[Lab

to acca

-'
i

&
.

" -
An Introduction to

Programming and
Object-Oriented Design

_—
&
r

P

NOISAA INVID0Yd ++)

James P. Cohoon ® Jack W. Davidson

with Lect

Lab Manual to accompany
++ PROGRAM DESIGN
An Introduction to Programming and Object-Oriented Design

with Lecture Notes

James P. Cohoon
Jack W. Davidson

both from
University of Virginia

T we
fiMcGraw-Hill

Boston, Massachusetts Burr Ridge, Illinois Dubuque, Iowa
Madison, Wisconsin New York, New York San Francisco, California St. Louis, Missouri

Cod Ry : i SRR R CHERREREL

To Kathleen, Nina, and Terry

WCB/McGraw-Hill

A Division of McGraw-Hill Companies

LAB MANUAL TO ACCOMPANY C++ PROGRAM DESIGN: AN INTRODUCTION TO
PROGRAMMING AND OBJECT-ORIENTED DESIGN

Copyright © 1998 by the McGraw-Hill Companies, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored
in a data base or retrieval system, without the prior written permission of the publisher.

This book is printed on acid-free paper.
34567890DOC/DOC9098
ISBN 0-256-24092-2

Editorial director: Tom Casson

Senior sponsoring editor: Elizabeth A. Jones
Senior developmental editor: Kelley Butcher
Marketing manager: John Wannemacher

Senior project manager: Beth Cigler

Production supervisor: Charlene R. Perez
Designer: Michael Warrell

Compositor: Interactive Composition Corporation
Typeface: 10/12 Times Roman

Printer: R. R. Donnelley & Sons Company

http://www.mhcollege.com

Preface

INTRODUCTION

This laboratory manual and accompanying lecture slides are designed to be
used in conjunction with a C++ introductory text. In particular, it is a compan-
ion to the text C++ Program Design: An Introduction to Programming and
Object-Oriented Design.

Unlike most laboratory manuals that are designed to be self-study aids for
mastering syntax or to have students perform straightforward, self-guided
activities in “open” laboratories at a time and place of the students’ choosing,
this laboratory manual is designed for use in a “closed” laboratory. A closed
laboratory meets at an assigned time and place with a laboratory instructor,
and, depending upon class size, laboratory assistants. Each closed laboratory
activity typically illustrates concepts from lecture by using examples, imple-
mentations, and problems that are designed to challenge the student. A closed
laboratory environment provides a student with the opportunity to try various
options or approaches and to receive immediate feedback. Similarly, when mis-
takes are made or clarification is needed, help is immediately available.

We have used closed taboratories in our introductory computer science
course for the past five years, and our department has been extremely pleased
with the results. Standardized tests show that on average our students leave the
course with a much better mastery of the material than they did prior to our
switch to closed laboratories. Additionally, student evaluations show that they
believe the laboratory activities are a major contributor to their understanding
of course material. Students cite the laboratories as the most interesting, useful,
and fun part of the course. Another indicator of the positive effect of the closed
laboratory is the large number of students who volunteer as laboratory assis-
tants in subsequent offerings of the class.

il

AN LT

iv Preface

USING THIS MANUAL

In each week of the course we teach there are two one-hour lectures followed
by a two-hour laboratory. Each laboratory activity in this manual is designed to
illustrate and explore concepts from that week’s lectures. Thus, the pace of the
course is very much driven by the laboratory activities.

Our typical laboratory has close to fifty students, with two supervising lab-
oratory instructors and two undergraduate teaching assistants. Every student
has a computer, but we have found that having students work together in small
groups of two or three is often quite useful—students help each other and share
the responsibility of teaching and learning. We arrange students to have differ-
ent partners each week, and encourage them to seek assistance from a labora-
tory instructor at any point during the laboratory if they need help.

Individual activities are not graded but attendance is recorded and is a fac-
tor in the final grade. We purposely do not grade individual activities because
we view the laboratories as a chance to explore and learn without time or grade
pressures. However, some of the laboratories are designed so that an average
student is hard-pressed to finish in the allotted time. Students who do not com-
plete such laboratories are encouraged to finish them independently.

