PEARSON

B T T
Addison
Wesley

w2

AERF HhRFE

B 4 KA /K HLF B B 15 0
DIV ANOR T
f IP312
207402700 ,
|
5 5495

; %?Emﬂi it

oh L F R RAN

C++ Netw@fk Pfogr ing
‘Volum¢ 2 % H

Systematic Reuse with ACE and Frameworks

Douglas C. Schmidt, Stephen D. Huston &

CH+MZ%gnfe &2
T ACERINERR I B BAL 52 //,fu

ALERF H Rt
SRE 2 JIP R

English reprint edition copyright © 2004 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA
UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: C++ Network Programming, Volume 2: Systematic Reuse with ACE and
Frameworks by Douglas C. Schmidt and Stephen D. Huston, Copyright © 2003
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the Special
Administrative Region of Hong Kong, Macao SAR and Taiwan).
A5 ERAR B Pearson Education (R{AEHE AR B TE £ KX ¥ HBGL HURAT .

For sale and distribution in the People’s Republic of China exclusively
(except Taiwan, Hong Kong SAR and Macao SAR).
BRTFHEARLMEREA (FEEFEEFE. BIIHNTHREMH
ATHX) HERIT.

LR HRRBUREEREREES EF 01-2003-8795

A HEMLHE Pearson Education GEEH & HARER) BABHHIIFE, TREEREHE.

BB EMS B (CIP) #1E
C++MB o % 2: #T ACE HIERRNRZGH A = C++ Network Programming, Volume 2: Systematic
Reuse with ACE and Frameworks / HE#4#F (Schmidt, D. C.), K#7#i (Huston, S. D.) &, —HA. —Jb5.

BHEREHRA, 2004.2
ISBN 7-302-07964-1

[.Co . O Otk T CIBESE BRI —FEE -8 - V. TP312
E R A B 508 CIP BB (2004) 3 003408 5

R & EERFHERA o hb: dEEEEREEVRE
http://www.tup.com.cn #p #i: 100084

24 (010) 62770175 ERERE: (010) 6277 6969
db st Lt SCERY

FEHENFEZ B RO AT

FEBEREILR RITH

185X230 EPgk: 23.25

2004 E2 A IRR 2004 42 A% 1 REIRI

ISBN 7-302-07964-1/TP » 5784

1~3000

34.00 7T

Giom
P 0T Bt B

Al D3 & H R D

A BAHESCT NS WEDARBRIT, (00, BSOSO MR, 5k 2 AR th R S 7
. BERBIE: (010) 62770175-3103 B (010) 62795704

th ik i W

BEA 21 g, HAFENLH. BEURGE RN/ BN TR LE
BERX A BIRF. EREAESEROAL, EREERSTRENS. B%HT, £
NEFREERATIEN, DRZIREEN. FRESSHENEMETRE, 4T
INRE B E R, HEEIEE R (RERE R A E SN RE

HHERF R 1996 T4, SRIEZHRARGE, FEHRT “KR¥EHEN
BEAY RO F—RIGIHEE, RETEHARERKIEANSCR. BA 21 g,
BMNAENBREREHFEMERRSOVE, ECEREMLE, -39 REEAE,
HERHPFERT, —WEEMER X ERXBRER TRESRAREHRETEIHE
MBS E BB BRE BB, HRAE “KREHEVEETEIELBM AT G,
PLRiE#H . RUTIBEE R ERAARTI BB RAAR LR RARN. EREENY
K. BERPWABRNERFEIMENBERRSE M, DRHBRIHE “KETENETES
HREMARY GEEHRO” HEELY, TEa/aRMENTE.

HERE M RAE

Foreword

The ADAPTIVE Communication Environment (ACE) toolkit has achieved enormous suc-
cess in the area of middleware for networked computing. Due to its flexibility, perfor-
mance, platform coverage, and other key properties, ACE enjoys broad acceptance by the
networked application software community, as evidenced by its use in thousands of applica-
tions, in scores of countries, and in dozens of domains. ACE has also received considerable
attention beyond the middleware community since it’s an open-source role model for high-
quality and well-designed pattern-oriented software architectures.

