High-resolution
Computer
Graphics

Using
FORTRAN 77

Ian O. Angell and
Gareth Griffith

High-resolution Computer
Graphics Using FORTRAN 77

[an O. Angell and
Gareth Griffith

Department of Information Systems
London School of Economics
University of London
Houghton Street, London WC2A 2AE

M

MACMILLAN

© Ian O. Angell and Gareth Griffith 1987

All rights reserved. No reproduction, copy or transmission
of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied
or transmitted save with written permission or in accordance
with the provisions of the Copyright Act 1956 (as amended),
or under the terms of any licence permitting limited copying
issued by the Copyright Licensing Agency, 33-4 Alfred Place,
London WC1E 7DP.

Any person who does any unauthorised act in relation to
this publication may be liable to criminal prosecution and
civil claims for damages

First published 1987
Reprinted 1989

Published by

MACMILLAN EDUCATION LTD

Houndmills, Basingstoke, Hampshire RG21 2XS
and London

Companies and representatives

throughout the world

Printed in Hong Kong

British Library Cataloguing in Publication Data
Angell, Ian O.
High-resolution computer graphics using
Fortran 77.—(Macmillan computer
studies series)
1. Computer graphics 2. FORTRAN (Computer
program language)
I. Title I1. Griffith, Gareth
006.6'76 T385

ISBN 0-333-40398-3
ISBN 0-333-40399-1 Pbk

Preface

Until recently, all but the most trivial computer graphics was the province of
specialised research groups. Now with the introduction of inexpensive micro-
computers and ‘graphics-boards’, the subject will reach many more users and its
full potential can be realised. Computer-generated pictures involving smooth
shading, shadows and transparent surfaces, for example, have made a major
impact in television advertising. The ‘mysterious’ techniques for producing such
pictures have gained a (false) reputation of complexity for computer graphics.

This book gives a practical description of these ideas and, after studying the
contents and implementing the examples and exercises, the reader will be ready
to attempt most tasks in graphics.

It is assumed that the reader has an elementary knowledge of the FORTRAN
77 programming language, and of Cartesian co-ordinate geometry. This know-
ledge will be used to produce simple diagrams, and to create the basic program-
ming tools and routines for the more advanced colour pictures. Then, hopefully,
the reader will be inspired to seek a greater understanding of geometry and also
to read the more advanced journals (such as SIGGRAPH and ACM Transactions)
describing recent research developments in computer graphics. We give a number
of relevant references throughout the text, but for a more comprehensive biblio-
graphy readers are advised to refer to Newman and Sproull (1973) and Foley
and Van Dam (1981).

The only way to understand any branch of applied computing is to study and
write a large number of programs; this is why the format of this book is that of
understanding through program listings and worked examples. The chapters are
centred around numerous examples and the ideas that lead from them. Many
students readily understand the theory behind graphics, but they have great
difficylty in implementing the ideas. Hence great emphasis is placed on the pro-
gram listings; well over a hundred routines are given — some quite substantial.
Total understanding of the theory given in this book will be achieved only by
running these programs and experimenting with them. The programs can be
thought of as an embryonic graphics package, but most importantly they are a
means of describing the algorithms required in the solution of the given problems.
They are readily translatable into other computer languages such as Basic, C and
Pascal. The routines given all relate to a small number of graphics primitives,
which are necessarily device or package dependent. Examples of these primitives

Preface ix

are given for the Tektronix 4100 range, for the G.K.S. standard, and the GINO
and sample microfilm packages in an appendix.

On occasions, efficiency has been sacrificed in favour of clarity in the descrip-
tion of algorithms. The programs are written in a modular form, which makes
the interchanging of program functions relatively straightforward. A unique
name is given to any routine that solves a given problem, but we will give more
than one example of such a routine if different, perhaps more general, solutions
are required. For example, routine FACFIL can be used to draw a polygon in a
fixed colour, but other manifestations may include smooth shading of that
polygon and even various textures.

