3.5”IBM PC

DATA STRUCTURES AND ALGORITHMS USING C++

TIEXR . HIBLEHWEE XN C++ LW

Rick Decker

Compatible
Disk

Enclosed

9919564

LETEL

T

9919564

«

CLASSES

PWS Publishing Company

I&BP International Thomson Publishing Company

ZE LW s)

F-7M-Lig- B

£&: Workipg Classes : Data Structure and Algorithms Using C++
(3 #: R.Decker, S.Hirshfield

P % F THERY. WRENWS TN C-ER

WE K HREBHEASERNLE

I PR A-L 1 T

£ 7 ENEVHELAALRLH GERMBOIA K 137 % 100010)
FooE: K327 850X 1168 €0 #: 16,125

R X 1998 SABIME 1998ES AN KO

%, 7.5062-3819-5/TP- 34

R ®ic: ¥ 01-98-0369

): 4 #ft: 88.00 T

i W H K2 B3t 4 B D HE International Thomson Publishing fERZEP
ROMKRED AT,

5 A aamn e

A

N /‘L

Over the years, we've had a number of students who have said, in one
form or another, “I want to be a computer scientist because | really like
programming and am very good at it.” Of course computer scientists, both
novices and seasoned veterans, are often called upon to write programs, but
to equate computer science with programming is to confuse the product with
the process. Being an excellent draftsman who can faithfully represent a scene
on paper is no guarantee that your works will eventually hang in the Metro-
politan Museum. It’s a step in the right direction, but an artist must also have
an intimate familiarity with the more general principles of composition, per-
spective, color and so on.

In essence, programming is little more than the efficient management ofa
particular kind of large intellectual process, and the guidelines for good pro-
gramming are nothing but the application of common-sense principles that
apply to any complex creative task. It goes without saying, though, that be-
fore you can think efficiently you have to have something to think about,
which for our purposes means that in order to write good programs, you
must have an idea about how information may be represented in a program.

Computer science is a young discipline, but has developed enough over
the past few decades to gain a consensus aboutr what should constitute the
core data structures. In this book, we have tried to capture this core by pro-
viding what might be called the “classic™ data structures—the most common-
ly applied methods for representing information in a computer program—
along with the algorithms for manipulating this information. In terms of
things to think about for programming, this book offers a collection of tools
that should be part of the working knowledge of any programmer.

PREFACE

This book is not about programming, however. Computer science is a
science, and as such mainly seeks a theoretical framework that can be used o
describe the behavior of the objects under study, which in our case are com-
puters and their programs. One of the objectives that have determined the
form of the book is to provide a broad view of what a data structure really is.
In our approach, dara structures are not just a collection of ad hoc type dec-
larations and function definitions, but rather any data structure is a particular
instance of an abstract data type, which consists of (1) a set of positions and
a set of elements associated with the positions; (2) a logical structure defined
on the positions; and (3) a collection of structure-preserving operations on
the positions and the elements they “contain.”

We have chosen to define the structure of an abstract data typc vy speci-
fying a structural relation on each set of positions. Doing so provides a natur-
al progression of the chapters, where each new abstract data type is intro-
duced by removing some of the strucrural restrictions from a prior type. Thus
we begin with lists, whose structure is defined by a linear order, and progress
to trees by removing the requirement that each position have a unique succes-
sor, then ro directed graphs by removing the requirement of a unique prede-
cessor, and finally ro sets, where there is no struceure at all on the positions.
Throughout this process, we see that each new abstract data type still can be
described by the threefold view of a collection of positions with a structural
relarion and a collection of structure-preserving operations.

Some History

After using Pascal in this course for five years, it was clear to us that, for all
its strengths as a teaching language, Pascal is not the most felicitous choice as
a vehicle for a course in data structures. An abstract data type is nothing
more than a collection of dara and operations on that data, and that, of
course, is the definition of a class. When preparing to write the book you
have before you, we considered several object-oriented languages and finally
sertled on Ce+, largely because of its popularity. We'd be the first to admit
that C++ has its warts and blemishes, but in our opinion it is the appropriate
choice at present,

The Audience

Though we did not set out to tailor this book to any preexisting curriculum,
it turned out that it covers essentially all of C52 and part of CS7, as described
in the ACM Curriculum '78, and a subset of the union of C$2 and CO2, set
forth in Norman Gibbs and Alan Tucker's 1985 Model Curriculum for a Lib-
eral Arts Degree in Computer Science. The material contained here should be
covered early in any computer science curriculum, and we have written this
book for an audience of first and second year students in computer science

PREFACE xvii

who are familiar with C or (preferably) C++. For those readers whose back-
ground is Pascal, we provide a Pascal-C++ “dictionary” in Appgndix A, A
course in discrete mathematics is desirable as a pre- or corequisite for this
material, but the relevant mathematical background is summarized in Appen-
dices B and C for those who need it.

