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Preface

This is the second of two volumes that cover nucleic acid enzymology.
The striking advances and crucial importance of this rapidly developing
area made review at this time imperative, even though there is still much
to be learned about the molecular enzymology involved.

With the exception of the chapter on DNA ligases, this volume centers
on enzymes involved in the formation, degradation, and modification of
RNA. Present information is extensive, and readers will likely recognize
an indebtedness to the excellent authors for their authoritative coverage.

It is a distinct pleasure to record appreciation for the guidance provided
by the Advisory Board members of this and the preceding volume. Their
exceptional professional competence and breadth of knowledge made es-
sential contributions to the excellence of the volumes.

This volume records a milestone along the path of one of the most vital
and revealing areas of biological research of all times.

Paul D. Boyer

Xiti
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I. Introduction

DNA ligases are enzymes that catalyze the formation of a phosphodies-
ter linkage between DNA chains. Condensation of the 5’-phosphoryl
group with the adjacent 3’-hydroxyl group is coupled with the hydrolysis
of a pyrophosphate moiety of NAD (bacterial enzyme) or ATP (phage or
eukaryotic enzymes).

Prior to the discovery of DNA ligase several experimental observations
suggested the existence of an enzyme that could catalyze the covalent

3
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4 MICHAEL J. ENGLER AND CHARLES C. RICHARDSON

joining of polynucleotides. Studies on bacteriophage had shown that ge-
netic recombination involved the breaking and rejoining of polynucleotide
strands (/, 2), and physical and genetic studies on the repair of
ultraviolet-irradiated DN A suggested a terminal step requiring strand join-
ing (3). A more specific demonstration of a joining activity came from the
observation that the linear DN A molecule of phage lambda was converted
to a covalently closed duplex circle shortly after injection into its host,
Escherichia coli (4, 5). An added impetus to search for such an enzyme
activity was the growing realization that a novel mechanism might exist
for the overall 3'-5' directional growth of a DNA strand (lagging strand)
during replication [see Ref. (6)]. One postulated mechanism, the synthesis
of small chromosomal units on both strands in an antiparallel manner (7),
required a subsequent joining event to yield DNA of high molecular
weight. It was not until later, concurrent with the discovery of DNA
ligase, that direct evidence was obtained to support a discontinuous
mechanism for DNA replication (8).

DNA ligase was first identified in extracts of uninfected and T-
phage-infected E. coli in 1967 (9-14). Initially, the major feature that
distinguished the bacterial from phage-induced enzymes was their cofac-
tor specificity; E. coli ligase requires NAD, whereas the phage enzyme
requires ATP. Another bacterial ligase, isolated from Bacillus subtilis, also
requires NAD (/5). DNA ligases have been found in a large variety of
eukaryotic cells [see review, Ref. (/6)]; all have a requirement for ATP.

Of the DNA ligases that have been described, the E. coli and phage
T4-induced enzymes have been most thoroughly characterized. There-

