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PREFACE

These are the Proceedinéé of the 14th International Optical
Computing Conference. This, however, is more than just one
in a sequence of technical meetings. 1Instead it marks what
is undoubtedly the turning point in the history of optical
computing. The words "optical computing"” seemed foolish to
many when the first conference was held. Even in the ninth
conference there was progress but no feeling of impending
success crowning our efforts. 1In this, the 10th conference,
all of that has changed. We have now learned how to make
optical computing not only fast and low-power but also
highly accurate. The breakthroughs in digital optical
computing have given the participants in this conference the
feeling of participation in ‘the beginnings of a revolution.
Well financed efforts are under way in the United States,
the Soviet Union, Japan, and several other countries to
exploit the recently proved ability of optical computing to
do special purpose operations that are undreamed of by its
electronic counterparts. I hope this Proceedings can go far
in conveying to its readers something of the excitement of
the meeting.

H.J. Caulfield
Program Chairman
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CHANCES FOR OPTICAL COMPUTING

by A. W. Lohmann

rhysikalisches Institut
Erwin-Rommel-StragBe 1,

Abstract
Optical cbmputing can mean several

things: computing with optical hardware,
or/and computing of optical signals.
Optical signals, in other words: pictures,
often consist of many million bits. If
pictures have to be processed for example
at TV rate, the optical computer has an

edge over the digital computer.

This example is one among several
others, that may serve to stabilize the
self-confidence of the optical computing
community. ’

1. Optical computing: what is it?

Questions can be answered easier
if cut into pieces. My favorite cutting
procedure is to divide the issue into a
two-by-two matrix.

Categories of signal processing

signal
har;;;;é\\\>electronic (1D)

optical ( 2D)

electronic ’ + o+

optical + + o+ 4+

This box identifies three types of optical
computing:

processing by means of optical hardware
(lower left)

pProcessing of optical signals = pictures
(upper right)

picture processing with optical hardware
(lower right)

The boundaries are not sharp. Some systems
contain sub-systems of different cate-
gories. These "hybrid" systems are very
interesting. But they are only as good as
the transducers are, that connect
electronic and optical hardware.

CH1880-4/83/0000/0001$61.00 © 1983 IEEE

der Universitit Erlangen
8520 Erlangen,\W-Germany

The crosses reflect my own taste and
also the popularity of the three types of
optical computing on my side of the
Atlantic, I guess.

2. Where are our chances ?

There are probably hundred times more
people working in digital electronic com-
puting, as compared to us here at IoCcC.

A direct confrontation is hopeless. What
is it that we optics people can do better?
We can perform computations at high speed
at low cost. For example, the input may
consist of §5 pictures per second, each
with 4 x 10° pixels. These pictures are
projected onto a mask with 4 x 10 pixels.
Thereafter the light is collected, or
integrated. Thi; constitutes a correlation
process with 10/ MULT/ADD operations per
second, for the price of standard TV, a
reasonably good lens and a photomultiplier.

Our simple example, which is certainly
not the best there is, indicates some ‘
features that are favorable for optical
computing in general:

(a) the input is in the format of a
picture (2D);
(b) the hardware is hybrid (TV + optics);
(c) the algorithm is simple (linear).
Point (c) indicates what is a basic
feature of optical computers: they are
special purpose computers with a restricted
range of algorithms. That is true also for
electronic array processors, which are
firmly established now in data processing.
Hence, "special purpose" is not a for-
bidding handicap. More severe is the fact
that our example constitutes the equi-
valent of a "hard-wired" processor. The
program cannot be modified at high speed.
Suitable applicatioas are repetitive
routines, mass production of correlations,
for example.

Optical computing has a chance, if
the data processing project is difficult
and/or expensive for the digital computer.
But the project has to be within the range
of capabilities of optical computing, as
outlined above. We should try constantly



to improve our chances by enlarging the
range of capabilities.

3. Plan of the following chapters

We will begin with the lower left box
of our matrix of categories: computing with
optical hardware, applied to one-dimen-
sional signals. That chapter will be short
only due to my lack of experience in that
field. To demonstrate that I am not biased
against digital computers, Van Vleck's
theorem will be recommenced as a tool for
the efficient digital correlation of
random pictures (speckle pattern). So much
for the upper right box. The remaining
part of this paper will be devoted to
several items of tHe lower right box, in-
cluding among others: the stealing of an
algorithm, optical logic and triple
correlation.