The main purpose of this book, which is essentially a third year undergraduate
and M.Sc. course at the University of London, is to set the groundwork of com-
puter graphics. Some of the figures given in this book were produced by past
students of the course. Figure 5.1 was produced by Hilary Green, figure 9.11 by
Colin Ching, figure 12.5 by Andrew Pullen and figure 18.3 by Paul Mclean
Thorne. All of the figures can be produced by using the listings in this book
(with some extensions). We would also like to thank Digital Arts Production Ltd
and Digital Arts Software Ltd for the use of their computing facilities. The pro-
grams given are NOT the only way of solving the problems of computer graphics:
they reflect the teaching and research interests of the authors. They do, however,
provide a general strategy for gaining a thorough understanding of computer
graphics and should lead the reader to research level in the subject. With this
advanced groundwork done, readers can reorganise the approach with their own
specific interests in mind. The listings use a restricted form of FORTRAN 77 in
order to make the programs applicable to many of the FORTRAN subsets now
available on microcomputers.

The package developed in this book is for teaching purposes only. Although
the authors place no copyright restrictions on the use of the listings in a lecture
course, no commercial exploitation is permitted without prior agreement with
the authors.

Computer graphics is fun! We hope that readers will make this discovery and
spend many enjoyable and productive hours in front of their graphics console.

Ian O. Angell and Gareth Griffith

Contents

Preface

1 Familiarisation with Graphics Devices and Primitives

Concept of a graphics viewport. Pixels and co-ordinates. Primitives. Win-
dows and the mapping of real two-dimensional space onto rectangular
matrix of pixels. Simple graphical constructions: squares, circles, ellipses,
spirals

2 Data Structures
Arrays and subscripted variables. Pointers. Linked lists and stacks. Graphs
and networks. Topological sorting. Trees

3 An Introduction to Two-dimensional Co-ordinate Geometry

~ Two-dimensional co-ordinate systems — origin, axes, points, vectors, lines,
curves, and their properties. Analytic (functional) representation and para-
metric forms. Polygons and convex areas. Orientation. Inside and outside

4 Matrix Representation of Transformations in Two-dimensional Space
Matrices. Affine transformations: translation, rotation and scaling (reflec-
tion), and their 3 by 3 matrix representation. Inverse transformations.
Transforming axes and transforming space. Combining transformations.
Positions and the observer. Vertex, line and facet construction, and views
of two-dimensional scenes

5 Techniques for Manipulating Two-dimensional Objects

Line clipping and blanking. Line types. Use of input devices. Rubber-
banding, draw, drag and delete techniques. Hatchinga polygon. Area-filling.
Orientation of a convex polygon. Intersection of two convex polygons.
Animation

6 Three-dimensional Co-ordinate Geometry

Three-dimensional co-ordinate systems. Vector representation of points,
lines and planes. Properties of these objects. Direction cosines. Scalar
product and vector product. Intersections, distances and reflections.
Analytic representations. Orientation of convex polygons in two-dimih-
sional and three-dimensional space

Vv

viii

23

38

54

78

108

vi Contents

7 Matrix Representation of Transformations in Three-dimensional Space
4 by 4 matrix representation of translation, rotation and scaling (reflection).
Transforming axes and space. Inverse transformations. Combining trans-
formations. Rotation about an arbitrary axis. Transforming space. Position-
ing objects in space. Definition of three-dimensional scenes. SETUP and
ACTUAL positions

8 The Observer and the Orthographic Projection

The observer, OBSERVER co-ordinate system and OBSERVED co-ordin-
ates. General projections. The view plane and window. Orthographic
projection. Drawing a scene: wire diagrams

9 Generation of Model Data

Objects from DATA or INPUT. Use of symmetry to minimise construction
effort. Bodies of revolution and rotation. Extrusion of planar polygonal
objects

10 Simple Hidden Line and Surface Algorithms

Painter’s algorithm: back-to-front method using raster area filling. Mathe-
matical surfaces. Simple algorithm for convex solids using oriented facets.
Discussion of general problem of hidden line and surface algorithms