Each closed laboratory consists of a set of experiments to be performed by
the student. This model is very much like the familiar closed laboratories of
chemistry or physics courses. For each laboratory there is a write up, a check-
off sheet, and an experimental ““apparatus.” A tear-out check-off sheet for each
laboratory can be found at the back of this manual. The experimental apparatus
is a set of programs and data files that the student sets up at the beginning of
each laboratory by obtaining the appropriate files and loading them onto the
computer. These files are contained in a self-extracting archive whose location
is specified by the laboratory instructor.

Versions of the self-extracting archives for several popular compilers can
be found by visiting our home page

http://www.mhhe.com/ c++programdesign/

A floppy disk version can be obtained by contacting the publisher.

At various points throughout the laboratory, students are required to dem-
onstrate some cogle, answer a question, or explain some behavior that they have
observed. These points are indicated by the

D

symbol in the margin and a v in the text. Depending on the circumstances, the
student is asked to write an answer in a boxed area or to simply give the answer
to a laboratory instructor. When a student reaches one of these “check-off”
points and believes he or she is ready, the student signals a laboratory instructor
and gives her or his answer. Depending on the type of question, the response,
and the student involved. the laboratory instructor may simply initial the corre-
sponding entry on the laboratory check-off sheet and proceed to the next stu-
dent who requests assistance. If the response is incorrect or incomplete, the
laboratory instructor may help until the student is comfortable with the concept

Laboratory summaries v

being explored. For some motivated students, the instructor may suggest an
additional experiment. For those questions for which there is no right or wrong
solution, the laboratory instructor may explore other solutions with the student
to further reinforce comprehension. When students complete the laboratory,
they turn in their check-off sheets to the laboratory instructor to serve as a
record of laboratory progress.

Many of the laboratories make use of a graphical Application Programmer
Interface (API) designed specifically for beginning programmers to develop
interesting programs. We provide a portable, object-oriented graphical library,
named EzWindows, for the easy display of simple geometric, bitmap, and text
objects. Using the API provides several important experiences for the student.
First, students are client users of a software library. Using well-designed
objects helps students to appreciate good object-oriented design. Their experi-
ence as users forms the basis for becoming designers. Second, the API intro-
duces students to the real-world practice of developing programs using an
application-specific library. Third, using EzWindows to perform graphical
input and output exposes the student to event-based programming and the dom-
inant mode of input and output used in real applications, and it permits devel-
opment of exciting and visually interesting programs. This experience
motivates the students, and it provides a visually concrete set of objects that
help students understand the object-oriented paradigm. EzWindows is simple
enough that it allows even the first programming assignments to be graphical.
A complete description of the EzZWindows library is provided in the appendix.

LABORATORY SUMMARIES

® Laboratory 1: Riding the wave of the future. This introductory laboratory
teaches students the basic skills that they will need to complete future lab-
oratories. These skills include copying files, deleting files, backing up files
to a floppy disk, creating directories, compiling C++ programs, executing
C++ programs, and accessing the C++ compiler’s on-line help facility.

® Laboratory 2: Attacking your first problem. In this laboratory students are
guided through the process of decomposing a probiem into steps and then
translating those steps into working C++ code. The laboratory also exer-
cises basic C++ programming skills that have been introduced in the lec-
tures. Students practice input and output operations using the iostream
objects cin and cout and also translating mathematical formulas into
C++ assignment statements. In addition, the laboratory guides the students
through the creation of a project file that uses the EzWindows API and
some of its graphical objects.

® Laboratory 3: Inquiring minds want to know about the if statement. The
objective of this laboratory is to ensure that students have a good under-
standing of the operation and use of the if statement. This laboratory also
introduces the concepts of syntax and logic errors and differentiates
between them. Students learn the practical skill of how to use a debugger

vi

Preface

to find and fix logic errors. The laboratory also continues to develop the
student’s familiarity with object-oriented programming by using some of
graphical objects found in the EzWindows library.