As a "key note lecture" this is
more of a pep talk than an ordinary paper.
Hence, detailed facts and references
are omitted here. A more thorough
presentation of the various projects can
be found in our regular journal publi-
cations and in our annual reports.

4. Processing of one-dimensional data
with optical hardware

The hardware in this case consists
mainly of integrated optics, fiber optics
and acousto-optics.

This field is certainly quite
prosperous, mainly because the technology
of the components is similar as for IC
circuitry. Also the architecture often
resembles that of electronic processors.
Both features are favorable for the
acceptance of such systems.

Well-known examples are optical
matrix multipliers and acousto-optical
‘signal correlators. For example, a signal
of 10 MHZ bandwidth can be correlated in
real time with a time window of 100 micro-
seconds. A digital comguter would have to
sample at a rate of 10’ per second and
perform 1000 MULT/ADD operations at every
10~ second. The processing speed of 101
operations per second is safely in the
exclusive domain of optical computing.

5. Van Vleck's theorem as an efficient
tool For digital correlation

van Vleck's theorem is useful if the
autocorrelation of a wild signal (random
process) has to be computed. The necessary
assumptions (gaussian histogram etc.) are
stated in textbooks. You may think of
speckle patterns I(x,y) as a "wild signal".
Suppose now we want to compute the auto-
correlation AC(x,y):

AC(x,y) = I(x,y) ® I(x,y) (1)

This job is quite elaborate. If I(x,y)
contains N samples (say N = 1 million) we
have to perform N2 MULT/ADD operations. A
smarter algorithm with only 4N log N
operations consists of the following steps:
Fourier, modulus square, inverse Fourier.

van Vleck's theorem offers a faster
algorithm. It consists of hardclippling
(= binarisation), autocorrelation, arc
sine (= sin—1) nonlinearity:

I(x,y)-» H(x,y)>H®H = HC
— (2/m)arc sin[HC] = AC(x,y) (2)

The advantage of this algorithm is based
on the simplicity of correlating 1-bit
signals H(x,y). The N2 MULT operations of
I®I are replaced by N2 simple AND
operations in H@H. E. L. O'Neill made me
aware of the usefulness of Van Vleck's
theorem in the context of speckle inter-
ferometry many years ago. Meanwhile Van
Vlieck's theorem seems to be commonly
appreciated by speckle specialists.

6. Stealing a fast algorithm

Many smart people have invented fast
algorithms for the digital computer. Very
famous is the fast Fourier transform FFT
algorithm. It consists of log N layers.
From one layer to the next layer one has
to perform 2N MULT/ADD operations, all
together 2N log N operations. The fast
Hadamard algorithm has the same structn .
Only the coefficients, that have to b
applied when going from one layer tc _he
next layer, are different from the ourier
case.

J. Jahns found a way for stealing the
fast Hadamard algorithm. "Stealing" means
the conversion from discrete signals to
continuous signals, as they are common in
analog optics. It may be worthwhile to
explain the technique of this act of
robbery because it might be possible to
do something similar with other algorithms
in the digital field.

First, we have to clarify how the
analysis of continuous signals and the
algebra of discrete signals are related
to each other. It is the well-known
sampling theorem that ties together these
two branches of mathematics:

I(x) = Z(n) I{(n-a)sinc(n-x/a) (3)

Herein is I(x) the subject of continuous
analysis and I(n-a) the subject of discrete
algebra. This becomes quite apparent, for
example, if two functions Ij(x) and Iy (x)
are convolved.



I(x) = I1(x) * Iz(x);

‘I(na) = I TI,(ma)I,((n-m)a) (4)
(m)
Symbolically we ﬁay express the relation-
ship between analysis (ALYS) and algebra
(ALG) in the following form:

ALYS + SAMPLE = ALG (5)
ALG + INTERPOL = ALYS (6)

By SAMPLE we mean I(x).3 I(na) and by
INTERPOL I(na)-»I(x), based on eq. 3.

Now we are prepared to understand
.J. Jahns' idea. He noticed that the matrix,
that describes the step from one layer to
the next layer of the fast Hadamard
algorithm, is essentially a TOEPLITZ
matrix. TOEPLITZ in algebra is equivalent
to "shift-invariant" in analysis. Hence,
the action of the TOEPLITZ matrix can be
performed by a very fast analog computer,
the optical spatial filtering processor
that implements a convolution. The con-
volution is the prototype of a linear
space-invariant operation. Fortunately,
the matrices that connect Hadamard layers
are all identical. Hence, one has to apply
the optical convolution process log N
times sequentially.