11 Perspective and Stereoscopic Projections

Theory of perspective projection. Cone of vision. Pyramid of vision. The
perspective plane. Vanishing points and horizon. Drawing objects in pers-
pective. Extension of previous algorithms to include perspective. Theory
of stereoscopic projection. Examples

12 A More General Hidden Line Algorithm
A general hidden line algorithm to be used on line-drawing graphics displays

13 A More General Hidden Surface Algorithm

A general hidden surface algorithm to be used on colour graphics devices.
Overlapping of oriented polygons on perspective plane. Creation of a net-
work and topological sorting

14 Three-dimensional Clipping
Dealing with objects that lie partially or totally outside the pyramid of
vision

15 Shading

A geometric model for a light source. Modelling the reflection of light
from a surface. Intensity and colour of light. Reflective properties of a
surface. Diffuse and specular reflection, ambient light. Developing a shading

131

151

163

188

204

215

226

236

247

Contents

model. Implementation of shading models: random sampling, pixel patterns
and RGB colour shading using constant shading. Gouraud intensity inter-
polation and Phong normal interpolation. Methods of colour definition

16 Shadows, Transparent Surfaces and Reflections

Incorporating shadows cast by a single light source into a scene. Use of
superficial facets. Use of the hidden surface algorithm to find the shadows.
Extension to multiple light sources. Extending the hidden surface algorithm
to deal with transparent facets. Calculating the reflection of a scene in a
mirror facet

17 Analytic Representation of Three-dimensional Space
Quad-tree and oct-tree algorithms. Tree representation of a scene, logical
operations on primitive shapes

18 Projects
Ideas for extended programming projects to help the committed reader

Appendix

Primitives for some of the more popular graphics devices and standards —
such as Tektronix 4100 series, G K.S. etc.

Bibliography and References

Index

Index of Routine Listings

vii

283

302

314

325

337

340

354

1 Familiarisation with Graphics Devices
and Primitives

Computer graphics devices come in all shapes and sizes: storage tubes, raster
devices, vector refresh displays, flat-bed plotters etc., which is why in recent years
so much effort has been put into graphics software standards (such as G.K.S.
(Hopgood et al., 1983)) as well as into the portability of graphics packages
(GINO, CalComp etc.). This book will concentrate on the techniques of modelling
and rendering (that is, drawing, colouring, shading etc.) two-dimensional and three-
dimensional objects, which surprisingly require only a small part of the above sys-
tems. Rather than restrict ourselves to one software system, and in order to make
this book relevant to as many different graphics devices as possible, we will identify
a general model for a graphics device together with a few (nine) elementary
routines (primitives) for manipulating that model. From the outset is must be
realised that we are using the word ‘primitive’ in the literal sense of describing
the basic level at which the programs in this book communicate with graphics
devices; the word has different meanings in other graphics environments, such as
G.K.S. The FORTRAN 77 programs that follow will use only these primitives
for drawing on this basic model (apart from a few very exceptional cases). Since
even the most complex programs given in this book interface with the model
device through relatively few primitive routines, the graphics package we create
is readily portable. All that is needed is for users to write their own device-
specific primitives, which relate to their particular graphics device or package!
Later in this chapter we give ideas of how such primitives may be written, and in
the appendix there are example listings of primitives suitable for some of the
more popular graphics devices and standards.