Laboratory 4: Let's go looping now. everybody is learning how. In this lab-
oratory the students explore two C++ looping constructs—the while and
for statements. In addition to teaching students how to use and write
looping constructs, the laboratory teaches students about common looping
problems, such as infinite loops, off-by-one loops, improper initialization
of a loop counter, and incorrect termination conditions. This laboratory
also reinforces the very important skill of reading a stream of data from a
file. The laboratory concludes by having the student finish a program that
uses nested loops to construct a complex geometric pattern using the
EzWindows library.

Laboratory 5: Taking a trip to the library. An important component of
becoming a productive, proficient programmer in a programming lan-
guage is to learn the facilities and capabilities that are offered by the librar-
ies of that language. This laboratory introduces students to some of the
facilities and capabilities provided by the standard C++ class string. The
laboratory also strengthens student understanding of how to use and
manipulate objects with nontrivial attributes and behaviors.

Laboratory 6. Pass it on. This laboratory begins an in-depth exploration of
function invocation. The focus of this laboratory is C++’s parameter pass-
ing mechanisms. Through numerous examples the laboratory has the stu-
dent explore value and reference parameter passing mechanisms. After
completing the laboratory, the student will have a strong understanding of
C++’s parameter passing mechanisms.

Laboratory 7: Functional living. The exploration of functions continues
with this laboratory. Through numerous examples the laboratory rein-
forces and refines the student’s knowledge of scope and name reuse. This
laboratory also explores recursion by carefully examining the execution of
a factorial program. The laboratory concludes by guiding the student
through the development of a text-processing program that involves imple-
menting various utility functions,

Laboratory 8: So far so good. This laboratory reviews the skills developed
in the previous laboratories by requiring the student to develop several
small programs. Each program focuses on a programming skill that stu-
dents should now be able to perform on their own. The featured skills are
prompting for and extracting input, translating mathematical formulas to
C++ code, checking the validity of input according to some stated criteria,
writing a function that accepts optional parameters, opening a data file and
processing the data, and using the EzZWindows API to create a simple dis-
play according to a given specification.

Laboratory 9: Getting classy. In the preceding laboratories students have
used objects from both the standard C++ libraries (e.g., cin, cout,
string) and the EzWindows API (RectangleShape and Sim-

The authors vii

pleWindow), but they have not defined their own class types. This labora-
tory begins the student’s exploration of the class construct by examining a
class that they have used in many of the previous laboratories—Rectan-
gleShape. The laboratory explores the fundamental concepts of a class
such as public, protected, and private members, inspectors, mutators, and
facilitators. The laboratory concludes by having the students develop a
class to represent a line segment in three-dimensional space.

m Laboratory 10: Now that’s classy. Laboratory 10 continues the exploration
of C++’s class construct. In this laboratory, an abstract data type Ratio-
nal is extended in several ways. The student modifies class Rational so
that the rational number is maintained in a reduced form, and the student
adds comparison operators to the class by overloading the operators ==, <,
and >.

m Laboratory 11: The Ez:Windows API. In this laboratory, the student
explores more of the capabilities of the EzZWindows API. The student
examines the concepts and mechanics of event-based programming by
developing programs that use both the mouse for input and timers to con-
trol when actions take place. This laboratory also introduces how to load
and display graphical images called bitmaps.

m Laboratory 12: Hurray for arrays. This laboratory develops the ability to
use and manipulate arrays. Programs that contain common array manipu-
lation errors are examined. This laboratory also introduces the activity of
searching a list for a key value by examining, modifying, and running pro-
grams that use several different search techniques. The student performs
an experiment that measures the efficiency of these search techniques.

a Laboratory 13: Inheritance. Laboratory 13 examines C++’s inheritance
mechanism. To explore the concepts and mechanics of inheritance, the stu-
dent creates a new graphical shape called BoxShape. To illustrate how
inheritance supports reuse, the class BoxShape is derived from the famil-
iar RectangleShape class. At the conclusion of the laboratory, the stu-
dent has the ability to extend existing C++ classes via single inheritance.