But why is ACE so successful? Addressing this question properly takes some thought.
To start off, let’s reconsider the Foreword from C++ Network Programming: Mastering
Complexity with ACE and Patterns (C++NPv1) and resume the mass transit analogy pre-
sented there by my colleague Steve Vinoski. Steve’s right that a high-quality mass transit
system consists of more than just aircraft, airports, trains, train stations, and rails. It also
needs less obvious infrastructure, such as scheduling, routing, ticketing, maintenance, and
monitoring. But even a complete collection of ingredients is still not sufficient to develop
an effective mass transit system. Arranging these ingredients so they seamlessly fulfill their
primary objective—fast and reliable transportation of people—is equally important. Would
you use a mass transit system whose ticketing was located in a train maintenance location
or an airport hangar, or whose planned and actual scheduling and routing weren’t available
to the public? I doubt it!

The success of mass transit systems depends on more than the knowledge of the infra-
structure parts that are provided—it depends on how these different parts must be connected
and integrated with their environment. This knowledge enables architects of mass transit
systems to integrate individual parts into higher-level building blocks and to connect these
building blocks effectively. For example, ticketing, information points, baggage offices, and
boarding are integrated in train stations located at city centers or major suburban centers.
Likewise, airports are often located near large cities and connected by frequent express
trains.

viii Foreword

Even mass transit centers themselves are arranged so that activities can be performed
effectively. For example, when you enter a train station or airport via the main entrance, you
find ticket agents, information centers, and timetables. You also find shops to satisfy your
travel needs. As you enter the main train hall or airport concourse, you find other informa-
tion centers, up-to-date scheduling information, and the platforms and gates for boarding
the trains and planes. Mass transit centers thus not only provide all necessary services
to begin and end a journey, they also organize their internal “control flows” effectively.
While the core structures and control flows in most train stations and airports are sumilar,
their concrete realization can differ widely. Yet we all recognize these mass transit center
patterns immediately since they follow key invariants that we’ve learned through years of
experience.

So what’s the connection between successful mass transit system design and the success
of ACE? The answer is simple: In addition to the basic network computing ingredients (the
wrapper facades that Doug and Steve introduced in C++NPv1), ACE also includes use-
ful object-oriented frameworks that build upon these wrapper facades and provide useful
higher-level communication services, such as event demultiplexing and dispatching, con-
nection management, service configuration, concurrency, and hierarchically layered stream
processing. The ACE framework services satisfy many networked software needs by or-
ganizing the structures and internal control flows of your applications effectively via key
patterns learned through years of experience.

The ACE frameworks offer you a number of important benefits:

¢ You needn’t develop the capabilities provided by ACE, which will save considerable
time and effort. You can therefore focus on your key responsibility: implementing
the application functionality required by your customers and end users.

o The ACE frameworks reify the extensive network programming expertise that Doug,
Steve, and their colleagues have gained over several decades. In particular, the ACE
frameworks efficiently implement the canonical classes, class relationships, and con-
trol flows common to networked applications. The ACE frameworks are tested reg-
ularly by thousands of users from around the world, which has yielded many useful
corrections and improvements. As an ACE user, you can directly leverage the cor-
rectness, effectiveness, and efficiency of the ACE frameworks in your applications.

e A framework isn’t a framework if it can’t be adapted to specific user needs. This
means you can adapt the ACE frameworks at key points of variation in networked
applications. For example, the ACE Reactor framework can be adapted to use dif-
ferent event demultiplexer functions, such as WaitForMultipleObjects () or
select (). Likewise, the ACE Acceptor-Connector framework can be configured
with different IPC mechanisms. While this adaptability is beneficial by itself, ACE
goes a step further: for many adaptations you can configure the desired strategies
from available and interchangeable implementations. In addition to the different Re-

Foreword

actor implementations mentioned above, for instance, ACE provides wrapper facades
for various IPC mechanisms, such as the Sockets, SSL, TLI, and shared memory, that
help to configure the ACE Acceptor-Connector framework for specific platforms and
applications.

o Last but not least, the ACE frameworks don’t exist in isolation. You can therefore
combine them in novel ways to create networked applications and entirely new types
of middleware. For example, you can integrate the Reactor framework with the
Acceptor-Connector framework to separate connection establishment from service
processing functionality in event-driven applications. You can likewise introduce
various forms of concurrency into your applications using the ACE Task framework.

