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PREFACE

This book deals with computer arithmetic and treats it in a more general
sense than usual. This results in more far-reaching concepts and a more
uniform theory. These in turn serve to simplify even the restricted tradi-
tional notions of computer arithmetic. They also clarify and otherwise
facilitate the process of implementation of computer arithmetic. The text
summarizes both an extensive research activity that went on during the
past fifteen years and the experience gained through various implementa-
tions of the entire arithmetic package on diverse processors, including
even microprocessors. These implementations require an extension of ex-
isting higher programming languages to accommodate the entire arith-
metic package. The text is also based on lectures held at the Universitit
Karlsruhe during the preceding decade.

While the collection of research articles that contribute to this text is
not too large in number, we refrain from a detailed review of them and
refer to the list of references. Since our text synthesizes and organizes
diverse contributions from these sources into a coherent and global set-
ting, we found it best not to interrupt the continuous flow of exposition
with detailed citations to original sources.

The text consists of two parts. Part 1, comprising the first four chap-
ters, deals with the theory of computer arithmetic, while Part 2, compris-
ing the last three chapters, treats the implementation of arithmetic on
computers. Our development shows ihat a sound implementation of
arithmetic on computers depends critically on the theoretical develop-
ment. Such an implementation requires the establishment of various iso-
morphisms between different definitions of arithmetic operations. These
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Xii PREFACE

isomoiphisms are to be established for the spaces in which the actual
computer operations reside. Therefore we begin with a development of
these spaces.

Central to this treatise is the concept of semimorphism. Properties of
this concept are directly derivatle from the diverse models that we study
here. The concept of semimorphism supplies an ordering principle that
permits the whole treatise to be understood and developed in close anal-
ogy to principles of geometry, whereby the mapping properties of a semi-
morphism replace those of a group of transformations in a geometry. Fol-
lowing this idea, we define the structures of the spaces occurring in
computations on computers as invariants with respect to semimorphisms.
The algorithms for the arithmetic operations in various spaces, which are
given in Part 2, describe the implementation of these semimorphisms on
computers. The result is an arithmetic with many sound and desirable
properties (optimal accuracy, theoretical d=scribability, closedness of the
theory, applicability, etc.). The similarity to geometric principles just re-
ferred to is the guideline that leads-—as we see it—to this closed and well-
rounded presentation of computer arithmetic.

Implementation of the algorithms is made along natural lines witl:
which the nonspecialist views computers. This principle helps to avoid
those misuaderstandings of the camputer by its users that are caused by
tricky implementations.

We mention incidentally that a sound implementation of traditional
computer arithmetic is captured by what we call the vertical definition of
arithmetic. _

This book, of course, can be used as a textbook for lectures on the
subject of computer arithmetic. If one is interested only in the more prac-
tical aspects of impiementation of arithmetic on computers, Pait 2 along
with acceptance, a priori, of some results of Part 1, also suffices as a
textbook for lectures.

We regard the availability of the directed roundings and interval opera-
tions as essentiai tools on tlie computer. Apart from the great impact on
the insight and theoretical understanding of computer arithmetic exerted
by the development of interval arithmetic, these tools are necessary if a
computer is to be used to control rounding errors. Employment of such
techniques provides computation with guarantees, and thus permits use
of the computer for verification ard decidability. Such questions cannot
be studied by using arithmetic which rounds in the traditional sense. By
taking appropriate measures, interval operations can be made as'fiist as
the corresponding ordinary floating-point operations. ,

The theory developed in Part 1 permits additional applications to nu-
merical analysis, applications that are beyond the scope of this book. We
mention a few of them:
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A clear and precise definition of all arithmetic operations on a computer
is a fundamental and necessary condition for reliable error analysis of
numerical algorithms. The definition of the arithmetic operations on a
computer by semimorphisms is also sufficient for complete control of the
computational error due to the approximate arithmetic performed by the
computer for many standard problems of numerical analysis. Examples of
such problems are linear systems of equations, inversion of matrices, ei-
genvalue problems, zeros of polynomials, nonlinear systems of equations,
evaluation of arithmetic expressions and mathematical functions, linear
programming problems, numerical quadrature, and initial and boundary
value problems for ordinary differential equations.

The concept of semimorphism can be used directly for an axiomatic
definition of arithmetic within the syntax and semantics of programming
languages.