The instructor has some flexibility in deciding how to use the laboratories.
Much of Laboratory 1 should be review material for many students. If desired,
Laboratories 1 and 2 can be combined into a single laboratory. For curricula
with a required course that covers the skills developed in Laboratory 1, this lab-
oratory can also be deleted. Laboratory 8 is a review laboratory that can be
omitted or replaced. Laboratory 11 covers the EzZWindows API and it can be
moved to later in the course. We cover the EzWindows API before arrays and
inheritance because students like to use it in their final programming project.

THE AUTHORS

James P. Cohoon is a professor in the Computer Science department at the Uni-
versity of Virginia and is a former member of the technical staff at AT&T Bell
Laboratories. He joined the faculty after receiving his Ph.D. from the Univer-

viii

Preface

sity of Minnesota. He has been nominated twice by the department for the uni-
versity’s best teaching award. In 1994, Cohoon was awarded a Fulbright
Fellowship to Germany, where he lectured on C++ and software engineering.
Professor Cohoon’s research interests include algorithms, computer-aided
design of electronic systems, optimization strategies, and computer science
education. He is the author of over fifty papers in these fields. He is a member
of the ACM, SIGCSE, SIGDA, IEEE, and the IEEE Circuits and Systems Soci-
ety. He is currently chairperson of SIGDA and a member of ACM SIG Board
and ACM Publications board. He can be reached at cohoon@virginia.edu. His
WWW home page is http://www.cs.virginia.edu/~cohoon

Jack W. Davidson is also a professor in the Computer Science department
at the University of Virginia. He joined the faculty after receiving his Ph.D.
from the University of Arizona. In 1990, Davidson received an NCR Faculty
Innovation Award for innovation in teaching. Professor Davidson’s research
interests include compilers, computer architecture, systems software, and com-
puter science education. He is the author of over fifty papers in these fields. He
is a member of the ACM, SIGARCH, SIGCSE, SIGPLAN, IEEE, and the
IEEE Computer Society. He serves as an associate editor of Transactions on
Programming Languages and Systems, ACM’s flagship journal on program-
ming languages and systems. He can be reached at jwd@virginia.edu. His
WWW home page is http://www.cs.virginia.edu/~jwd.

ACKNOWLEDGMENTS

We thank the University of Virginia and its department of Computer Science
and the National Science Foundation for providing an environment that made
this laboratory manual possible. Numerous colleagues, teaching assistants, and
CS101 students have contributed to this laboratory manual. In particular, we
would like to thank Alan Batson, Scott Briercheck, Jane Prey, Paul Reynolds,
and Bill Wulf for their advice, comments, and suggestions.

We thank all of the people at McGraw-Hill for their efforts in making this
project a reality. In particular, we thank: Tom Casson, for his support and
encouragement; Kelley Butcher for her insightful analyses; Charlene Perez for
her product management skills; John Wannemacher for his creative marketing
ideas; Brad Kosirog, for his editorial coordination; and June Waldman, for her
copy-editing ability. Special thanks go to executive editor Betsy Jones and
senior project manager Beth Cigler for their unflagging support and efforts.

We thank our spouses Audrey and Joanne and our children for their
efforts, cooperation, and sacrifices in making this book happen.

Finally, we thank the users of this book. We welcome your comments, sug-
gestions, and ideas for improving this material. Please write in care of the pub-
lisher, McGraw-Hill, Inc., or send E-mail to cohoon@virginia.edu or
jwd@virginia.edu.

J.PC
JW.D

1. P, Cohoon and). W. Davidson
« 1997 McGraw-Hill, Inc.

Introduction to Programming and
Object-Oriented Desig

e — —

Basics of machine, software, and
program design

Ch1/Foil 2

Computer Organization

e Every computer is organized roughly into four parts
m CPU - central processing unit

— Where decisions are made, computations are performed,
and input/output requests are delegated

® Memory
- Stores information being processed by the CPU
® Input devices
— Allows people to supply information to computers
m Output devices
— Allows people to receive information from computers

S1

Ch 1/Foil 3

Computer Organization
= —— — —.