The Contents

Our intent has been to write a book that could be used as the basis for a se-
mester-length course in data structures or advanced programming. Realizing
that the subject matter of this book comes at an early stage in the education
of a computer scientist, we included a number of mentions, necessarily brief,
of some of the topics awaiting the student down the road. Most of the canon-
ical sorting and searching algorithms are covered, along with mentions of
computational complexity, compiler design, unsolvable problems, NP-com-
pleteness, and fundamental paradigms for algorithms. We believe that one
can never have enough exercises—this book has 359, by actual count, and
each chapter concludes with an oprional Explorations section, where we treat
interesting topics that extend the material of the chapter.

Chapter 1 covers some of the necessary preliminaries, such as program
design, the definition of an abstract data type, and assertions and program
verification. We begin by specifying an array as an abstract data rype, and
conclude with the Number ADT that represents integers of arbitrary size.
Chaprer 2 describes the List ADT and continues the preliminary material of
Chapter 1 by discussing paramerrized classes and funcrions, big-O notation,
and riming of algorithms. The chapter concludes with a discussion of memo-
ry management. In the Explorations section, we discuss sorted lists and
searching, along with self-organizing lists.

In Chapters 3 and 4 we continue the investigation of linear data struc-
tures. Chapter 3 covers strings and introduces the Boyer-Moote string search
algorithm. Chapter 4 covers the remaining standard linear structures, stacks
and queues, motivating these by applications 1o manipulate postfix expres-
sions. The Explorations cover stack-based maze traversal and a simple oper-
ating system simulation. Since a considerable number of queue applications
involve simulation, Appendix C (Random Numbers and Simulation) may be
useful ar this point,

Chapter § provides a segue into nonlinear structures by introducing re-
cursion and recursively defined data structures. Timing estimates for recursive
algorithms are covered in depth, along with an introduction to LISP, We deal
wich Quicksort ‘in the Explorations. Appendix B, which covers logarithms
and exponentials, induction, and elementary combinations, is helpful supple-
mentary material at this stage.

Chapters 6 and 7 cover trees. Chapter 6 provides the necessary back-
ground on binary trees and their implementations, traversal algorithms, and
treesort; and the Explorations discuss threaded trees, minimal-length codes,

xviii

PREFACE

and tries. Chapter 7, which can be omitted if necessary, covers rwo exten-
sions of binary search rrees, namely AVL trees and B-trees.

Chapter 8 covers graphs and digraphs, along with a representative sam-
ple of graph algorithms for traversal, spanning trees, minimal-cost paths,
minimal spanning trees, and an introduction to complexity theory through
the Traveling Salesperson Problem. In the Explorations, we discuss topologi-
cal sorting and applications of powers of the adjacency matrix.

Chapter 9, on sets, describes bit vector, list implementations of sets, dic-
tionaries. and associations, and provides a comprehensive introduction 1o
hashing. The chapter concludes with PriorityQuene ADT and heapsort, In
the Explorations, we continue our discussion of hashing and introduce the
DisgointSet ADT.

In Chaprer 10 we consider the problem of regenerating text from a large
sample and trace the development of programs to solve this problem. using a
real computer/compiler system to show how practical time and space con-
straints arise from choices of data structure.

Supplementary Material

In addition to the dara disk (IBM PC compatible) included with this book, an
Instructor’s Manual is available from the publisher. A Macintosh version of
the dara disk is also available from the publisher.

Acknowledgments

A lot of people deserve praise for seeing this book through to completion.
Thanks go to Billy Lim, Hlinois State University, Barbara Boucher Owens, St.
Edward’s University, and Daniel Ling, Okanagan University College, for
their thoughtful reviews; and to our students and colleagues for suggesting
countless changes in earlier versions. Special kudos go to the folks at PWS
Publishing, especially Mike Sugarman and Ben Steinberg (the Batman and
Robin of publishing), Abby Heim (who held her nervous breakdown at bay
throughout an insanely busy production process that included working on
two of our books simuitaneously), J. P. Lenney (for picking out great wines
and picking up the tab), and Nathan Wilbur (for just being Nathan). Writing
and producing a book is a task that rates up there on the discomfort scale
with cholera, except that writing takes longer. It can never be called pleasur-
able, but the friendship and warmth of the PWS crew ar least has made it
bearable.

