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PREFACE

Several advanced books in computer science begin with a chapter consisting
of a selection of mathematical topics that the reader is assumed to know. The
exposition of such topics is usually brief, and the principal results that are
summarized become prerequisites for the remainder of the text. It is not possible
to learn these topics from such a brief treatment. Nor is it possible for under-
graduate students in computer science to study all the topics they are required
to know by attending courses dealing with each individual topic as given by
mathematics departments. In general, the trend is to select several topics in
mathematics that are essential to the study of many computer science areas
and to expose the students to the mathematical prerequisites in some other
way. A similar development has occurred in most engineering curricula. In the
same spirit, this book discusses certain selected topics in mathematics which
can be referred to as “discrete mathematics.”” No prerequisites except the mathe-
matical maturity of a high school student are assumed. Although many students
taking a course in discrete mathematics may have had a freshman course in
calculus, such a course is by no means a prerequisite to the study of this book.
However, any additional mathematical courses taken by students will aid in
their development of mathematical maturity.

It is not our intention to cover all topics in discrete mathematics. The
omission of counting techniques, permutations, and probability will be felt by
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some readers. We have assumed that many high school students will have had
some exposure to these topics. .

The selection of the topics was governed by our desire to introduce most
of the basic terminology used in as many advanced courscs in computer science
as possible. In order to motivate the students properly, we feel that it is im-
portant to consider certain applications as the terminology is introduced. There
arc several advantages in using this approach. Students begin to see the relevance
of abstract ideas and are therefore better motivated. Morcover, they gain
confidence in applying these ideas to solve practical probiems.

We wish to emphasize that concepts and terminology should be introduced
well before they are used. Otherwise, students must invariably struggle both
with the basic tools and with the subject matter to which the tools are applied.
Most of the material in this book is properly a prerequisite to so many computer
science courses that it should be taught no later than at the sophomore level.
THe book has been written with this objective in mind.

The mathematical topies to be discussed are logie, set theory, algebraic
structures, Boolean algebra, graph theory, and basic computability theory.
Although well-known and excellent books exist in thesc arcas, we introduce
these topics still keeping in mind that the reader will eventually use them in
certain practical applications particularly related to computer science. We
have strived to introduce the theoretical material in a reasonably mathematically
precise manner whenever possible, while avoiding long philosophical discussions,
questions of paradoxes, and any axiomatic approach to certain theories. The
topics selected will also support the more advanced courses in computer science
programs such as in the arcas of automata, computability, artificial intelligence,
formal languages and syntactical analysis, information organization and retrieval,
switching theory, computer representation of discretc structures, and pro-
gramming languages. It is hoped that a grasp of the theoretical material in
this book will permit a student to understand most of the mathematical pre-
liminaries which are briefly discussed at the beginning of many articles and books
in the areas of computer science just mentioned.

Because the relation between the mathematics and how or where it could
be applied may not be clear to the reader, the computer representation of certain
mathematical structures is discussed. The need for discrete structures in com-
puter science is motivated by the selection of certain applications from various
areas in the field. Algorithms arc developed for most applications, and computer
progratus are given for some of them. The computer representation and manip-
ulation of discrete structures such as strings, trees, groups, and plexes are not
discussed in great detail, but only to the extent which permits the formulation
of a solution to a particular application.

Chapter 1 discusses mathematical logic. An elementary introduction to
certain topics in logie is given to students in education, commerce, economics,
and social sciences in courses usually entitled “Finite Mathematics.” However,
such discussions usually end with the construction of truth tables, and in certain
instances a brief introduction to the inference theory of the statement calculus
is included. In order for students to be able to read technical articles and books
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in computer science, it is necessary for them to know something about predicate
calculus. Therefore, we have gone further in our discussion of logic than is
usually done in books on finite mathematics. Yet we have avoided the philo-
sophical discussions and intricate details that are found in the books on mathe-
matical logic meant for mathematicians and philosophers. The chapter contains
a brief introduction to the application of logic to two-state devices.