Ch 1/ Foil 4

CBL

e “Brains” of the computer

m Arithmetic calculations are performed using the
Arithmetic/Logical Unit or ALU

m Control unit decodes and executes instructions
® Arithmetic operations are performed using binary number system

S2

Ch 1/Foil 5

CPU

e Fundamental building block is a switch
m Switches are made from ultrasmall transistors
e Examples

m The Pentium ® processor contains about three million
transistors

® The Pentium Pro ® has about 5.5 million transistors

Ch 1/Foil 6

Binary Arithmetic

e The individual digits of a binary number are referred to as bits
m Each bit represents a power of two

e Examples

01011 = 0e2% + 12284 0022 4 1e21 4 1420 - qy

00010 = 0+2% + 0023 4 0422 4 1e2! 4 o0 »

i 00010 2 Equivalent

aBér:iait%n +01011 +11 < decimal
il 13 addition

S3

Ch 1/ Foil 7

Binary Arithmetic

——veuae

PS— *—d

— —————

Equivalent decimal

Binary R
multiplication

multiplication

N e

0101
x 0011 X
0101 1
0101
0000

0000
0001111

(ﬂl(ﬁ(fl

Ch1/Foil 8

Two’s Complement

e Convention for handling signed numbers in binaty representation
m The leading bit is a sign bit
- Binary number with leading 0 is positive
— Binary number with leading 1 is negative
o Magnitude of positive numbers is just the binary representation

e Magnitude of negative numbers is found by performing the two’s
complement

m Complement the bits
— Replace all the 1's with O's, and all the 0's with 1's
m Add one to the complemented number

e Carry in most significant bit position is thrown away when
performing arithmetic

Ch1/Foil 8

Two's Complement Example

e Performing two's complement on the decimal 7 to get -7
m Using a five-bit representation

7 = 00111 Convert to binary
11000 Complement the bits
11000 Add 1 to the complement

+ 00001

11001 Is -7 in two's complement

Ch 1/Foil 10

Two's Complement Arithmetic
a

e Computing 8 - 7 using a two's complement representation with
five-bit numbers

8-7 =8+(7) =1

01000 Two's complement of 8

11001 Two's complement of -7

Throw away the
high-order 01000 Add 8 and -7
carry as we are + 11001
using a five bit / 100001
representation
00001 s the five-bit result

S5

Ch 1/Foil 11

Control Unit

e The fetch/execute cycle is
the steps the CPU takes to
execute an instruction

e Performing the action
specified by an instruction is
known as “executing the
instruction”

® The program counter (PC)

holds the memory address of
the next instruction

Ch 1/ Foil 12

Input and Output Devices

® Accessories that allow computer to perform specific tasks
m Receiving information for processing
® Return the results of processing
m Store information

e Common input and output devices

m Speakers Mouse Scanner
m Printer Joystick CD-ROM
m Keyboard Microphone

® Some devices are capable of both input and output
m Floppy drive
m Hard drive
m Magnetic tape units

Sé6

Ch 1/Foil 13

Monitor

e b S W T R T ax s ae 1 SR
B —

u

e Display device

e Also known as CRT (cathode ray tube)

e Operates like a television

e Controlled by an output device called a “graphics card”

Ch 1/Foil 14

Monitor and Card Characteristics

@ Refresh rate 1280
m How fastimage is pixels 5 1024

pixels

updated on the screen 22 :2:} i1l

® Resolution S
m Displayable area

— Measured in dots per inch, dots
are often referred to as pixels (short for picture element)

m Standard resolution is 640 by 480
m Some cards support resolution up to 1280 by 1024
o Number of colors supported

S7

Ch 1/Foil 15

Software

e Application software

m Programs designed to perform specific tasks that are
transparent to the user
e System software
m Programs that support the execution and development of
other programs
® Two major types
— Operating systems
— Translation systems

Ch 1/ Foil 16

Application Software

- SE—— s —wm——

® Application software is the software that has made using
computers indispensable and popular

e Common application software
m Word processors
m Desktop publishing programs
m Spreadsheets
m Presentation managers
m Drawing programs

S8