As a result of advising and leading many software projects over the years, I've found
that ACE greatly simplifies the task of employing reusable middleware that can be cus-
tomized readily to meet the needs of networked applications. Not all networked applica-
tions need heavyweight middleware, such as application servers, web services, and complex
component models. Yet most networked applications can benefit from portable and efficient
host infrastructure middleware like ACE. This flexibility is the core of ACE’s success since
you needn’t commit to an entire middleware suite if you don’t use all of it. Instead, you
can combine just the essential ACE middleware classes you need to compose applications
that are small, but as powerful as necessary. For this reason, I predict that ACE will still be
widely used long after the influence of today’s heavyweight middleware has waned.

ACE’s tremendous flexibility also needn’t lead to a sea of incompatible middleware
implementations. For example, if you build an embedded system that speaks the CORBA
Internet inter-ORB protocol (IIOP) to the outside world, you can use The ACE ORB (TAO),
which is a CORBA-compliant, open-source, real-time object request broker (ORB) built
using the ACE wrapper facades and frameworks. If CORBA is overkill for your application
needs, however, you can build custom, yet interoperable, middleware using the appropriate
ACE classes. Both solutions can be based on the same core structures and protocols, such
as the ACE Common Data Representation (CDR) classes and its TCP/IP Socket wrapper
facades. They can therefore communicate seamlessly with one another, just as you can
take a train from Paris to Istanbul—the famous Orient Express—and travel through many
European countries without having to change trains due to incompatible railroad networks.

As Steve Vinoski and I have pointed out, there are many similarities between high-
quality mass transit systems and high-quality networking middleware. To me and thousands
of other C++ developers around the world, ACE is the toolkit for building the latter! Af-
ter saying so many good things about ACE, however, let’s return to the main intent of this
foreword: introducing the second volume (C++NPv2) of the C++ Network Programming
series. As with all software technologies and middleware, the more you understand your
tools, the better you’ll be able to apply them. It turns out that using ACE in your appli-
cations is just one aspect of improving your networked software. To benefit significantly

x Foreword

from ACE’s many advantages, you therefore also need a sound understanding of the core
concepts, patterns, and usage rules that underlie its powerful frameworks.

For years, a common way to learn ACE involved studying its code, comments, and ex-
ample applications. Clearly, this process was time consuming and error prone. Moreover,
even after managing to read the several hundred thousand lines of C++ code in ACE, it was
easy to miss the forest for the trees. As the Greek philosopher Thucydides noted two mil-
lennia ago: “A man who has the knowledge but lacks the power to clearly express himself
is no better off than if he had never any idea at all.”

We're therefore fortunate that Doug and Steve found time in their busy schedules to
create such a high-quality book on the ACE frameworks. C++NPv2 explains the ideas
and concepts underlying the ACE frameworks in an easily accessible form using the popu-
lar concurrency and networking patterns from the POSA [POSAL, POSA2] and “Gang of
Four” [GoF] patterns books. These patterns, in turn, reify thoughtful and time-proven solu-
tions to common networking problems. For example, they tell you what the problems are,
why these problems are hard, what the solutions to these problems are, and why these solu-
tions applied to ACE are of high quality. If you want thorough coverage of the patterns and
frameworks in ACE that are shaping the next generation of networked application software
then read this book. I've learned much from it and I’m sure you will too.