Rick Decker
Stuart Hirshfield

WORKING CLASSES

PWS PUBLISHMING COMPANY
20 Park Plaza, Boston, Massachusetrs 021164324

Copyright © 1997 by International Thomson Publishing Inc.

ALL RIGHTS RESERVED. No part of this book may be reproduced or transmitted
photocopying, recording or any information storage and retrieval system, without permission, in

writing, from the publisher.

(TP~

For more information contaci:

PWS Publishing Co.
20 Park Plaza
Boston, MA 02116

International Thomson Publishing Europe
Berkshire House 168-173

High Holborn

London WCIV TAA

England

internanonal Thomson Publishing Asia
221 Henderson Road

#05-10 Henderson Building

Singaporc 0315

International Thomson Publishing
The trademark ITP is used under license.

International Thomson Publishing Japan
Hirakawacho Kyowa Building, 31

2-2-1 Hirakawacho

Chiyoda-ku, Tokyo 102

Japan

Thomson Nelson Australia
102 Dodds Street

South Meibourne, 3205
Victoria, Australia

Nelson Canada

1120 Birchmount Road
Scarborough, Ontano
Canada M1K 5G4

International Thomson Editores
Campos Etiseos 385, Piso 7
Col. Polanco

11560 Mexico D.F., Mexico

International Thomson Publishing GmbH
Konigswinterer Strasse 418
53227 Bonn, Germany

Decker, Rigk. © =

Stuart Hirshfield -
p. cm.
Includes index.
ISBN 0-534-94566-X

1. Hirshfield, Stuart. I, Title.
QA76.73.C153D44 1996
005.7°3—dc20 . e

Library of Congress &mmquubhmuon Data

Working classés: dan stmqum andalgomhms using C++ / Rick Decker,

]

1. C+4+ (Computer program language) 2. Data strucmrcs (Computer science)

This book is ptinted
on recvcied, acid-free
paper.

94-43941
CIp

Sponsoring Editor: Michael). Sugarman

Developmental Editor: Mary Thomas
Production Editor: Abigail M. Heim
Marketing Manager: Nathan Wilbur

Manufacturing Coordmaror Lnsz Flanagan

Editorial Assi B

Interior Designer: Catherine Hawkes Design

Cover Designer: julia Gecha

Cover Artist: Angela Perkins

Typesetter and Interior lllustrator: Electric Ink, Ltd.
Cover Printer; New England Book Components

Text Printer and Binder: Quebecor Printing/Martinsburg

Cover Image: The SteelTec™ product ©1993 by Remco
Toys, Inc. All rights reserved. Used with permission.

Printed and bound in the United States of America.

97 989928765 4

@ The PWS Series in Computer Science

ABFRNETHY AND ALLEN, Experiments in Computing:
Laboratones for Introductory Computer Science in Think
Pascal

ABERNETHY AND ALLEN, Experiments in Computing:
Laburatones for Introductory Computer Science in Trrbo
Pascal

ABERNETHY AND ALLEN, Exploring the Science of Computing

AGEH OFF AN MOENA, Essentials of Striecctured BASIC

Bargy axi LUNDGAARD, Program Design with Pseredocode,

Third Fdetion

BrLCHER, The COBOL Handbook

BENT AND SFTHARES, BASIC: An [ntroduction ro Computer
Programrung, Fourth Edition

BENT AND SETHARES, BASIC: An Introdiuction to Computer
Programmung with Apple. Third Edition

BENT AND SeTHARES, Microsoft BASIC: Programpung the
IBAL PO Third Edion

BENT AND SETHARYS, QBASIC

BENT AND SETHARES, Quick BASIC: An Introduction 1o
Conmputer Science Programmung with the IBM PC

Bokst, FORTRAN ~7 und Numerical Methods for
Engineers, Second Edinon

CLEMENTS, 68000 Famnly of Assembly Language
CLEMENTS, Principles of Compter Hardware, Second
Edon

Cokurn, Viswal BASIC™ Made Easv

COSNARD a8ty TRASTRAM, Parallel Agorahms and
Archtecture

DrCner AaND HIRSHEELD, Pascai’s Triangle: Reading,
Writarg, and Reasoning Abont Programs

Dreker b HiRshngtn, The Analynical Engine: An
Intraduction to Comprter S('t.e"ﬂ&b*w‘{H vperCard 2.1,
Second Edinion { . N