This description of J. Jahns'
modified Hadamard algorithm is simplified
here because I wanted to illustrate how
a digital algorithm was converted into
an equivalent analog algorithm. The
matrix mentioned above is not quite of
TOEPLITZ structure. It consists of two
interlaced TOEPLITZ matrices that have
to be executed in parallel, followed by
interlacing and with the inverse of
interlacing ("alternate shifting") before
convolving.

7. Logic processing, based on theta
modulation :

In the mid-sixties several people
attempted to do truly digital computing
by optical means. Laser quenching was one
of the basic éffects under consideration.
I played with a spatial filtering experi-
ment, called "theta modulation" (Appl.
opt. 4, 399, 1965). A few years later
Keyes and Armstrong argued on the basis
of general laws of physics, that something
like an "optical transistor" would pro-
bably never be competitive with ‘the
electronic transistor. One needs nonlinear
interactions in order to implement logic
operations. Optics is not non-linear at
low power levels - usually a blessing,
but not for computing.

Recently, Y. Ichioka (see his con-
tribution at this IOCC conference) re-
vived the interest in optical logic. It
is still true, what Keyes and Armstrong
said, the individual logic operation is
comparatively slow, if performed with
photons. But this may be more than off-
set if many slow operations take place
simultaneously. A degree of paralgelism
of 100 000 is not difficult to do,
optically. Such an optical computer would
probably be essentially "hard-wired" and
of SIMP structure. (SIMP = single in-
struction, multiple processor).

Stimulated by Y. Ichioka, we took up
optical computing again, based on theta
modulation. H. Bartelt implemented a theta
encoder, based on TV technology. This en-
coder converts a gray picture into a theta-
modulated two-dimensional signal. By means
of spatial filtering we can do things like
"bit-slicing". When conbining two modulated
pictures we can perform the AND operation,
for example.

8. Applications of computer generated
holograms

A computer hologram (CGH) as spatial
filter in an optical filtering setup is
like a piece of "firm ware" in a digital
computer. Our piece of firm ware is pro-
duced by a digital computer, slowly and
not cheap. But if the CGH is used as
filter to perform convolutions at optical
speed on a routine basis, it might be
worth its price.

Even today new ways of spatial
filtering to be found, as for example in
Ch. Thum's projects on "two way code
translation" and "modified matched
filtering".

9. Phase conjugation as a case of UF

computing

UF stands for ultrafast. Suppose we
want to transmit an image through a
turbulent medium. We first probe the
medium by means of a plane wave, coming
from an isolated object point. Knowing
the distortion caused by the turbulence,
we can pre-compensate the object such
that the image on the other side of the’
turbulence will arrive perfectly sharp.

The amount of computation for this
task consists of three Fourier transforms,
one division and one multiplication, each
of these processes done with N pixels
(N = 1 million). The number of MULT/ADD
operations is about 6N log N = 36x106.
The whole operation has to be repeated
about 30 times per second, if the time
constant of the turbulence is 1/30 second.
That amounts to a processing speed of 10



operations per second. In "phase conju-
gation" this is done, actually. Hence,
phase conjugation deserves to be called
UF computation.

10. The triple correlation

The (auto-)triple correlation is
defined as:

fu(x')u(x'+x)u(x'fy)dx' = T(x,y) (7)

The Fourier transform of T(x,y) is called
"Bi-spectrum”:

T(v,u) SIT(x,y)exp[-27i (vx+py) 1dxdy

T(v,p) = (V)T ()T (-v-p) (8)

What I like about the triple corre-
lation is the vast amount of computation
that is needed to obtain the two-dimen-
sional T(x,y) from the one-dimensional
u(x). If the signal u is a picture ul(x,y),
the triple correlation will be four-
dimensional. Suppose we can compute the
triple correlation by optical means, we
are probably not endangered by the
competition from our digital friends.
But is the triple correlation useful for
anything?

Yes, the triple correlation is use-
ful, I believe. This insight came to me
when I read in "Applied Optics" a paper
by T. Sato, a couple of years ago. Sato
mentioned that T(x,y) is sometimes quite
insensitive to noise, under favorable
conditions. To understand this, we replace
in eq. 7 the pure signal u(x) by signal
plus noise:

u(x) = uo(X) + n (x) (9)

The properties of the noise are assumed
to be: signal-independent, stationary,

zero-mean. The object per se ug(x) may

also be zero in average:

fuo(x)dx =0 (10)

Under these circumstances, the ensemble
average of eq. 7 with eq. 9 reduces to:

<T(x,y)> = To(x,y) + <TN(x,y)> (11)

The noise term <Ty> will vanish if the
probability density function p(n) is
symmetrical. In other words, if the
skewness of the noise is zero.