The Model Graphics Device

We assume that the display of the graphics device contains a viewport (or frame)
made up from a rectangular array of points (or pixels). This matrix is NXPIX
pixels horizontally by NYPIX pixels vertically. The values of NXPIX and NYPIX
are stored in COMMON block

COMMON/VIEWPT/NXPIX, NYPIX

1

2 High-resolution Computer Graphics Using FORTRAN 77

An individual pixel in the viewport can be accessed by referring to its pixel co-
ordinates, a pair of integers, which give the position of the pixel relative to the
bottom left-hand corner of the viewport. The pixel (IXPIX, IYPIX) is IXPIX
pixels horizontally and IYPIX pixels vertically from the bottom left-hand
corner (which naturally has pixel co-ordinates (0, 0)). Note that for all pixels,
0 < IXPIX < NXPIX and 0 < IYPIX < NYPIX, and the top right corner is
(NXPIX — 1, NYPIX — 1). See figure 1.1. There are a few commercial graphics
systems which use top left as (0,0) and bottom right as (NXPIX — 1, NYPIX — 1),
but this can be compensated for in the primitives we construct and will not
require a major rewrite of the larger programs.

Colour television and RGB colour monitors work on the principle of a colour
being a mixture of red, green and blue components. Each pixel is made up of
three tiny dots, one each of red, green and blue, and different colours are pro-
duced by varying the relative brightness of the dots. Red is given by a bright red
dot with no green or blue; yellow is produced by bright red and green dots with
no blue, and so on (see chapter 15 for a more detailed description). For this
reason most graphics devices define colours in terms of red, green and blue com-
ponents. We assume that our graphics device has a colour look-up table which
contains the definitions in this form of NCOL colours, each accessed by an
integer value between 0 and NCOL — 1. Such an integer value is called a logical
colour while the entries in the look-up table are referred to as actual colours.
The entries in the look-up table may be redefined by the user, but initially we
assume the entries take default values. We assume that the display on the model
graphics device is based upon a bit-map: associated with every pixel there is an
integer value (representing a logical colour) and the pixel is displayed in the
corresponding actual colour.

We imagine a cursor that moves about the viewport; the pixel co-ordinate of
this cursor at any time is called its current position. Objects are drawn by
moving the cursor around the viewport and resetting the value in the bit-map at
the current position to the required logical colour.

The Nine Primitives
The viewport may need some preparatory work done before it can be used for
graphical display. We assume that this is achieved by the primitive call

CALL PREPIT

After pictures have been drawn some ‘housekeeping’ may be needed to finish the
frame (see the section on the command code method later in this chapter for an
explanation of buffers), and this is done by the primitive call

CALL FINISH

Familiarisation with Graphics Devices and Primitives 3

Only one logical colour can be used at a time, so to change the current colour to
logical colour ICOL, 0 < ICOL < NCOL, we use the call

CALL SETCOL (ICOL)
We can erase all the pixels in the viewport with the current colour by
CALL ERASE

If we are using microfilm then ERASE can be used to move onto the next frame
of the film.
We can colour the current pixel (IXPIX, IYPIX) in the current colour by

CALL SETPIX (IXPIX, IYPIX)

The graphics cursor can be moved about the viewport to its current (pixel)
position (IXPIX, IYPIX) without changing the colour by the primitive call

CALL MOVPIX (IXPIX, IYPIX)

Or we can draw a line in the current colour from the current position to a new
position (IXPIX, IYPIX)

CALL LINPIX (IXPIX, IYPIX)

(IXPIX, IYPIX) then becomes the current position.
We can fill in a polygon whose vertices are defined by N pixel vectors (IXP(7),
IYP(Y)),i=1,.. ., N taken in order, by the call

CALL POLPIX (N, IXP, IYP)

Finally, we need a primitive which defines the actual colours in the colour look-
up table. There are several methods for dealing with such definitions (Ostwald,
1931; Smith, 1978; Foley and Van Dam, 1981), but we assume that the table
entry referred to by logical colour I is made up of red (R), green (G) and blue (B)
components which may be set by

CALL RGBLOG (I, R, G, B)

The intensity of each component is a value between zero and one: zero means
no component of that colour is present, one means the full colour intensity. For
example, black has RGB components 0, 0, 0, white has 1,1, 1, red has 1,0, 0,
while cyan is 0, 1, 1. These colours can be ‘darkened’ by reducing the intensities
from one to a fractional value. Initially we shall use just eight default actual
colours, comprising black (logical 0), red (1), green (2), yellow (3), blue (4),
magenta (5), cyan (6) and white (7). Note the three bits of the binary represen-
tation of the numbers O to 7 give the presence (1) or absence (0) of the three
component colours. The default background and foreground logical colours may
be set by the user, we assume 0 and 7 respectively, although for the purpose of
diagrams in this book we use black foreground and white background for obvious
reasons.