1. Meselson, M., and Weigle, J. J. (1961). PNAS 47, 857.

2. Anraku, N., and Tomizawa, J. (1965). JMB 11, 501.

3. Boyce, R. P., and Howard-Flanders, P. (1964). PNAS 51, 293.

4. Young, E. T., and Sinsheimer, R. L. (1964). JMB 10, 562.

5. Bode, V. C., and Kaiser, A. D. (1965). JMB 14, 399,

6. Sueoka, N. (1967). In ‘“Molecular Genetics” (J. H. Taylor, ed.), Part II, p. 1. Aca-
demic Press, New York.

7. Nagata, T. (1963). PNAS 49, 551.

8. Okazaki, R., Okazaki, T., Sakabe, K., Sugimoto, K., and Sugino, A. (1968). PNAS 59,
598.

9. Gellert, M. (1967). PNAS 57, 148.

10. Weiss, B., and Richardson, C. C. (1967). PNAS 57, 1021.

11. Olivera, B. M., and Lehman, 1. R. (1967). PNAS 57, 1426.

12. Gefter, M. L., Becker, A., and Hurwitz, J. (1967). PNAS 58, 240.

13. Becker, A., Lyn, G., Gefter, M., and Hurwitz, J. (1967). PNAS 58, 1996.

14. Cozzarelli, N. R., Melechen, N. E., Jovin, T. M., and Kornberg, A. (1967). BBRC 28,
578.

15. Laipis, P. J., Olivera, B. M., and Ganesan, A. T. (1969). PNAS 62, 289.

16. Soderhall, S., and Lindahl, T. (1976). FEBS Lett. 67, 1.



1. DNA LIGASES 5

fore, this chapter focuses on these two enzymes and refers to studies on
ligases from other sources only when they supplement, or differ from,
those obtained with the E. coli and T4 enzymes. This series (/7) and other
reviews (/8, 19) have already covered earlier studies on DNA ligases.
This chapter places major emphasis on (1) the purification and physical
properties of the ligases; (2) the properties and substrate specificities of
the reactions catalyzed by the enzyme, including the intermediates in the
reactions; (3) the ir vivo roles of DNA ligases; and (4) the research appli-
cations of the enzyme.

Il. Isolation and Physical Properties

A. ASSAYS

1. Alteration of the Properties of Polynucleotide Chains

DNA ligase activities have been measured by a number of procedures.
Ligase activity was initially detected in extracts of E. coli by measuring
the conversion of hydrogen-bonded circles of phage A DNA to covalently
bonded ones using a sedimentation assay (9). A more rapid assay, which
also utilizes the cohesive ends of A DNA, involves the joining of radioac-
tively labeled A DNA to cross-linked unlabeled A DNA (20). Although the
cross-linked DNA will renature after treatment with alkali, the labeled
DNA will not, unless it has become covalently attached to the cross-
linked DNA. The single-stranded and native DNA reaction products are
then quantitated by hydroxylapatite chromatography.

Another assay (/4) that measures the covalent joining of one duplex
polymer to another makes use of a polynucleotide chain covalently linked
to cellulose, thus permitting it to be isolated by sedimentation or filtration.
By adding the appropriate complementary polymers to the cellulose-
linked polymer, a duplex substrate can be prepared with which to mea-
sure ligase activity.

A rapid and convenient assay measures the conversion of 3H-labeled
d(AT) copolymer to a form resistant to exonuclease 111 (27). In this reac-

17. Lehman, I. R. (1974). ““The Enzymes," 3rd ed., Vol. X, Chap. 8, p. 237.

18. Lehman, I. R. (1974). Science 186, 790.

19. Higgins, N. P., and Cozzarelli, N. R. (1979). ‘‘Methods in Enzymology,”” Vol. 68, p.
50.

20. Zimmerman, S. B., Little, J. W., Oshinsky, C. K., and Gellert, M. (1967). PNAS 57,
1841.

21. Modrich, P., and Lehman, 1. R. (1970). JBC 245, 3626.



6 MICHAEL J. ENGLER AND CHARLES C. RICHARDSON

tion DNA ligase catalyzes an intramolecular joining reaction with linear
self-complementary d(AT) oligomers, leading to the formation of circular
molecules (22).

2. Direct Measurement of Phosphodiester Bond Formation

A more direct type of assay for ligase activity measures the conversion
of internally located *2P-labeled 5'-phosphomonoesters to diesters, which
are resistant to E. coli alkaline phosphatase. After limited digestion with
pancreatic DNase, duplex DNA contains single-strand breaks bearing
5'-phosphoryl groups. All such phosphomonoesters are. removed by
treatment with phosphatase at elevated temperatures, and the external
and internal 5'-hydroxyl groups are then radioactively labeled by phos-
phorylation using [y-32P]ATP and polynucleotide kinase (10, 23). If these
%P-labeled phosphomonoesters are incorporated into phosphodiester
linkages in a ligase reaction, they are converted to a phosphatase-resistant
form.