When I read T. Sato's paper, I was
very happy about the noise-insensitivity
of the triple correlation, because I
realized that we had been using triple
correlations already for several of our
projects, without knowing the term "triple
correlation" and its noise-insensitivity.

G. Weigelt had invented a modified version
of speckle interferometry, called "speckle
masking". With that method it is possible
to obtain true astronomical images, not
only autocorrelations. ,
C. Thum had measured the conditional
probability of pairs of adjacent pixels
(pulsed samples) of a halftone image.

G. Weigelt, F. Ernst and J. Ubler
had measured the conditional probability
of bacteria that move north (for example)
during (t,, tp+1) and move east during
(tn+1, tnp+y . To measure this type of
conditionaf probability one has to evaluate
a triplet of movie frames from instants
tns ths1s tpao-.

There are more examples of triple
correlations in the literature. For
example the image contrast of a periodic
object, illuminated in partial coherence,
is a triple correlation of the source
distribution and of two shifted versions
of the pupil function. A holographical
associative memory (Denisyuk, van Heerden,
Gabor) can also be considered as a case
of triple correlation. The recording of
the memory consists in photographing the
joint power spectrum [iq(v) + di,(v)|2. In
the read-out process the joint power
spectrum is illuminated (= multiplied)
by the Fourier spectrum of one of the two
signals d{ or ). The output is a third-
order integral:

f|ﬁ1+62|2~ﬁ1exp(2nivx)dv = 0,(x)+... (12)

The example of the associative memory
may appear to be somewhat artificial. But
a certain project in oceanography indicates
nicely, why a triple correlation is some-
times indispensable. Suppose we want to
study the breaking of ocean waves. In
deep water the wave profile is cosine-
like. It is easy to see why the triple
correlation of cos(2mvyx) is zero, since
the bi-spectrum (eq. 8) is zero every-
where. Approaching the coast in shallow
water a nonlinear component will be added
to the profile which is now
cos (2mvox) +A cos2(2mvpx) . A simple
graphic calculation shows that the bi-
spectrum will be non-zero at 19 points.
Thirteen of these points vanish if a bias
A/2 is subtracted.

What we may learn from this oceano-
graphic example is the suitability of the
triple correlation for testing weak non-
linearities and also for noticing a drift
of the bias.

A final question about the triple
correlation may be raised, although not
answered completely: how much does the
triple correlation T(x,y) know about the
underlying signal u(x)? Can we r=construct



u(x) from T(x,y)? What is more useful, the
triple correlation or the standard auto-
correlation (of second order)? One parti-
cular answer is as following: suppose the
signal u{(x) consists of a signal per se
Uo(x) and an isolated peak §(x-xg). If the
distance xp of the peak from the center of
ug(x) is larger than 3/2 of the width of
up(x), then T(x,y) will consist of several
separated islands; some of those islands
contain the object per se ug(x) directly.
This rule of recovery happens to be the
same as in off-axis Fourier holography,
which is a case of second autocorrelation
of the total object u(x) = ug(x)+ (x-xg).

11. Conclusion

I am not pessimistic about the future
of optical computing.
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Abstract

A general technique is described for
implementing sequential logic circuits optically.
The system consists of a nonlinear transducer
which provides a two-dimensional array of gates
and one or more computer generated holograas
(CGHs) to interconnect the gates. The limitations
on the number of gates which can be implemented in

an optical system is affected by the
interconnection method. We describe three
interconnection methods and their respective

limitations. One method, which is a hybrid of
space-variant and space-invariant CGH elements,
provides high gate densities and high
gate-utilization rates.

1. Introduction

There has recently been considerable research
in optical systems for parallel digital computing
with applications in signal processing. The
advantages of optical and ‘hybrid optical-
electronic systems for high throughput, parallel
multi-dimensional processing on signals with large
time-bandwidth and space-bandwidth products are
well known. Nearly all of these systems to date
are basically analog and have severe limitations
in accuracy, programsability and flexibility in
comparison to electronic digital systeas.

