you
read the book.

To learn more about ACE, or to report errors you find in the book, we recommend you
subscribe to the ACE mailing list, ace-usersecs.wustl.edu. You can subscribe by
sending a request to ace-users-request@cs.wustl.edu. Include the following
command in the body of the e-mail (the subject is ignored):

subscribe ace-users [emailaddress@domainl]

You must supply emailaddress@domain only if your message’s From address is not
the address you wish to subscribe. If you use this alternate address method, the list server
will require an extra authorization step before allowing you to join the list.

Postings to the ace-users list are also forwarded to the comp.soft-sys.ace
USENET newsgroup, along with postings to several other ACE-related mailing lists. Read-
ing the messages via the newsgroup is a good way to keep up with ACE news and activity
if you don’t require immediate delivery of the 30 to 50 messages that are posted daily on
the mailing lists.

Archives of postings to the comp . soft - sys. ace newsgroup arc available at ht tp:
//groups.google.com/. Enter comp.soft-sys.ace in the search box to go to
a list of archived messages. Google has a complete, searchable archive of over 40,000
messages. You can also post a message to the newsgroup from Google’s site.
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