Frank Buschmann

Senior Principal Engineer
Siemens Corporate Technology
Munich, Germany

About This Book

Software for networked applications must possess the following qualities to be successful
in today’s competitive, fast-paced computing industry:

Affordability, to ensure that the total ownership costs of software acquisition and
evolution are not prohibitively high

Extensibility, to support successions of quick updates and additions to address new
requirements and take advantage of emerging markets

Flexibility, to support a growing range of multimedia data types, traffic patterns, and
end-to-end quality of service (QoS) requirements

Portability, to reduce the effort required to support applications on heterogeneous
OS platforms and compilers

Predictability and efficiency, to provide low latency to delay-sensitive real-time ap-
plications, high performance to bandwidth-intensive applications, and usability over
low-bandwidth networks, such as wireless links

Reliability, to ensure that applications are robust, fault tolerant, and highly available

Scalability, to enable applications to handle large numbers of clients simultaneously

Writing high-quality networked applications that exhibit these qualities is hard—it’s
expensive, complicated, and error prone. The patterns, C++ language features, and object-
oriented design principles presented in C++ Network Programming, Volume 1: Mastering
Complexity with ACE and Patterns (C++NPv1) help to minimize complexity and mistakes
in networked applications by refactoring common structure and functionality into reusable
wrapper facade class libraries. The key benefits of reuse will be lost, however, if large
parts of the application software that uses these class libraries—or worse, the class libraries
themselves—must be rewritten for each new project.

xii About This Book

Historically, many networked application software projects began by

1. Designing and implementing demultiplexing and dispatching infrastructure mecha-
nisms that handle timed events and IO on multiple socket handles

2. Adding service instantiation and processing mechanisms atop the demultiplexing and
dispatching layer, along with message buffering and queueing mechanisms

3. Implementing large amounts of application-specific code using this ad hoc host in-
frastructure middleware

This development process has been applied many times in many companies, by many
projects in parallel. Even worse, it’s been applied by the same teams in a series of projects.
Regrettably, this continuous rediscovery and reinvention of core concepts and code has kept
costs unnecessarily high throughout the software development life cycle. This problem is
exacerbated by the inherent diversity of today’s hardware, operating systems, compilers,
and communication platforms, which keep shifting the foundations of networked applica-
tion software development.

Object-oriented frameworks [FIS99b, FIS99a] are one of the most flexible and pow-
erful techniques that address the problems outlined above. A framework is a reusable,
“semi-complete” application that can be specialized to produce custom applications [JF88].
Frameworks help to reduce the cost and improve the quality of networked applications by
reifying proven software designs and patterns into concrete source code. By emphasiz-
ing the integration and collaboration of application-specific and application-independent
classes, frameworks enable larger scale reuse of software than can be achieved by reusing
individual classes or stand-alone functions.

In the early 1990s, Doug Schmidt started the open-source ACE project to bring the
power and efficiency of patterns and frameworks to networked application development.
As with much of Doug’s work, ACE addressed many real-world problems faced by pro-
fessional software developers. Over the following decade, his groups at the University of
California, Irvine; Washington University, St. Louis; and Vanderbilt University, along with
contributions from the ACE user community and Steve Huston at Riverace, yielded a C++
toolkit containing some of the most powerful and widely used concurrent object-oriented
network programming frameworks in the world. By applying reusable software patterns and
a lightweight OS portability layer, the frameworks in the ACE toolkit provide synchronous
and asynchronous event processing; concurrency and synchronization; connection manage-
ment; and service configuration, initialization, and hierarchical integration.

The success of ACE has fundamentally altered the way that networked applications
and middleware are designed and implemented on the many operating systems outlined in
Sidebar 2 (page 16). ACE is being used by thousands of development teams, ranging from
large Fortune 500 companies to small startups to advanced research projects at universities
and industry labs. Its open-source development model and self-supporting culture is similar
in spirit and enthusiasm to that driving Linus Torvalds’s popular Linux operating system,

About This Book xiii

This book describes how the ACE frameworks are designed and how they can help
developers navigate between the limitations of

1. Low-level native operating system APIs, which are inflexible and nonportable

2. High-level middleware, such as distribution middleware and common middleware
services, which often lacks the efficiency and flexibility to support networked appli-
cations with stringent QoS and portability requirements

The skills required to produce and use networked application frameworks have traditionally
been locked in the heads of expert developers or buried deep within the source code of
numerous projects that are spread throughout an enterprise or an industry. Neither of these
locations is ideal, of course, since it’s time consuming and error prone to reengineer this
knowledge for each new application or project. To address this problem, this book illustrates
the key patterns [POSA2, POSA1, GoF] that underlie the structure and functionality of the
ACE frameworks. Our coverage of these patterns also makes it easier to understand the
design, implementation, and effective use of the open-source ACE toolkit itself.