Our recent research has concentrated on
optical combinatorial and sequential logic systems
for parallel digital processing. Some of this
work has included parallel A/D conversion [1] and
two different implementations of optical
combinatorial logic [2], [3]. More recently, we
have implemented a parallel optical sequential
logic circuit including a clock and a master-slave
f1ip-flop used as a frequency divider [#]. The
main components of the sequential logic systeam are
a nonlinear spatial 1ight modulator (SLM) (ideally
having a threshold or bistable response function)
and a computer generated hologram (CGH) used as a
beamsteering element for interconnections. The
SLM functions as a two-dimensional array of
independent logic gates, and the CGH (or set of
them) contains a two-dimensional array of
subholograms that interconnect the gates to form a
circuit. In the current system the nonlinear
element is a Hughes 1liquid crystal light valve
(LCLV) with a U5 degree twisted orientation of the

CH1880-4/83/0000/0006$01.00 € 1983 IEEE

nematic 1liquid crystal moletules [5]. Although a
major limitation of this current SLM is its slow
response time (10-100 ms), we feel that recent
improvements in both LCLV technology [6] and the
exploration of new technologies such as
all-optical bistability (71, (8] will
significantly 1improve this. We will not directly
consider the question of device speed in this

paper.

The main emphasis in this paper is on
processor architectures for optical sequential
logic. Section 2 of this paper briefly reviews
the fundamentals of optical sequential logic.
Sections 3 through 5 describe details of CGHs used
as interconnection elements. Two basic
interconnection methods, space-variant and
space-invariant are described. The main
limitation on the number of gates is due to
space-bandwidth limitations of the CGH and SLM. A
hybrid interconnection system having both
space-variant and’ space-invariant elements 1is
described in Section 5, and various types of
processors that utilize each type of architecture
are described.

2. Fundamentals of 2-D Optical
Sequential Logic

In order to implement any logic system, we
require two fundamental elements: a nonlinear
device to provide the gate function or basic
combinatorial operations and an interconnection
element (Fig. 1). Furthermore, 1if we want to
provide for sequential logic, the interconnection
path must include feedback paths for generating
clock signals and for obtaining memory elements.
The introduction of feedback and of timing signals
makes this work significantly different from
previous work with combinatorial logic f21, (3]
because the. dynamic behavior of the nonlinear
device now plays a critical role in the operation
of the circuit.

We use the Hughes LCLV as the nonlinear
component, although other nonlinear devices could
also be used. This device produces a pointwise
nonl!n:gf* behavior which can to some extent be
sodified, 3nd in particular can take a shape
adequate for our present needs. For example,
Fig. 2 depicts a response function for a 45 degree
twisted nematic device operated in the backslope



mode. We have used the device in this mode to
implesent the NOR function. If we consider the
tatal input to the device as the sum of two binary
inputs, the output will be a binary valued NOR of
the 1inputs. Other " binary operations can be
performed by altering the characteristic curve of
the device [2]. The possible input and output
values are indicated in Fig. 2.

The parallelism in the system is evident in
the fact that the nonlinearity is applied
simultaneously to all points on the device. Thus
each resolution element or pixel on the light
valve acts as an independent gate. Using
resolution figures quoted for current SLMs [5],
arrays of 10°-106 pixels can be anticipated.

The remaining problem is how to interconnect
the gates. Although several techniques are
possible, CGH elements seem to offer the best
solution. By using CGH elements in an optical
feedback system, the output from any gate can be
directed to the input of any other gate or
combination of gates. Given that CGH components
are to be used for intercomnections, there are
still a multitude of possible systems for
achieving the desired circuit. In the following
sections we describe three basic interconnection
methods. Naturally, each method offers certain
design tradeoffs and 1limitations. It 1is the
purpose of ‘this paper to examine those tradeoffs
and describe how they affect system design.

3. Space-variant Interconnection Method

The most general interconnection system is
one in which any gate output can be connected to
the input of any gate or combination of gates. If
we think of the interconnection scheme as imaging
the gate output array plane onto ‘the gate input
array plane, this approach represents a
space-variant imaging system. The "image" of a
gate output consists of a collection of spots (the
impulse response of the system for that particular
point) which 1illuminate the appropriate gate
inputs, and form the circuit interconnections.
Because each object point (gate output) sees a
different - impulse response (interconnection
pattern) this represents a general space-variant
system. A space-variant system has been built to
demonstrate the concept of sequential optical
logic. The demonstration circuit which was
implemented comprises a ring oscillator which
generates a clock signal and a master-slave
flip-flop which 1is driven by the clock. This
system is operational and is described in another

paper [#4].