Chapter 2 deals with set theory. Some mathematical rigor is maintained
in the discussions and proofs are sometimes given, but we do not raise the ques-
tion of paradoxes and the axiomatic approach.to set theory. Sets, relations,
orderings, and recursive functions are discussed. The computer representation
and manipulation of certain structures are introduced in this chapter. An
example of the interrelationship of set theory and logic is given. The topic of
recursion (and its implementation) is dealt with in some detail since many pro-
gramming languages permit its use. Furthermore, the concept of recursion is
important in its own right because computer scientists will encounter, throughout
their careers, problems where recursion is unavoidable. The chapter concludes
with an algorithm for proving theorems in the propositional caleulus.

Chapter 3 discusses algebraic structures. Most books in modern algebra
devote almost all their attention to group theory while little is said about semi-
groups and monoids. The latter are also emphasized in this chapter sinee it is
semigroup and monoid theory which is very important in certain areas of com-
puter science such as formal language theory, syntactic analysis, and automata.
This chapter contains a number of applications dealing with topics such as the
compilation of Polish expressions, languages and grammars, the theory of
fast-adders, and error detecting and correcting codes.

Chapter 4 is concerned with Boolean algebra and its application to switching
theory and sequential machines. An introduction to the minimization of Boolean
functions and to its use in the logical design of digital computer systems is
given. Sequential machines and their equivalence are also discussed.

Chapter 5 gives a brief introduction to graph theory. Elements of graph
theory are indispensable in almost all computer science areas. Examples are
given of its use in such areas as syntactic analysis, fault detection and diagnosis
in computers, and minimal-path problems. The computer representation and
manipulation of graphs are also discussed so that certain important algorithms
can be included.

Finally, Chapter 6 gives a very brief introduction to computability theory.
The equivalence of finite-state acceptors and regular grammars is shown. Finally,
the concept of an effective procedure is introduced. It is shown that a Turing
machine can evaluate any partial recursive function.

_ The exercises are of both a theoretical and a programming nature and are
meant to further the understanding of the application of the concepts to various
areas of computer science. The material in this book incorporates, in addition
to logic, most of what the ACM Curriculum Committee on Computer Science
recommends for the course “Introduction to Discrete Structures.”

! Course B3 in CACM 11, pp. 172-173, 1968.
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We hope that this book will be of use to computer scientists, engineers,
nonmathematics students who desire an intermediate coverage of topics in
discrete mathematics, and mathematicians who want to familiarize themselves
with the applicution of the theory to computer science. Students who have
some previous hackground in modern logic and algebra will be able to master
the material in one semester. For other students who have no previous knowl-
edge of logic and algebra, this book can be used in a two-semester course. Certain
topics can be selected to form a one-semester course. The omission of the applica-
tions discussed in the text will not result in any loss of continuity in the material.
This book is based on the experience gained in teaching a course on discrete
structures at the University of Saskatchewan at Saskatoon during the past
four vears. '

A basic familiarity with either standard FORTRAN or PL/I is assumed.
PL/1 is useful in applications that involve recursion or list structures.

We owe a great deal to John A. Copeck and Richard F. Deutscher, who
made many valuable eriticisms and suggestions throughout the entire prepara-
tion and proofreading of the book. They also helped us in formulating and testing
most of the algorithms. In particular, John Copeck assisted in the preparation of
Chapter 1 and Sections 2-7, 4-4, 4-5, 5-2, 5-4, and 6-2. Also, Richard Deutscher
assisted in the preparation of Chapter 2,"Sections 4-4 and 5-1, and many of the
figures. ‘

We also thank Peter Hardie for his assistance in working out the details on
fault diagnosis in Section 5-4 and Andrew Carson for his suggestions in Chapter 3.
Robert Probert proofread Sections 5-1 and 6-2, Don McKillican worked out
of the exercises, and Gail Galgan helped in proofreading and constructing the
index. We owe a very special thanks to Alice Mae MacDonald who did such an
excellent job of typing the manuseript, and to Helen Henderson and Dorothy
Peake for providing typing support. This work would not have been possible
without the support given by the University of Saskatchewan.

= J. P. TREMBLAY
R. MANOHAR
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MATHEMATICAL LOGIC

INTRODUCTION

One of the main aims of logic is to provide fules by which one ean determine
whether any particular argument or reasoning is valid (correct).