DECKER AND HIRSHEIELD, The AnalyrieaPEngime: An
Intraduction to Computer Science Udin ',Tud‘lBrmk
Decker axo HIRSHRIELD, The Object Concel P
Irttroduction to Comprter Programmung Usitg Cos
DECRER AND HIRSHEIEL D, Workig Classes: Data Structures
and Algorthms Using Ces

DURSHEM AND JiRPING, Programmtung Languages: Structures
and Models, Second Editton

DROZDEN AND StntoN, Data Struchres i C

EGUEN AN EGGEN, An Introduction 1o Compuder Science
Usmy C

FIRERAUGH AND MCHIE, Arsificnal Drtetligence: A
Knoeledge-Based Approach, Second Editton

Frynn anp McHOEs, Understanding Operating Systenrs
GIARRATANO AND RuLky, Expert Svstems: Principles and
Programmnyg, Second Edition

HENNEFELD, Using Microsoft and IBM BASIC: An
Introductron to Computer Programmung
HeNNEFFLD, Using Turbo Pascal 6.0-7.0, Third Edition
Hotoles aND BEHFOROOZ, FORTRAN 77 for Engineers and
Screnusts, Second Edition
Housg, Begimnmg with C
JasisoN, RUSSELL, AND SNOVER, Laboratortes for a Second
Course in Computer Science: ANSIT Pascal
JaMiSON, RUSSEEL, AND SNOVER, Laboratories for a Second
Course it Computer Science: Turbo Pascal
LOUDEN, Programming Languages: Principles and Practice
MARTING, {ntroduction to Computer Science Usmg Pascal
Mears, BASIC Programming with the IBM PC, Second
Editron
Mojena, Turbo Pascal
MoJENA AND AGELOFF, FORTRAN 77
PAYNE, Advanced Struciured BASIC: Frle Processpg wath
the IBM PC
Payxg, Structured BASIC tor the IBM PC wuth Business
Applications
PaYNE, Striectured Programmung with QsuckBASIC
PoLLACK, Effective Programmmg in Turbn Pascal
PorkiN, Comprebensive Structured COBOL. Fourth Edition
RILEY, Advanced Programmnng and Data Structieres Using
Paseal
Ruey. Usmg MODULA-2
Rivey, UVseng Pascal: An Introduction to Compraer Science |
RoB, Big Blue BASIC: Programming the IBM PC und
Compatibles. Second Editton
Roasy, Programmang In BASIC for Engineers
Roon, Logic and Structured Design for Computer
Programmers. Second Ed:ition
RUNNION, Structured Programming in Assembly Lunguage
for the IBM PC and PS/2. Second Edition
- SHAY, Understanding Data Commumications and Networks
'S.\IITH. Destgn and Analysis of Algorthms
" STuBs aND WeBRE, Data Structures with Abseract Data
t Types and Ada
SruBas aND WEBRE, Data Structures with Abstract Data
Types und Pascal, Second Edition
SunY. CICS ustng COBOL: A Structured Approach
WaNG, An Introduction to ANSE C on UNIX
Wand, An Introduction to Berkeley UNIX
Wana, Ces enh Object-Oriented Programming
WEINMAN, FORTRAN for Scientists and Engineers
WEeINMAN, VAX FORTRAN, Second Edition
WHALE, Data Structures and Abstraction Using C
ZIRKEL AND BERUNGER, Understanding FORTRAN 77 & 90

TP e e ey

Q.

For Natty, Adam, Ben, and Shauna

PART
ONE

PRELIMINARIES 3

1]

K-
13

14

15
16

ADTs: ABSTRACTION AND ENCAPSULATION 4

Abstraction 5
Reuse and Encapsulation 7
ADTs, OOP, and Things to Come 7

ADT: INTEGERARRAY 8

IMPLEMENTATION I3
Defining Integer Arrays |3

COMPUTER SCIENCE INTERLUDE: ASSERTIONS
AND VERIFICATION I8

Assertions |8
Verification 19

APPLICATION: MULTIPRECISION ARITHMETIC 23

Declaring the Number Class 25
Defining the Number Class 27

SUMMARY 36

vii

viii CONTENTS

]7 EXERCISES 36

'IB EXPLORATIONS 44

Representation of Integers 44
Bit Vectors 45

2 Lists 49

E'I ADT: LIST 50
" Parametrized Classes 53

Ea IMPLEMENTATIONS 55
) Arrays S5
Linked Lists 63
E 3 COMPARING IMPLEMENTATIONS 75