A schematic diagram of the optical system
used for the space-variant interconnections is
shown in Fig. 3. First, the gate outputs are
imaged onto the interconnection hologram. This
CGH consists of an array of subholograms, one
subhologram for each gate. When illuminated by
its corresponding gate output, a subhologram will
reconstruct an image on the "write" side, or gate
input side, of the light valve. The reconstructed
images are simple dot patterns, each bright dot
illuminating a gate input. Since the
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Fig. 1. Functional block diagram of sequential
optical logic.

A

Tneao
(OUTPUT)

(E) 1

€)o

INPUT ¢ Iunnt

INUT 2 O T
(s’ (S)

Fig. 2. LCLV input/output characteristic.
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Fig. 3. Space-variant interconnection system.
In general the hologram produces

multiple diffraction orders, only one of
which 1is used.

reconstructed images can be designed to illuminate
any combination of gate 1nputs, _-arbitrary
interconnections are possible. . A8 shown in
Fig. 3, the desired 1nterconnections are formed in’
one particular diffraction order. Typically, a
conjugate image will also be produced, in which
case ft -can be used to probe the system without
affecting systea operation or to access the system
outputs.

While this interconnection scheme allows
complete generality, a price is paid in terms of



the space-bandwidth requirements on the CGH. Let
there be an NxN array of subholograms on the CGH
and an NxN array of gates on the 1light valve.
EFach subhologram must_ have the capability of
addressing any of the N2 gate inputs. The number
of addressable points in the reconstruction of a
subhologram 1is equal to the number of
complex-valued sample points in the subhologranm,
assuming a Fourier hologram. Thus the actual
ipace-bandwidth product (SBWP) of each subhologram
s
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where p2 is the number of resolution elements in
the hologram used to represent one complex-valued
sample and q2 is a factor representing the amount
of oversampling in the hologram plane. Generally
p?>1 because the complex sample values must be
encoded into the hologram, e.g., as real values.
Also we generally have q“>1 to avoid crosstalk.
These problems are discussed further below.

The entire interconnection hologram consists
of N2 subholograms, one for each gate. Thus the
total SBWP of the hologram is S where
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Because S;= N*, we expect that the hologram SBWP,
Spy will quickly become the 1limiting factor as N
increases. We will verify that below, but first
we need to study the crosstalk in the gate-input
p%ane to get a feeling for the expected values of

The crosstalk can be represented by o« , the
ratio between gate inputs of the worst-case
(largest) "zero" value, 2o, and the worst-case
(smallest) "one" value, 243

a =84/, (3)

We require o <1 in order to distinguish all
possible zero and one states. Assume that the
intensity profile of a single gate input
reconstructed from a subhologram is F(x,y). (The
reconstruction of a subhologram can be represented
by a set of Dirac delta functions (one for each
addressed gate input) convolved with the Fourier
transform, W(x,y), of the aperture function of the
subhologram. Then F(x,y) = IW(x,y)|2.) Thus the
worst-case "one" value is the integral of F over
the defined area, a, of the gate input

v, =§fFGy)  axay %)
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The worst-case zero level occurs when all gates
have their maximum input 1levels except for the
gate in question which has a zero input level. If
each gate has m inputs (a fan-in of m) and gates
are contiguous, then the worst-case zero can be
shown to be

20 = m[ij(x,y) dxdy - ISF(x,y)dxdy] (5)
A a

where A is the area of the entire gate array.
This assumes that the spatially integrated sum of
gate inputs from different subholograms 1is
effectively an incoherent sum. Note that such
inputs may actually add coherently in which case
they produce interference fringes. Spatial
integration over these fringes results in an
effective incoherent summation. Similarly, the
above equation assumes that the gate inputs
reconstructed from a single subhologram also can
be modeled as adding incoherently. This will be

essentially true if a pseudorandom phase is
applied to the m distinct gate inputs. Combining
the above equations we get

o = m(l/EO-l) (6)

where is the fraction of the single-gate input
intensity profile which falls within the defined
area of that gate

Ey = _[fy(x,y) dxdy/J}F(x,)’) dxdy (7
a

If we define ap as the minimum gate area

determined by the Nyquist theorem and the
subhologram area, then
' -2
a=qao (8)

with q2 beihg the oversampling factor as defined
above. Obviously, as q increases, E; approaches
unity and o approaches zero.