High-resolution Computer Graphics Using FORTRAN 77

These primitives are by no means the last word. Users of special-purpose
graphics devices should extend the list of primitives in order to make full use of
the potential of their particular device. For example, many raster devices have
different styles of line drawing; thus a line need not simply be drawn in a given
(numerical) colour, each pixel along the line may be coloured by a bit-wise
boolean binary operation (such as exclusive OR) on the value of the present
colour of that pixel and the current drawing colour. A line could be dashed! We
shall introduce a new (tenth) primitive in chapter 5 for introducing different line
styles. Another possible primitive would be the window manager referred to
below. In this book we concentrate on geometric modelling; we do not consider
the whole area of computer graphics relating to the construction and manipula-
tion of two-dimensional objects which are defined as groups of pixels (user-
defined characters (Angell, 1985), icons and sprites). You could introduce your
own primitives for manipulating these objects should your particular graphics
application need them.

Implementing the Primitives

We consider two different ways of writing the primitive routines. The first is
applicable to users who have access to a two-dimensional graphics package (either
in software or hardware), in which case all communication between the primi-
tives and the graphics display will be made via that package. The second is for
users of a device for which all manipulation of the display is done by sending a
sequence of graphics commands, each command being an escape character,
followed by a command code, possibly followed by a list of integers referring to
pixels and/or colours.

The graphics package method

Many graphics packages will have their own routines similar to our nine primi-
tives. Do not go through the program listings given in this book, replacing all
references to our nine primitives with the names of the equivalent package
routines. It is far more efficient to write individual subroutines for our nine
primitives, each of which simply calls the corresponding package routine. You
must, however, be aware of any peculiarities or restrictions of your package, in
order to ensure that your use of the package corresponds exactly to the defini-
tion of the nine primitives above.

Note that graphics commands for microcomputers, such as the IBM PC, also
fall into this category. You should further note that some graphics systems (such
as microfilm: see the appendix) use the concept of addressable points as opposed
to pixels. If a dot is drawn at such an addressable point, then the area centred at
that dot will contain a number (certainly tens, perhaps hundreds) of other
addressable points. To use our system you will have to identify squares of addres-
sable points with individual pixels.

Familiarisation with Graphics Devices and Primitives 5

A graphics package could give you a number of different ways of obtaining
the effect of one primitive. The most obvious example is that of filling a poly-
gonal area. Some devices give you a normal area fill (or perhaps a triangle fill),
whereby the polygon defined by the pixel co-ordinates of its vertices is filled in
the current colour; a flood fill which uses the current colour to fill in all pixels
in the viewport connected to and of the same colour as an initially specified
pixel (seed point); a boundary fill which starts at a given pixel, and colours all
connected pixels out to a given boundary colour. Some give pie fills — that is,
filling segments of circles. Others allow pattern filling, where areas are filled not
in single colours but with combinations of different coloured pixels. All of these
can be included in your own specialised primitives should you have a need for
them.

If you are working with a single-colour line-drawing package or one which
does not give you an area fill, then you have to write your own area-fill primitive
using sequences of parallel lines (see chapter 5).

Example primitives for the Graphical Kernel System (G K.S.) and GINO, and
sample Microfilm packages are given in the appendix.