This in turn should be useful for correctness proofs of numerical pro-
grams.

The similarity of the concept of a semimorphism to the Kuratowski
axioms of a topology is clear. This has been used to redefine the concept
of stability of algorithms in numerical mathematics [1, 76, 82, 83].

The concept of semimorphism can be applied to study ard describe the
approximation of function spaces by certain subspaces.

The spaces that we later call ringoids and vectoids and in which compu-
tations on computers are performed provide a framework for the study of
the cyclic termination of iterative methods on computers [28, 29, 67, 86].

Last, but hardly least, we note that the spaces of interval arithmetic can
be developed much further. It is well known that the intervals over R and
C form regular semigroups with respect to addition and multiplication.
Such semigroups can be iinbedded into groups by a well-known algebraic
procedure. The extended spaces then permit the definition of concepts of
metric and norm in a manner quite similar to their definition in a field or a
linear space. This greatly simplifies the analysis of interval algorithms [1,
24, 25, 26, 80].

Many of these additional applications are subjects of current research,
and we defer their exposition to a follow-up volume.

We are grateful to all those who have contributed through their re-
search to this treatment. We once more refer to the bibliography at the
end of this text. We especially owe thanks to Dr. P. Schweitzer of IBM
Germany and to Dr. R. A. Toupin of the IBM Research Center. Their
support and their interest, so congenial in its nature, have been critical for
the completion of this text. We are also grateful to J. Genzano. Her virtu-
osity and devotion to the physical preparation of the text provided a con-
stant force accelerating the work.
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INTRODUCTION AND PRELIMINARY
DEFINITION OF COMPUTER ARITHMETIC

In this treatise we present a study of computer arithmetic. Central to this
is the specification of the spaces that form the natural setting for arithmetic
when it is performed in a computer. In earlier days of computer development
the properties of computer arithmetic were influenced by such features as
simplification of computer architecture, hardware and software considera-
tions, and even the cost of the technology employed. Experience has shown
that these influences led to economies that frequently resulted in added costs
and burdens to the user. A typical example of the latter is the frequent pro-
duction of an inexplicable, even incorrect computation. The arithmetical
properties of computer operations should be preciseiy specified by mathe-
matical methods. These properties should be simple to describe and, we
hope, easily understood. This would enable both designers and users of

- computers to work with a more complete knowledge of the computational
process. 4

To L. Kronecker we owe the remark, “God created the natural numbers,
all else is man made.” This difference is reflected in computers, where arith-
metic on the natural numbers may be performed exactly, while for all else,
only approximately. In fact, there are some interesting mathematical ques-
tions involved even in the implementation of integer arithmetic on computers.
However, we postpone discussing these and assume that the hardware
designer has satisfactorily solved this particular problem.

In addition to the integers, numerical algorith:as are usually defined in
the space R of real numbers and the vectors VR or matrices MR over the real
numbers. Additionally, the corresponding complex spaces C, VC, and MiC

1



2 INTRODUCTION AND PRELIMINARY DEFINITION OF COMPUTER ARITHMETIC

also occur ocassionally. All these spaces are ordered with respect to the
order relation <. (In all product sets the order relation < is defined com-
ponentwise.) Recently, numerical analysts have begun to define and study
algorithms for intervais defined over these spaces. If we denote the set of
intervals over an ordered set {M, <} by IM, we obtain the spaces IR, IVR,
IMR. and IC, 1VC, IMC.

In Fig. 1, to which we shall repeatedly refer, we present a table of spaces
and operations. For example, in the second column of this figure we list the
various spaces in which arithmetic is performed and which we have intro-

duced in the previous paragraph.

I ¢4 11 v v
i R > D > S + -~/
X
2 VR o VD o VS + ~
. X
3 MR o MD = MS + ~
4 PR o IR = ID > IS + -/
x
S PVR > IVR > IVD = IVS + —
X
6 PMR > IMR => IMD > IMS + -
7 C o ch = CS + —~-/
. y
8 V€ - VCD > VCS + ~
X
9 MC > MCD - MCS + —
10 PC > IC > ICD > ICS + — -}
x
11 PV€C > IVC > IVCD > IVCS + —
x
12 PMC > IMC > IMCD > IMCS + —

FIGURE 1. Table of the spaces occurring in numerical computations.

