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Over the years, we've had a number of students who have said, in one
form or another, “I want to be a computer scientist because | really like
programming and am very good at it.” Of course computer scientists, both
novices and seasoned veterans, are often called upon to write programs, but
to equate computer science with programming is to confuse the product with
the process. Being an excellent draftsman who can faithfully represent a scene
on paper is no guarantee that your works will eventually hang in the Metro-
politan Museum. It’s a step in the right direction, but an artist must also have
an intimate familiarity with the more general principles of composition, per-
spective, color and so on.

In essence, programming is little more than the efficient management ofa
particular kind of large intellectual process, and the guidelines for good pro-
gramming are nothing but the application of common-sense principles that
apply to any complex creative task. It goes without saying, though, that be-
fore you can think efficiently you have to have something to think about,
which for our purposes means that in order to write good programs, you
must have an idea about how information may be represented in a program.

Computer science is a young discipline, but has developed enough over
the past few decades to gain a consensus aboutr what should constitute the
core data structures. In this book, we have tried to capture this core by pro-
viding what might be called the “classic™ data structures—the most common-
ly applied methods for representing information in a computer program—
along with the algorithms for manipulating this information. In terms of
things to think about for programming, this book offers a collection of tools
that should be part of the working knowledge of any programmer.
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This book is not about programming, however. Computer science is a
science, and as such mainly seeks a theoretical framework that can be used o
describe the behavior of the objects under study, which in our case are com-
puters and their programs. One of the objectives that have determined the
form of the book is to provide a broad view of what a data structure really is.
In our approach, dara structures are not just a collection of ad hoc type dec-
larations and function definitions, but rather any data structure is a particular
instance of an abstract data type, which consists of (1) a set of positions and
a set of elements associated with the positions; (2) a logical structure defined
on the positions; and (3) a collection of structure-preserving operations on
the positions and the elements they “contain.”

We have chosen to define the structure of an abstract data typc vy speci-
fying a structural relation on each set of positions. Doing so provides a natur-
al progression of the chapters, where each new abstract data type is intro-
duced by removing some of the strucrural restrictions from a prior type. Thus
we begin with lists, whose structure is defined by a linear order, and progress
to trees by removing the requirement that each position have a unique succes-
sor, then ro directed graphs by removing the requirement of a unique prede-
cessor, and finally ro sets, where there is no struceure at all on the positions.
Throughout this process, we see that each new abstract data type still can be
described by the threefold view of a collection of positions with a structural
relarion and a collection of structure-preserving operations.

Some History

After using Pascal in this course for five years, it was clear to us that, for all
its strengths as a teaching language, Pascal is not the most felicitous choice as
a vehicle for a course in data structures. An abstract data type is nothing
more than a collection of dara and operations on that data, and that, of
course, is the definition of a class. When preparing to write the book you
have before you, we considered several object-oriented languages and finally
sertled on Ce+, largely because of its popularity. We'd be the first to admit
that C++ has its warts and blemishes, but in our opinion it is the appropriate
choice at present,

The Audience

Though we did not set out to tailor this book to any preexisting curriculum,
it turned out that it covers essentially all of C52 and part of CS7, as described
in the ACM Curriculum '78, and a subset of the union of C$2 and CO2, set
forth in Norman Gibbs and Alan Tucker's 1985 Model Curriculum for a Lib-
eral Arts Degree in Computer Science. The material contained here should be
covered early in any computer science curriculum, and we have written this
book for an audience of first and second year students in computer science
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who are familiar with C or (preferably) C++. For those readers whose back-
ground is Pascal, we provide a Pascal-C++ “dictionary” in Appgndix A, A
course in discrete mathematics is desirable as a pre- or corequisite for this
material, but the relevant mathematical background is summarized in Appen-
dices B and C for those who need it.

The Contents

Our intent has been to write a book that could be used as the basis for a se-
mester-length course in data structures or advanced programming. Realizing
that the subject matter of this book comes at an early stage in the education
of a computer scientist, we included a number of mentions, necessarily brief,
of some of the topics awaiting the student down the road. Most of the canon-
ical sorting and searching algorithms are covered, along with mentions of
computational complexity, compiler design, unsolvable problems, NP-com-
pleteness, and fundamental paradigms for algorithms. We believe that one
can never have enough exercises—this book has 359, by actual count, and
each chapter concludes with an oprional Explorations section, where we treat
interesting topics that extend the material of the chapter.

Chapter 1 covers some of the necessary preliminaries, such as program
design, the definition of an abstract data type, and assertions and program
verification. We begin by specifying an array as an abstract data rype, and
conclude with the Number ADT that represents integers of arbitrary size.
Chaprer 2 describes the List ADT and continues the preliminary material of
Chapter 1 by discussing paramerrized classes and funcrions, big-O notation,
and riming of algorithms. The chapter concludes with a discussion of memo-
ry management. In the Explorations section, we discuss sorted lists and
searching, along with self-organizing lists.

In Chapters 3 and 4 we continue the investigation of linear data struc-
tures. Chapter 3 covers strings and introduces the Boyer-Moote string search
algorithm. Chapter 4 covers the remaining standard linear structures, stacks
and queues, motivating these by applications 1o manipulate postfix expres-
sions. The Explorations cover stack-based maze traversal and a simple oper-
ating system simulation. Since a considerable number of queue applications
involve simulation, Appendix C (Random Numbers and Simulation) may be
useful ar this point,

Chapter § provides a segue into nonlinear structures by introducing re-
cursion and recursively defined data structures. Timing estimates for recursive
algorithms are covered in depth, along with an introduction to LISP, We deal
wich Quicksort ‘in the Explorations. Appendix B, which covers logarithms
and exponentials, induction, and elementary combinations, is helpful supple-
mentary material at this stage.

Chapters 6 and 7 cover trees. Chapter 6 provides the necessary back-
ground on binary trees and their implementations, traversal algorithms, and
treesort; and the Explorations discuss threaded trees, minimal-length codes,
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and tries. Chapter 7, which can be omitted if necessary, covers rwo exten-
sions of binary search rrees, namely AVL trees and B-trees.

Chapter 8 covers graphs and digraphs, along with a representative sam-
ple of graph algorithms for traversal, spanning trees, minimal-cost paths,
minimal spanning trees, and an introduction to complexity theory through
the Traveling Salesperson Problem. In the Explorations, we discuss topologi-
cal sorting and applications of powers of the adjacency matrix.

Chapter 9, on sets, describes bit vector, list implementations of sets, dic-
tionaries. and associations, and provides a comprehensive introduction 1o
hashing. The chapter concludes with PriorityQuene ADT and heapsort, In
the Explorations, we continue our discussion of hashing and introduce the
DisgointSet ADT.

In Chaprer 10 we consider the problem of regenerating text from a large
sample and trace the development of programs to solve this problem. using a
real computer/compiler system to show how practical time and space con-
straints arise from choices of data structure.

Supplementary Material

In addition to the dara disk (IBM PC compatible) included with this book, an
Instructor’s Manual is available from the publisher. A Macintosh version of
the dara disk is also available from the publisher.
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