. Logic is concerngd with all kinds of reasonings, whether they be legal argu-
Igents or mathematical proofs or conclusions in g scientific theory based upon
a set of hypotheses Because of the diversity of therr application, these rules,
called rules of inference, must be stated in general terms and must be independ-
ent of any particular argument or disciphine invplved. These rules should also
be independent of any particular language used in the arguments. More pre-
cisely, in logic we are concerned with the forms of the arguments rather than
with the arguments themselves. Like any other theory in science, the theory of
inference is formulated in such a. way that we should be able to,decide about the
validity of.an argument by following the rules mechanically and. independently
of our own feelings about the argument. Of course, to proceed in, this manner
requires that the rules be stated unambjguously.

‘~ Any. collection of rules or any theory needs a Janguage in which these rules
or theory can be stated. Natural languages are not always predise enough. They

oDf1h828



2 MATHEMATICAL LOGIC

are also ambiguous and, as such, are not suitable for this purpose. It is therefore
necessary first to develop a formal language called the object language. A formal
language is one in which the syntax is well defined. In fact, every scientific dis-
cipline develops its own object language which consists of certain well-defined
terms and well-specified uses of these terms. The only difference between logic
and other disciplines is that in other disciplines we are concerned with the use of
the object language while in logic we are as interested-in analysing our object
language a8 we are in using.it. In fact, in the first half of this chapter we shall
be concerned with the development and analysis of an object language without
considering its use in the theory of inference. This study has important applica-
tions in the design of computers and several other two-state devices, as is shown
in Sec. 1-2.15. We emphasize this part of logic because the study of formal lan-
guages constitutes an important part in the development of means of communica-
tion with computing machines. This study is followed by the study of inference
theory in Sec. 1-4. It soon becomes apparent that the object language developed
thus far is very limited, and we cannot include some very simple argument forma
in our inference theory. Therefore, in See. 1-5 we expand our object language
to include predicates, and then in Sec. 1-6 we discuss the inference theory of
predicate logic.

In order to avoid ambiguity, we use symbols which have been clearly de-
fined in the object languages. An additional reason to use symbols is that they
are easy towrite and manipulate. Because of this use of symbols, the logic that
we shall study is also called symbolic logic. Our study of the object language re-
quires the use of another language. For this purpose we can choose any of the
natural languages. In this case our choice is English, and so the statements about
the object language will be made in English. This natural language (English)
will then be called our metalanguage. Certain inherent difficulties in this pro-
cedure could be anticipated, because we wish to study a precise language while
using another language which is not so-precise.

1-1 STATEMENTS AND NOTATION

In this section we introduce certain basic units of our objett langusge called
primary (primitive, atomic) statements. We begin by assuming that the object
language contains a set of declarative sentences which cannot be further broken
down or analyzed into simpler sentences. These are the primary statements. Only
those declarative sentences will be admitted in the object language which have
one and only one of two possible values called “truth values.”” The two truth
values are true and false and are denoted by the symbols T and F respectively.
Occasionally they are also denoted by the symbols 1 and 0. The truth values
have nothing to do with our feelings of the truth or falsity of these admissible
sentences because these feelings are subjective and depend upon context. For
our purpose, it is enough to assume that it is possible to assign one and only one
of the two possible values to a declarative sentence. We are concerned in our
study with the effect of assigning any particular truth value to declarative sen-
tences rather than with the actual truth value of these sentences. Since we admit
only two' possible truth values, our logic is sometimes called a fwo-valued logic.
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We develop a mechanism by which we can construct in our object language other
declarative sentenees having one of the two possible truth values. Note that we
do not admit any other types of sentence, such as exclamatory, interrogative,
etc., in the object language,

Declarative sentences in the object language are of two types. The first
type includes those sentences which are considered to be primitive in the object
langusge. These will be denoted by distinct symbols selected from the capital
letters 4, B, C, ..., P, Q, ..., while declarative sentences of the second type are
obtained from the primitive ones by using certain symbols, called connectives,
and certain punctuation marks, such as parentheses, to join primitive sentences.
In any case, all the declarative sentences to which it is possible to assign one
and only one of the two_possible truth values are called statements. These state-
ments which do not contain any of the connectives are called atomic (primary,
primsbive) stalements. _

We shall now give examples of sentences and show why some of them are
not admissible in the object-language and, hence, will not be symbolized.