For arithmetic purposes, a real number is usually represented by an
infinite b-adic expansion, with operations performed on these expansions
defined as the limit of the sequence of results obtained by operating on
finite portions of the expansions. In principle, a computer could approximate
this limiting process, but the apparent inefficiency of such an approach
climinates its serious implementation even on the fastest computers. In fact,
for arithmetic purposes, the real numbers are approximated by a subset S
in which all operations are simple and rapidly performable. The most
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common choice for this subset S is the so-called floating-point system with
a fixed number of digits in the mantissa. If a prescribed accuracy for the
computation cannot be achieved by operating within S, we use a larger
subset D of R with the property R o D > S. For arithmetic purposes we
define vectors, matrices, intervals, and so forth as well as the corresponding
complexifications over S and D. So doing, we obtain the spaces VS, MS,
IS, 1VS, IMS, CS, VCS, MCS, ICS, IVCS, IMCS and the corresponding
spaces over D. These two collections of spaces are listed in the third and fourth
columns of Fig. 1. For example, CS is the set of all pairs of elements of 5,
VCS the set of all n-tuples of such pairs, ICS the set of all intervals over the
ordered set {CS, <}, and so forth.

Characterlstlcally, S and D are chosen as the sets of floating-point
numbers of single and double length, respectively. However, in Fig. 1, S and
D are generic symbols for a whole system of subsets of R with arithmetic
properties that we shall subsequently define. '

Having defined the sets listed in the third and fourth columns of Fig. 1,
we turn to the question of defining operations within these sets. These opera-
tions are supposed to approximate operations that are defined on the corre-
sponding sets jisted in the second column of Fig. 1. Figure 1 has four blocks,
and in every set in each of the first lines of each block, we are to define an
addition, a subtraction, a multiplication, and a division. For the sets in the
last line of each such block, for instance, we need to define an addition, a~
subtraction, and a multiplication. These required operations are listed in
the fifth column of Fig. 1. Furthermore, the lines in Fig. 1 are not mutually
independent arithmetically. By this we mean, for instance, that a vector can
be multiplied by a scalar as well as by a matrix; an interval vector can be
multiplied by an interval as well as by an interval matrix. These latter
multiplication types are indicated in Fig. 1 by means of a x sign between
lines in the fifth column therein.

As a preliminary and informal definition of computer arithmetic, we say
the following: By computer arithmetic, we understand all operations that have
to be defined in all of the sets listed in the third and fourth columns of Fig. |
as well as in certain combinations of these sets. The sets S and D may, for
instance, be thought of as floating-point numbers of single and double
mantissa length. In a good programming system, these operations should
be available as operators for all admissible combinations of data types.

We interpret this definition in somewhat more detail. First we make a
count of the number of multiplications that occur in the computer arithmetic
as defined above. Later on we make the analogous count for the other
operations. But the multiplication count itself is enough to show that it is too
much to expect the average computer user to define the system of operations
by himself.



4 INTRODUCTION AND PRELIMINARY DEFINITION OF COMPUTER ARITHMETIC

If Z denotes the set of integers on the computer, we have the five basic
datatypes: Z, S, CS, 18, ICS, which in an appropriate programming language
may be called integer, real, complex, real interval, and complex interval.
If a and b are operands, each a possible one of these five data types, the table
in Fig. 2 shows the resulting type of the product a * b.

as*b z b Cs IS ICs
z ¥ A S cs IS ICS
S M Ay CS — —

Cs CSs Cs cs — -

s 15 — — IS ICs

ICS ICS — — ICS ICS

FIGURE 2. Multiplication table for the basic numerical data types a # b.

A dash ia the table of Fig. 2 means that the product a * b is not defined
a priori. Indeed a floating-point number is an approximate representation
of a real, while an interval is a precisely defined object. The product of the
two, which ought to be an interval, may then not be precisely specified.
If the user is obliged to multiply a floating-point number and a floating-
point interval, he has to employ a transfer function that transforms this
floating-point operand into a floating-point interval. (This implicitly endows
a precision to the floating-point number.) At this point ordinary multiplica-
tion of floating-point intervals may be employed.