The command code method

Many high-resolution raster display terminals fall into this category. They are
normally connected to a host computer, with communication achieved via
character string transfer along a pre-defined input/output channel. Graphical in-
formation is distinguished from ordinary text by preceding the string of graphics
information with a special escape symbol, the strings being sent to the terminal
by the usual FORTRAN WRITE statement. Since this character transfer process
can be slow, many systems accept buffered and/or encoded information for in-
creased efficiency where a section of memory is used to hold a number of com-
mands, and only when the buffer is full is the information transferred to the
display device. Flushing of a partially filled buffer on the completion of a draw-
ing may be included in the FINISH primitive. Examples of primitives for the
Tektronix 4100 series are also given in the appendix.

Listing 1.1

C *hkkhkkhkkhkkhkhhk
PROGRAM DEMO

54 b2z 2222222223 2

DIMENSION IXP(3),IYP(3)
COMMON/VIEWPT/ NXPIX,NYPIX

C Prepare graphics viewport.
CALL PREPIT

C Define logical colour 8 to be grey.
CALL RGBL0G(8,0.5,0.5,0.5)

Cc Set current colour to grey.
CALL SETCOL(8)

C Define the vertices of a triangle.
IXP(1)=0
IYP(1)=0

6 High-resolution Computer Graphics Using FORTRAN 77

IXP(2)=NXPIX-1
IYP(2)=0
IXP(3)=0
IYP(3)=NYPIX-1
Fill in this triangle in current colour.
CALL POLPIX(3,IXP,IYP)

C Define the vertices of a square centred in the viewport.

C First the bottom left-hand corner.
IX1=IFIX(FLOAT(NXPIX)*0.25+0.5)
IY1=IFIX(FLOAT(NYPIX)*(.25+0.5)

C Then the top right-hand corner.
IX2=IFIX(FLOAT(NXPIX)*0.75+0.5)
IY2=IFIX(FLOAT(NYPIX)*0.75+0.5)

C Set current colour to white.

CALL SETCOL(7)
C Draw the outline of the square.
CALL MOVPIX(IX1,IY1)
CALL LINPIX(IX2,IY1)
CALL LINPIX(IX2,1Y2)
CALL LINPIX(IX1,IY2)
CALL LINPIX(IX1,IY1)

C Draw white dot in the centre of the viewport.
IXC=IFIX(FLOAT(NXPIX)*0.5+0.5)
IYC=IFIX(FLOAT(NYPIX)*0.5+0.5)

CALL SETPIX(IXC,IYC)

C Call the end of frame routine.
CALL FINISH
STOP
END

Example 1.1
In listing 1.1 we give a contrived program to draw a pattern of dots, lines and
areas. It uses all nine primitives. ERASE is implicit in PREPIT.

Exercise 1.1
Many packages allow the construction of more than one viewport on the display
whereas our routines refer to just one viewport, the current viewport.

Introduce your own routines which allow for multiple viewports. Assume
that your display will hold NUMVPT (> 1) viewports. Change the /VIEWPT/
block to hold two variables NUMVPT and NOWVPT, and four arrays NXPIX,
NYPIX, IXBASE and IYBASE. The i® viewport is a rectangle of NXPIX(Y)
pixels by NYPIX(7) pixels, with the bottom left-hand corner of that viewport
being a display pixel with co-ordinates (IXBASE(), [YBASE(7)). Only one view-
port is active at any given time, and the index of the current viewport is denoted
by NOWVPT. You will have to change some of the above Pprimitives accordingly.

Starting a Graphics Library: Routines that Map Continuous Space onto the
Viewport

The use of pixel vectors for drawing (in particular) three-dimensional pictures is
very limiting. The definition of objects using such discrete pairs of integers has
very few real applications. We need to consider plotting views on the graphics

Familiarisation with Graphics Devices and Primitives 7

Y axis (NXPIX-1,NYPIX-1)
|
|
L (IXPIX,IYPIX)
“““ 2
| <
YI v I
E o _F:___'L___TXaxis
|
|
|
I
!
0.0 HORIZ
Figure 1.1

display, where the objects drawn are defined in terms of real units, whether they
be millimetres or miles. Since our primitives draw using pixels, we have to con-
sider a library of routines which relate real space with the pixels of our viewport.
Before attempting this step we.must first discuss ways of representing two-
dimensional space by means of Cartesian co-ordinate geometry.