Cansada is a country.

Mosgow is the capital of Spain.
This statement is false,

1+ 101 = 110.

Close the door.

Toronto is an old city.

Man will reach Mars by 1980.

N O O O W

Obviously Statements (1) and (2) have truth values true and false respec-
tively. Statement (3) is not a statement according to our definition, because we
cannot properly assign to it a definite truth value. If we assign the value true,
then Sentence (3) says that Statement (3) is false. On the other hand, if we
assign it the value false, then Sentence (3) implies that Statement (3) is true.
This example illustrates a semantic paradox. In (4) we have a statement whose
truth value depends upon the context; viz., if we are talking about numbers in
the decimal system, then it is a false statement. On the other hand, for numbers
in binary, it is a true statement. The truth value of a statement often depends
upon its context, which is generally unstated but nonetheless understood. We
shall soon see that we are not going to be preoccupied with the actual truth value
of a statement. We shall be interested only in the fact that it has a truth value.
In this sense (4), (6), and (7) are all statements. Note that Statement (8) is
considered true in some parts of the world and false in certain other parts. The
truth value of (7) could be determined only in the year 1980, or earlier if a man
reaches Mars before that date. But this aspect is not of interest to us. Note that
(5) is not a statement: it is & command.

Once we know those atomic §fatements which are admissible in the object
language, we can use symbols to denote them. Methods of constructing and
analyzing statements constructed from one or more atomic statements are dis-
cussed in Sec. 1-2, while the method of symbolizing atomic statements will be
described here after we discuss some conventions regarding the use and mention
of names in statements.



4 MATHEMATICAL LOGIC

It is customary to use the name of an object, not the object iteelf, when
making a statement about the object. As an example, consider the statement

8 This table is big.

The expression ““this table”” is used as & name of the object. The actual object,
namely a particular table, is not used in the statement. It would be inconvenient,
to put the actual table in place of the expression ‘“this table.” Even for the ease
of emall objects, where it may be possible to insert the actual object in place of
ita name, this practice would not permit us to make two simultaneous state-
ments about the same object without using its name at one place or the other,
For this reason it may be agreed that a statemnent about an object would contain
never the object itself but only its name, In fact, we are so familiar with this
convention that we take it for granted.

Consider, now, a situation in which we wish to discuss something about a
name, so that the name is the object about which a statement is to be made.
According to the rule just stated, we should use not the tiame itself in the state-
ment but some name of that name. How does one give a name to & name? A
usual method is to enclose the name in quotation marks and to treat it as a name
for the name. For example, let us look at the following two statements,

8 Clara is smart.
10 “Clara”’ contains five letters.

In (9) something is said about a person whose name is Clara. But Statement (10)
is not about a person but about a name. Thus “Clara’ is used as a name of this
name. By enclosing the name of a person in quotation marks it is made clear
that the statement made in (10) is about a namé and not about & person.

This convention can be explained alternatively by sdying that we use a
certain word in a sentence when that word serves as the name of an object under
consideration. On the other hand, we mention a word in a sentence when that
word ia acting not as the name of an object but as the name of the word itself.
To “mention” a word means that the word itself has been converted into an
object of our consideration.

Throughout the text we shall be making statements not only about what
we normally consider objects but also about other statements, Thus it would be
necessary to name the statements under consideration, The same device used
for naming names could also be used for naming statements. A statement en-
closed in quotation marks will be used as the name of the statement. More gen-
erally, any expression énclosed in quotation marks will be used as the name of
that expression. In other words, any expression that is mentioned 1s placed in
quotation marks. The following statement illustrates the above discussion.

11 “Clara is smart” contains *‘Clara.”

Statement (11) is a statement about Statement (9) and the word “Clara.”
Here Statement (9) was named first by enclosing it in quotation marks and then
by using this name in (11) along with the name ‘‘Clara*'!

In this discussion we have used certain other deviceg to name statements,
One such device is to display a statement on a line separated from the main
text. This method of display is assumed to have the same effect as that obtained