If the programming language used has a so-called strong typing concept,
the table in Fig. 2 shows that for multiplication among pairs of the five
basic data types, 17 multiplication routines are required. We shall sce
that the multiplication corresponding to the entries in the framed part of
the table of Fig. 2 must be supplied with three different roundings if the
multiplications corresponding to interval types are to be correctly defined.
This requires 16 additional multiplications or a total of 33 multiplication
routines for the five basic data types.

Now let T,, T,, and T, denote one of the basic data types Z, S, CS,
IS, ICS. We consider the sets of matrices M T;, vectors V T;, and transposed
vectors VTT,, i = 1(1)3, whose components are chosen from among the
basic data types. Elements of these sets can also be multiplied. Figure 3
displays the types of such products. In the figure, T; is to be replaced by
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a-b T, | MT, VT, | V'T, |

T, T, | M1, | VT, -

MT, — MT, VT, -
vr, | — — - MTy |
FIGURe 3. Table for the multiplication —_— }
a - b of matrices and vectors over the basic VT, o VT, T,

data types.

the resulting type of Fig. 2 if the components of the operands are of the
type T, and T,, respectively. The products with operands of type T', and
T, were already counted (in relation to Fig. 2). In addition to these products,
we see seven essential {matrix, vector} multiplications’ in Fig. 3. This leads
in principle to 33 x 8 = 264 different multiplications.

The table for the addition and subtraction of the basic data types is
identical to that of Fig. 2. The division table is likewise identical except
for the single entry that corresponds to the quotient of two operands of
type Z. Thus for each of the three cases of addition, subtraction, and division
of the five basic data types, we require, as before, 33 different routines.

The table for matrix and vector addition and subtraction is given in

Fig. 4.

1
+ - T, MT, VT, T,
T, T, -
MT, ~ MT, — -
VT, — —_ VT, —
FIGURE 4. Addition and subtraction ta-
ble of matrices and vectors over the basic data viT, — — — —

types.

Summarizing, we can say that we have 99 (=3 x 33) different additions
and subtractions, 264 different multiplications, and 33 different divisions.

When we deal with interval spaces, we are obliged to append to the
arithmetic operations the operations of intersection (n) and taking the

* A subtle point concerns the occurrence of the set IMS in Fig. 1, while for T; = IS in Fig. 3
the set MIS is listed. Later on we shall prove that they are isomorphic with respect to the order
relation < and all arithmetic operations.
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convex hull (U) of pairs of intervals. Figure 5, which lists the different pos-
sibilities, shows that there are 12 (=3 x 4) different intersections and
12 (w= 3 x 4) different takings of the convex hull. In Fig. 5, T resp. T,
denote IS or ICS. The intersection and tonvex hull are to be taken com-
ponentwise,

ey T, | MT, | VT, | V'T,
~G Is ics T, T, — - -
IS Is Ics MT, — | MT, — —
ICS ICS | ICS VT, — — lvr, .

- vir, | — — - _

FIGURE 5. Tables for intersection and convex hull.

The subject of the first part of this text concerns the development of
definitions for these many operations and also specifies simple natural
structures that form the settings of these operations. The second part then
deals with the implementation of these operations on computers. In par-
ticular, we shall see that the large number of operations that we counted
above can be reduced and built up from a relatively small number of funda-
mental algorithms and routines.

We shall see that there are in principle two different basic methods for
defining computer arithmetic. These are called the vertical method and
the horizontal method. For the horizontal method, the arithmetic is assumed
to be known in the leftmost set of each row of Fig. 1. On the other hand,
for the vertical method, the arithmetic is assumed to be defined by some
means in each set of the first row of Fig. 1. Both methods then define the
arithmetic in all-of the sets in Fig. 1 by appropriate extension procedures
relevant to ‘each method. By way-of illustration of these two possibilities,
we consider a simple detail of Fig. 1 that concerns the sets R, D, and § as
well as the spaces of matrices MR, MD, and MS. We assume that an arith-
metic in D and S is defined. By the vertical definition of the arithmetic in
MD and MS, we mean that the operations in MD and MS are defined by
the operations in D and S and the usual formulas for the addition and
multiplication of real matrices (see the following figure). On most computers
this is precisely the method of definition of addition and multiplication
for floating-point matrices. While the horizontal method to be developed
has many advantages, it turns out that both methods lead to the same
abstract structures as settings for the arithmetics. It will develop that the