Intended Audience

This book is intended for “hands on” C++ developers or advanced students interested in
understanding how to design object-oriented frameworks and apply them to develop net-
worked applications. It builds upon material from C++NPv1 that shows how developers
can apply patterns to master complexities arising from using native OS APIs to program
networked applications. It’s therefore important to have a solid grasp of the following top-
ics covered in C++NPv1 before reading this book:

e Networked application design dimensions, including the alternative communica-
tion protocols and data transfer mechanisms discussed in Chapter 1 of C++NPv1

¢ Internet programming mechanisms, such as TCP/IP connection management and
data transfer APIs [Ste98] discussed in Chapter 2 of C++NPv1

o Concurrency design dimensions, including the use of processes and threads, iter-
ative versus concurrent versus reactive servers, and threading models [Ste99] dis-
cussed in Chapters 5 through 9 of C++NPv1

e Synchronization techniques necessary to coordinate the interactions of processes
and threads on various OS platforms [KSS96, Lew95, Ric97] discussed in Chapter
10 of C++NPvl

e Object-oriented design and programming techniques [Boo94, Mey97] that can
simplify OS APIs and avoid programming mistakes through the use of patterns, such
as Wrapper Facade [POSA2] and Proxy [POSA1, GoF] discussed in Chapter 3 and
Appendix A of C++NPv1

xiv About This Book

The ACE frameworks are highly flexible and powerful, due in large part to their use of
C++ language features [Bja00]. You should therefore be familiar with C++ class inheritance
and virtual functions (dynamic binding) as well as templates (parameterized types) and
the mechanisms your compiler(s) offer to instantiate them. ACE provides a great deal of
assistance in overcoming differences between C++ compilers. As always, however, you
need to know the capabilities of your development tools and how to use them. Knowing
your tools makes it easier to follow the source code examples in this book and to build and
run them on your systems. Finally, as you read the examples in this book, keep in mind the
points noted in Sidebar 7 (page 46) regarding UML diagrams and C++ code.

Structure and Content

Our C++NPv1 book addressed how to master certain complexities of developing networked
applications, focusing on the use of ACE’s wrapper facades to avoid problems with oper-
ating system APIs written in C. This book (which we call C++NPv2) elevates our focus
to motivate and demystify the patterns, design techniques, and C++ features associated
with developing and using the ACE frameworks. These frameworks help reduce the cost
and improve the quality of networked applications by reifying proven software designs and
patterns into frameworks that can be reused systematically across projects and enterprises.
The ACE frameworks expand reuse technology far beyond what can be achieved by reusing
individual classes or even class libraries.

This book presents numerous C++ applications to reinforce the design discussions by
showing concrete examples of how to use the ACE frameworks. These examples provide
step-by-step guidance that can help you apply key object-oriented techniques and patterns to
your own networked applications. The book also shows how to enhance your design skills,
focusing on the key concepts and principles that shape the design of successful object-
oriented frameworks for networked applications and middleware.

The chapters in the book are organized as follows:

e Chapter 1 introduces the concept of an object-oriented framework and shows how
frameworks differ from other reuse techniques, such as class libraries, components,
patterns, and model-integrated computing. We then outline the frameworks in the
ACE toolkit that are covered in subsequent chapters.

o Chapter 2 completes the domain analysis begun in C++NPv1, which covered the
communication protocols and mechanisms, and the concurrency architectures used
by networked applications. The focus in this book is on the service and configuration
design dimensions that address key networked application properties, such as dura-
tion and structure, how networked services are identified, and the time at which they
are bound together to form complete applications.