We now consider an example. If we use a
triangle function in x and in y for the aperture
(window) function of each subhologram, then its
Fourier transform is a two-dimensional sinc?
function, and

F(x,y) = sinc4(x/2)sinc4(y/2) (9)

Choosing q=2 yields a crosstalk «=(0.11)m, so that
3-input gates cause a crosstalk of 0.33. Thus for
NOR gates the thresholding of the nonlinear device
can be performed anywhere between relative input
levels of 0.33 and 1.0. In this case the sampling
rate is twice the Nyquist rate. Increasing q
permits a larger fan-in, e.g., q=3 implies
«=z(.0082)m and a crosstalk of 0.33 peraits
40-input gates to be used. Also note that the use
of a more appropriate aperture function could
permit smaller values of q.

In order to estimate the SBWP that can be
written onto a CGH, we assume the CGH is written
using electron-beam lithography, as was the case
for the experimental demonstration of the optical
logic system [4]. This electron-beam system has
written 1linewidths down to 0.5 um, and has a
maximum file size of 1.024 mm on a side. Files
can be stitched together to yield a maximum size
of 10 cn on a side. If we minimize the stitch
error by making the file boundaries coincident
with subhologram boundaries, a SBWP of Ux10 is
attainable.



The hologram coding parameter p, defined in
Eq. 1, for the case of a Burckhardt hologram [9],
has a minimum value of 3, assuming square cells.
Having found that q will typically be in the range
of 2-3, we conclude that the maximum ' feasible
number of gates corresponds to a value of pq on
the order of 10. From Eq. 2 and the above SBWP,
we find that the gate array dimension is NxN where

N = 100-200 (10)

for space-variant interconnections. Because this
is less than the SBWP capabilities of some spatial
light modulators, the CGH is the limiting element.

Since the space-variant system allows
arbitrary interconnections, the only other
possible limitation on the circuits that can be
implemented is the requirement that all gates must
perfora the same binary operation, e.g., NOR in
this case. However, since all the Boolean
operations may be constructed out of NOR gates,
this does not 1limit the types of processing
operations that can be performed. Another feature
is that circuits with any degree of inherent
parallelism, or lack thereof, can be implemented
with approximately equal ease.

4. Space-invariant Interconnection Method

If one is willing to compromise on the
arbitrariness of the gate interconnections, a
substantial increase in the possible number of
gates results. The extreme case is a totally
space-invariant interconnection. This is the idea
behind the ' processor suggested by Huang [10].
Here we extend this concept to include sequential
circuits. This interconnection method |is
implemented optically by an imaging systea with a
space-invariant filter, using one simple hologram
for the entire circuit (Fig. 4). The filter has
an impulse response consisting of a series of
spots which illuminate the appropriate gate inputs
as in the space-variant case. However, in this
case, the 1impulse response (interconnection
pattern) is the same for every gate output, and
the gate inputs are addressed relative to the
position of the gate output. The space-variant
method worked on the basis of absolute addressing.

An example : of a space-invariant
interconnection pattern is shown in Fig. 5. Each
dot in the figure represents a (NOR) gate, and
each arrow represents an interconnection from the
output of one gate (dot) to the input of another.
Each gate is considered to have one additional,
unconnected input for an enable/disable signal. A
particular circuit is implemented by disabling the
appropriate gates. In the NOR case, a gate is
disabled by projecting 1light onto it (i.e.,
putting a 1 onto the unconnected input). With the
{llustrated interconnection pattern it is possible
to transfer data in various directions without
getting unintended feedback loops. The major
limitation of this interconnection method is that
the implementation of many circuits will require a
large number of gates to be disabled. Obviously,
circuits with very regular interconnections can
utilize the gates more efficiently than irregular

curcuits.

Since the holographic element used in this
interconnection system is simple, a very large
number of gates can be interconnected.  Even
allowing the PSF to simultaneously address any set
of points in the array, thg‘SBHP required of the
hologram is of order p q2"2 (see Eq. 1 above).
Thus if the full SBWP available with the CGH could
be exploited in _this system and if p2q2 ~ 100
approximately 4x108 gates could be interconnected.
The hologram for this system could also be
recorded optically. In either case, the number of
gates with the space-invariant interconnection
method is limited by the SBWP of the spatial light
modulator.

As mentioned above, the method of disabling
gates to implement circuits decreases the number
of gates that are actually used, and therefore
severely restricts the types of operations that
can be performed efficiently. It also adds a
degree of cosplexity to the system. However, this
method of optically disabling gates also provides
a potential advantage - it provides a means of
easily "re-wiring" the system in real time- by
changing the disable -signals. This could offer
considerable flexibility in making an adaptive
system.
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Fig. 4. Spaee-;nvariant interconnection systen.