A similar assay (/1, 24) uses as substrate a double-stranded homo-
polymer pair consisting of multiple oligo(dT) units labeled with [5'-
%*P]phosphomonoester hydrogen-bonded to a long poly(dA) chain. A
novel variation of this type of assay is the covalent joining of a [5'-
%P](dA-dT) oligomer to yield phosphatase-resistant radioactivity (22), a
reaction dependent on the ability of poly(dA-dT) to form intramolecular
circles.

3. Detection of Biological Activity

Several biological assays for measuring ligase activity have also been
described. Ligase will restore marker activity of transforming DNA that
has been inactivated by the introduction of single-strand breaks with pan-
creatic DNase (/5, 25). Similarly, ligase activity has been measured by
following the restoration of biological activity in a transfection assay (26).
In this case, phage DNA, previously inactivated by a single restriction
enzyme cleavage, is repaired by covalent joining via the short cohesive
ends generated by the restriction cut.

4. Measurement of a Partial Reaction

More rapid assays, which do not require the preparation of a special
DNA substrate, have been used to monitor the purification of DNA ligase.

22. Olivera, B. M., Scheffler, I. E., and Lehman, I. R. (1968). JMB 36, 275.
23. Weiss, B., Live, T. R., and Richardson, C. C. (1968). JBC 243, 4530.
24. Olivera, B. M., and Lehman, 1. R. (1968). JMB 36, 261.

25. Bautz, E. K. F. (1967). BBRC 28, 641.

26. Murray, N. E., Bruce, S. A., and Murray, K. (1979). JMB 132, 493.
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These assays measure the first step in the ligase-catalyzed reaction. Both
E. coli ligase (27) and T4-induced ligase (28) can be assayed by measure-
ment of the formation of the acid-precipitable ligase-AMP intermediate
using NAD or ATP, respectively, radioactively labeled in the AMP
moiety.

T4 DNA ligase has been assayed during purification by measuring the
exchange reaction between ATP and *PP; (29). This assay measures the
conversion of ?PP; into a form that adsorbs to charcoal. In principle such
an assay could also be used to measure the exchange reaction between
NAD and NMN in the E. coli DNA ligase reaction.

5. Other Assays

Although all of the assays discussed above have been used to monitor
DNA ligase activity during purification, many other possibilities exist.
Such assays are limited only by the expertise and ingenuity of the inves-
tigators. For example, the joining of restriction fragments and the refor-
mation of covalently closed circular molecules, reactions catalyzed by
DNA ligase, can be followed by such diverse techniques as pycnographic
analysis, electron microscopy, and gel electrophoretic analysis.

6. Choice of an Assay

Which assay should be used to measure DNA ligase activity during
purification? For detecting normal amounts of ligase activity in extracts of
cells, the most suitable assay procedures are probably those that most
directly measure phosphodiester formation by the conversion of a
phosphatase-sensitive *?P-labeled 5'-phosphomonoester to a phos-
phatase-resistant form. Equally satisfactory and sensitive is the conver-
sion of linear poly(dA-dT) copolymer to an exonuclease III resistant form.
Since extracts of cells may contain other enzymes that catalyze an ATP-PP,
exchange and NAD-NMN exchange, these assays cannot always be used
in the early stages of purification. However, the purification procedure
developed for the T4 DNA ligase is sufficiently reproducible in the early
steps to permit postponing an assay of the enzyme until Step V
(chromatography on DEAE-cellulose) when the exchange assay is reliable
(29). When overproducing strains of cells are used as a source of enzyme
any of the assays should provide a sufficiently reliable method to identify
the peaks that contain ligase activity during column chromatography.

27. Zimmerman, S. B., and Oshinsky, C. K. (1969). JBC 244, 4689.

28. Knopf, K. W. (1977). EJB 73, 33.

29. Weiss, B., Jacquemin-Sablon, A., Live, T. R., Fareed, G. C., and Richardson, C. C.
(1968). JBC 243, 4543.