About This Book XV

e Chapter 3 describes the design and use of the ACE Reactor framework, which imple-
ments the Reactor pattern [POSA2] to allow event-driven applications to demultiplex
and dispatch service requests that are delivered to an application from one or more
clients.

e Chapter 4 then describes the design and use of the most common implementations
of the ACE_Reactor interface, which support a wide range of OS event demul-
tiplexing mechanisms, including select (), WaitForMultipleObjects (),
XtAppMainLoop (), and /dev/poll.

e Chapter 5 describes the design and use of the ACE Service Configurator framework.
This framework implements the Component Configurator pattern [POSA2] to allow
an application to link/unlink its component service implementations at run time with-
out having to modify, recompile, or relink the application statically.

o Chapter 6 describes the design‘and effective use of the ACE Task framework. This
framework can be used to implement key concurrency patterns, such as Active Object
and Half-Sync/Half-Async [POSAZ2].

e Chapter 7 describes the design and effective use of the ACE Acceptor-Connector
framework. This framework implements the Acceptor-Connector pattern [POSA2] to
decouple the connection and initialization of cooperating peer services in a networked
system from the processing they perform once connected and initialized.

e Chapter 8 describes the design and use of the ACE Proactor framework. This frame-
work implements the Proactor and Acceptor-Connector patterns [POSA2] to allow
event-driven applications to efficiently demultiplex and dispatch service requests trig-
gered by the completion of asynchronously initiated operations.

¢ Chapter 9 describes the design and use of the ACE Streams framework. This frame-
work implements the Pipes and Filters pattern [POSA1] to provide a structure for
systems that process streams of data.

o The book concludes with a glossary of technical terms, a list of references for further
study, and a general subject index.

The chapters are organized to build upon each other and to minimize forward references.
We therefore recommend that you read the chapters in order.

Although this book illustrates the key capabilities of ACE’s most important frameworks,
we don’t cover all uses and methods of those frameworks. For additional coverage of ACE,
we refer you to The ACE Programmer’s Guide [HJS] and the online ACE reference doc-
umentation, generated by Doxygen [Dim01]. ACE’s reference documentation is available
at http://ace.ece.uci.edu/Doxygen/ and http://www.riverace. com/
docs/.

xvi About This Book

Related Material

This book is based on ACE version 5.3, released in the fall of 2002. ACE 5.3 and all the
sample applications described in our books are open-source software. Sidebar 3 (page 19)
explains how you can obtain a copy of ACE so you can follow along, see the actual ACE
classes and frameworks in complete detail, and run the code examples interactively as you
read the book.

To learn more about ACE, or to report errors you find in the book, we recommend you
subscribe to the ACE mailing list, ace-usersecs.wustl.edu. You can subscribe by
sending a request to ace-users-request@cs.wustl.edu. Include the following
command in the body of the e-mail (the subject is ignored):

subscribe ace-users [emailaddress@domainl]

You must supply emailaddress@domain only if your message’s From address is not
the address you wish to subscribe. If you use this alternate address method, the list server
will require an extra authorization step before allowing you to join the list.

Postings to the ace-users list are also forwarded to the comp.soft-sys.ace
USENET newsgroup, along with postings to several other ACE-related mailing lists. Read-
ing the messages via the newsgroup is a good way to keep up with ACE news and activity
if you don’t require immediate delivery of the 30 to 50 messages that are posted daily on
the mailing lists.

Archives of postings to the comp . soft - sys. ace newsgroup arc available at ht tp:
//groups.google.com/. Enter comp.soft-sys.ace in the search box to go to
a list of archived messages. Google has a complete, searchable archive of over 40,000
messages. You can also post a message to the newsgroup from Google’s site.