Space 75

Time 76
Comprehensibility 77
Trade-Offs 78

E 4 COMPUTER SCIENCE INTERLUDE: MEASURES
" OFEFFICIENCY 78

Algorithms 79
Big-O 8l

Order Arithmetic 83
Timing Functions 85

E 5 APPLICATION: MEMORY MANAGEMENT 89

Allocation 92
Deallocation 94
Compaction 98

EE SUMMARY 100
E7 EXERCISES 100

a H EXPLORATIONS 111

Sorted Lists |11
Self-Organizing Lists 115

CONTENTS

STRINGS 117

31

1

3
34
35
36

ADT: STRING |17

(S)erings. (s)trings. and Arrays |18
Lexicographic Order 121
Declaring Strings 122

IMPLEMENTATION 124
Efficiency 130

APPLICATION: STRING MATCHING 32
SUMMARY (39
EXERCISES 140

EXPLORATIONS 144
Advanced Partern Matching 144

OTHER LINEAR STRUCTURES 146

4]
4e

43
44
45

15

4]
48

ADT: STACK 146
IMPLEMENTATIONS OF STACK 151

Efficiency issues 151
Stacks as a Derived Class 152
Stacks from Scratch 153

APPLICATION: POSTFIX ARITHMETIC 154
ADT: QUEUE |57

IMPLEMENTATIONS OF QUEUE 158

Queues as Linked Lists 159
Circular Arrays and Queues 160

APPLICATION (CONTINUED): INFIX TO POSTFIX
CONVERSION 163
Verification 166

SUMMARY 166

EXERCISES 167

CONTENTS

4 EXPLORATIONS 173

The Electronic Labyrinth 173
Operating System Simulation 178

5 RECURSION 183
i 5] RECURSIVE ALGORITHMS 183

Induction and Recursion 190

5 E TIMING RECURSIVE ALGORITHMS 191

5 3 COMPUTER SCIENCE INTERLUDE: DESIGN OF
" ALGORITHMS 196

5 4 RECURSIVE DATA STRUCTURES 202
"' General Lists and LISP 204

55 SUMMARY 211
58 EXERCISES 212

57 EXPLORATIONS 219
" Quicksort 219

6 TREES 223
B] THE STRUCTURE OF TREES 224

E E ADT: BINARYTREE 228
E 3 BINARY TREE TRAVERSALS 231
B 4 IMPLEMENTATION OF BINARYTREE 236

E 5 COMPUTER SCIENCE INTERLUDE: PARSE TREES 240

CONTENTS

E B DATA-ORDERED BINARY TREES 242

Binary Search Trees 244
Application; Treesort 25|

87 SUMMARY 251
EB EXERCISES 253

Bg EXPLORATIONS 1257

Threaded Trees 257
Preamble: Tree Applications 259
Huffman Codes 261

Tries 265

SPECIALIZED TREES 268

7] BALANCED TREES 1269

AVL Trees 270
Efficiency and Verificaton 277

72 B-TREES 277

k-ary Trees. Again 278
B-Trees Explained 279
Application; External Storage 289

73 SUMMARY 293
74 EXERCISES 294

GRAPHS AND DIGRAPHS 297
H] ADT: GRAPH 1298

ﬂ E IMPLEMENTATIONS OF GRAPH 302
’ Adjacency Matrices 302
Adjarency Lists and Edge Lists 305
B 3 GRAPH TRAVERSALS 311

Depth-First Traversals 311
Breadth-First Traversais 312
Spanning Trees 314

xi

xii

84
B.5

8.6

8.7
B.8
8.3

CONTENTS

APPLICATION: MINIMUM SPANNING TREES 317
DIRECTED GRAPHS 1319

Application: Cheapest Paths 320

COMPUTER SCIENCE INTERLUDE: COMPUTATIONAL
COMPLEXITY 326

SUMMARY 1330
EXERCISES 331

EXPLORATIONS 1336

Topologicai Sorting 336
Counting Paths 338

UNORDERED COLLECTIONS 342

91
9z
93
34

93

96

97
18
33

ADT: SET 342

IMPLEMENTATIONS OF SET 345

Bit Vectors 345
Sets Represented by Lists 348

ADT: DICTIONARY 352
Associations 352

HASHING 356

Open Hashing 362
Time and Space Estimates 363

APPLICATION: A PROBABILISTIC SPELLING
CHECKER 1366

ADT: PRIORITYQUEUE 369

Application: Heapsort 375

SUMMARY 1376

EXERCISES 1377

EXPLORATIONS 380

Hashing, Continued 380
The DisjointSet ADT 383