Fig. 5. An example of a space-invariant
interconnection network. Nodes
represent gates and arrows are the
(optical) interconnections.

5. Hybrid Interconnection Method

At this point we have seen two approaches to
interconnecting gates. In the space-invariant
case there is only one interconnection pattern
which 1s applied to all gates whereas in the
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space-variant case the number of distinct
interconnection patterns 'is in general equal to
the number of gates. These two approaches
represent the extreme cases in terms of the
space-bandwidth requirements they place upon the
CCH element. The tradeoffs between these two is
increased flexibility at the cost of increased
hologram complexity. Since the space-invariant
case generally suffers from inefficient gate
utilization and the space-variant system 1is
1imited by the hologram to the number of gates it
can address, it is worthwhile considering if there
is a combination of techniques which can achieve
high gate utilization efficiency and at the same
time be’ limited in gate count only by the
space-bandwidth product limitations of the spatial
1light modulator.

Our approach to this has been to consider a
hybrid system which combines space-variant and
space-invariant interconnections. The idea is to
define a finite number, M, of distinct
interconnection patterns. We then assemble our
circuit using only these M interconnection
patterns. If the total number of gates is N2 we
assume

1<<M<<N2 (1)
so that this system is truly intermediate between
the space-variant and space-invariant cases. It M
is large, we anticipate that we have almost
complete flexibility in designing our circuit.

The optical implementation of this system is
schematically diagrammed in Fig. 6. Here the gate
output array is imaged onto a space-variant filter
element as in Fig. 3. The purpose of this element
is to deflect the 1light from each 'gate output
through one of M subholograms in the second CGH
element (Fig. 6). These subholograms act as
space - invariant filter elements which produce the
M different interconnection patterns in the gate
input plane.

Although the space-variant element would
appear to have the same space-bandwidth
1imitations as in the simple space-variant case,
we note that the SBWP of each subhologram in this
plane is now of order M rather than of order N-.
Thus the total SBWP requirement in this element is
much less than in the previous space-variant case.
The holograms in the space-invariant element

generally have a relatively low SBWP.

The SBWP, Sg., of a subholograa in the first
hologram, Hy, 18"}
- o2
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where M is the number of subholograms in_ the
sacond (space-invariant) hologram, H,, and pj and
q; represent coding and oversanplfng factors,
respectively, as in the space-variant
interconnection section. Similarly, the SBWP of a
subhologram of Hy is, in the worst case,

S (12)
5

Ssz= Py3,N (13)
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where N%znumber of gates. This worst case allows
the H, subholograa to address any n gates in the
array. If the gates it addresses are localized
i.e., are all contained in the same portion of thé
array, then its SBWP can be significantly reduced
by the introduction of a carrier frequency [16].
Since H; consists of N2 subholograms and
consists  of M subholograms, their total SBWPs are
given by

22 .2

S, = -
T, qulMN ST2 quZMN

and here, again, ST, is a worst-case estimate. If
Wwe assume both hofograns are written in the same

(14)

manner, then St,= ST,= S and p; = = fro

which it follows that q; = qp = qr g
22 2

Sy = P MN". (15)

As in the space-variant case, we need to analyze
the crosstalk in order to estimate q.

| FT.—
pe—— F, T, —3 1
pe—— IMAGING —————1

GATE FIRST
OUTPUT e
ARRAY
GATE
HOLOGRAM INPUT
ARRAY
Fig. 6. Hybrid interconnection system. The

first holgoram is a space-variant
element as in Fig. 3. The second
element is an array of space-invariant
filters.

For the hybrid interconnection scheme, two
sources of crosstalk exist. Inter-pixel crosstalk
occurs between pixels in the gate-input plane, and
{s analogous to the crosstalk treated in the
space-variant interconnections section.
Inter-hologram crosstalk occurs between’
subholograms in the second hologram and also
contributes to noise in the gate-input plane. (Ve
assume neglible crosstalk at the first hologram
because it 1s in the image plane of the gate
output array.)

The inter-pixel crosstalk 1is completely
analogous to the crosstalk in the space-variant
interconnection case when applied to H) and the
gate-input array, and the same equations apply.

In order to analyze the inter-hologras
crosstalk, we have to find the effect of this
crosstz1.: in the gate input plane. We assume that
each Hj subhologram addresses only one Hj
subhologran. Through a given Hj subhologram K,
there are only 0Ny subholograms of H;
address a given gate input p , where is the
fan-out of subhologram k. Any unintentional
{)lumination of k from one of these H
subholograns will contribute crosstalk to gatep.