Acknowledgments

Champion reviewing honors go to Alain Decamps, Don Hinton, Alexander Maack, Chris
Uzdavinis, and Johnny Willemsen, who reviewed the book multiple times and provided ex-
tensive, detailed comments that improved its form and content substantially. Many thanks
also to the official reviewers, Timothy Culp, Dennis Mancl, Phil Mesnier, and Jason Pa-
sion, who read the entire book and gave us many helpful comments. Many other ACE
users provided feedback on this book, including Marc M. Adkins, Tomer Amiaz, Vi Thuan
Banh, Kevin Bailey, Stephane Bastien, John Dilley, Eric Eide, Andrew Finnell, Dave Find-
lay, Jody Hagins, Jon Harnish, Jim Havlicek, Martin Johnson, Christopher Kohlhoff, Alex
Libman, Harald Mitterhofer, Llori Patterson, Nick Pratt, Dieter Quehl, Tim Rozmajzl, Irma
Rastegayeva, Eamonn Saunders, Harvinder Sawhney, Christian Schuhegger, Michael Sear-
les, Kalvinder Singh, Henny Sipma, Stephen Sturtevant, Leo Stutzmann, Tommy Svensson,
Bruce Trask, Dominic Williams, and Vadim Zaliva.

About This Book xvii

We are deeply indebted to all the members, past and present, of the DOC groups at
Washington University in St. Louis and the University of California, Irvine, as well as the
team members at Riverace Corporation and Object Computing Inc., who developed, refined,
and optimized many of the ACE capabilities presented in this book. This group includes Ev-
erett Anderson, Alex Arulanthu, Shawn Atkins, John Aughey, Luther Baker, Jaiganesh Bal-
asubramanian, Darrell Brunsch, Don Busch, Chris Cleeland, Angelo Corsaro, Chad Elliot,
Sergio Flores-Gaitan, Chris Gill, Pradeep Gore, Andy Gokhale, Priyanka Gontla, Myrna
Harbibson, Tim Harrison, Shawn Hannan, John Heitmann, Joe Hoffert, James Hu, Frank
Hunleth, Prashant Jain, Vishal Kachroo, Ray Klefstad, Kitty Krishnakumar, Yamuna Krish-
namurthy, Michael Kircher, Fred Kuhns, David Levine, Chanaka Liyanaarachchi, Michael
Moran, Ebrahim Moshiri, Sumedh Mungee, Bala Natarajan, Ossama Othman, Jeff Parsons,
Kirthika Parameswaran, Krish Pathayapura, Irfan Pyarali, Sumita Rao, Carlos O’Ryan,
Rich Siebel, Malcolm Spence, Marina Spivak, Naga Surendran, Steve Totten, Bruce Trask,
Nanbor Wang, and Seth Widoff.

We also want to thank the thousands of C++ developers from over 50 countries who’ve
contributed to ACE for over a decade. ACE’s excellence and success is a testament to the
skills and generosity of many talented developers and the forward-looking companies that
had the vision to contribute their work to ACE’s open-source code base. Without their
support, constant feedback, and encouragement, we would never have written this book.
In recognition of the efforts of the ACE open-source community, we maintain a list of all
contributors at http://ace.ece.uci.edu/ACE-members.html.

We are also grateful for the support from colleagues and sponsors of our research
on patterns and development of the ACE toolkit, notably the contributions of Ron Akers
(Motorola), Steve Bachinsky (SAIC), John Bay (DARPA), Detlef Becker (Siemens), Frank
Buschmann (Siemens), Dave Busigo (DARPA), John Buttitto (Sun), Becky Callison (Boe-
ing), Wei Chiang (Nokia Inc.), Joe Cross (Lockheed Martin), Lou DiPalma (Raytheon),
Bryan Doerr (Savvis), Karlheinz Dorn (Siemens), Scott Ellard (Madison), Matt Emerson
(Escient Convergence Group, Inc.), Sylvester Fernandez (Lockheed Martin), Nikki Ford
(DARPA), Andreas Geisler (Siemens), Helen Gill (NSF), Inc.), Jody Hagins (ATD), Andy
Harvey (Cisco), Sue Kelly (Sandia National Labs), Gary Koob (DARPA), Petri Koske-
lainen (Nokia Inc.), Sean Landis (Motorola), Patrick Lardieri (Lockheed Martin), Doug Lea
(SUNY Oswego), Joe Loyall (BBN), Kent Madsen (EO Thorpe), Ed Margand (DARPA),
Mike Masters (NSWC), Major Ed Mays (U.S. Marine Corps), John Mellby (Raytheon),
Jeanette Milos (DARPA), Stan Moyer (Telcordia), Ivan Murphy (Siemens), Russ Nose-
worthy (Object Sciences), Adam Porter (U. of Maryland), Dieter Quehl (Siemens), Vi-
Jay Raghavan (Vanderbilt U.), Lucie Robillard (U.S. Air Force), Craig Rodrigues (BBN),
Rick Schantz (BBN), Andreas Schulke (Siemens), Steve Shaffer (Kodak), Tom Shields
(Raytheon), Dave Sharp (Boeing), Naval Sodha (Ericsson), Paul Stephenson (Ericsson),
Tatsuya Suda (UCI), Umar Syyid (Storetrax, Inc.), Janos Sztipanovits (Vanderbilt U.), Gau-
tam Thaker (Lockheed Martin), Lothar Werzinger (Krones), and Don Winter (Boeing).

xviii About This Book

Very special thanks go to Susan Cooper, our copy editor, for enhancing our written
material. In addition, we are grateful for the encouragement and patience of our editor,
Debbie Lafferty, our production coordinator, Elizabeth Ryan, the series editor and inventor
of C++, Bjarne Stroustrup, and everyone else at Addison-Wesley who made it possible to
publish this book.

Finally, we would also like to acknowledge our gratitude and indebtedness to the late
W. Richard Stevens, the father of network programming literature. The following poem by
Samuel Butler sums up our view of Richard’s enduring influence:

Not on sad Stygian shore, nor in clear sheen
Of far Elysian plain, shall we meet those
Among the dead whose pupils we have been ...
Yet meet we shall, and part, and meet again,
Where dead men meet, on lips of living men.

Steve’s Acknowledgments

Wow. .. C++NPv1 took almost 3 years to complete—this volume took roughly nine months.
Thank you to my wife Jane who cheerfully endured this process. Your persistent exhorta-
tion to keep life in balance and “be the tortoise” really helped me stay the course, and
without your infinite patience through many long days and nights, I would not have com-
pleted this—thank you! Thanks to Doug Schmidt for getting the bulk of this book down
and organized in world-class time amidst a full-time job and his usual, amazing amount
of work on ACE. Finally, thank you to Riverace’s customers who supported this work so
enthusiastically. It’s a privilege to serve you.

Doug’s Acknowledgments

I'd like to thank my wife Sonja and my parents for their love and support during the writing
of this book. Now that it’s done we’ll have lots more time to have fun! Thanks also to Steve
Huston, who time-shared his overloaded schedule to wrap up the book. I'd also like to thank
my friends and colleagues at the College of William and Mary; Washington University, St.
Louis; University of California, Irvine; Vanderbilt University; DARPA; and Siemens—as
well as the thousands of ACE and TAO developers and users worldwide—who have greatly
enriched my intellectual and interpersonal life over the past two decades. I look forward to
working with all of you in the future.

Contents

Foreword
About This Book
Chapter 1 Object-Oriented Frameworks for Network Programming
1.1 An Overview of Object-Oriented Frameworks
1.2 Comparing Software Development and Reuse Techniques
1.3 Applying Frameworks to Network Programming
1.4 A Tour through the ACE Frameworks
1.5 Example: A Networked Logging Service
1.6 Summary
Chapter 2 Service and Configuration Design Dimensions
2.1 Service and Server Design Dimensions
2.2 Configuration Design Dimensions
2.3 Summary
Chapter 3 The ACE Reactor Framework
3.1 Overview
3.2 The ACE_Time._Value Class
33 The ACE_Event_Handler Class
34 The ACE Timer Queue Classes
35 The ACE_Reactor Class
3.6 Summary
Chapter 4 ACE Reactor Implementations
4.1 Overview
4.2 The ACE_Select_Reactor Class
43 The ACE_TP_Reactor Class

vii

xi

12
14
19
21

23
24
34
38

39
39
42
46
61
70
86

87
87
89
99