We may imagine two-dimensional space as the plane of this page, but extend-

ing to infinity in all directions. In order to specify the position of points on this
plane uniquely, we have to impose a Cartesian co-ordinate system on the plane.

We start by arbitrarily choosing a fixed point in this space, which is called the
co-ordinate origin, or origin for short. A line, that extends to infinity in both
directions, is drawn through the origin — this is the x-axis. The normal conven-
tion, which we follow, is to imagine that we are looking at the page so that the
x-axis appears from left to right on the page (the horizontal). Another two-way
infinite axis, the y-axis, is drawn through the origin perpendicular to the x-axis;
hence conventionally this is placed from the top to the bottom of the page (the
vertical). We now draw a scale along each ax1s unit distances need not be the

linanrl 3ok 22l 1o~ sl <= LI

o camo._on. bhoth aves or_aven.

8 High-resolution Computer Graphics Using FORTRAN 77

defined by using the y-axis. These two values, called a co-ordinate pair or two-
dimensional point vector, are normally written in brackets thus: (X, Y), the x
co-ordinate coming before the y co-ordinate. We shall usually refer to the pair as
a vector — the dimension (in this case dimension two) will be understood from
the context in which we use the term. A vector, as well as defining a point (X, Y)
in two-dimensional space, may also be used to specify a direction, namely the
direction that is parallel to the line that joins the origin to the point (X, Y) — but
more of this (and other objects such as lines, curves and polygons) in chapter 3.

It must be realised that the co-ordinate values of a point in space are totally
dependent on the choice of co-ordinate system. During our analysis of computer
graphics algorithms we will be using a number of different co-ordinate systems
to represent the same objects in space, and so a single point in space may have a
number of different vector co-ordinate representations. For example, if we have
two co-ordinate systems with parallel axes but different origins — say separated
by a distance 1 in the x direction and 2 in the y direction. Then the point (0, 0)
in one system (its origin) could be (1, 2) in the other: the same point in space
but different vector co-ordinates. In order to clarify the relationships between
different systems we introduce an arbitrary but fixed ABSOLUTE co-ordinate
system, and ensure that all other systems can be defined in relation to it. This
ABSOLUTE system, although arbitrarily chosen, remains fixed throughout our
discussion of two-dimensional space. (Some authors call this the World Co-
ordinate System.) Normally we will define the position and shape of objects in
relation to this system.

Having imposed this fixed origin and axes on two-dimensional space, we now
isolate a rectangular area (or window) of size HORIZ by VERT units, which is
also defined relative to the ABSOLUTE system. This window is to be identified
with the viewport so that we can draw views of two-dimensional scenes on the
model graphics device. We may wish to move the window about two-dimensional
space taking different views of the same objects. To do this we create a new co-
ordinate system, the WINDOW system, whose origin is the centre of the window,
and whose axes are parallel to the edges of the window, are scaled equally in
both x and y directions, and extend to infinity outside the window. Since we
will be defining objects such as lines, polygons etc. in terms of the ABSOLUTE
system, we have to know the relationship between the ABSOLUTE and WINDOW
systems — that is, the relative positions of the origins and orientations of the
respective axes. Having this information, we can relate the ABSOLUTE co-
ordinates of points with their WINDOW co-ordinates and thence represent them
as pixels in the viewport.

We begin our graphics package by assuming that the ABSOLUTE and WINDOW
systems are identical, so that objects defined in the ABSOLUTE system have the
same co-ordinates in the WINDOW system: in chapter 4 we will consider the
more general case of the window moving around and about the ABSOLUTE
system. We give routines that operate on points given as real co-ordinates in the
WINDOW system, convert them to the equivalent pixels in the viewport, and

Familiarisation with Graphics Devices and Primitives 9

finally operate on these pixels with the ‘graphics primitives mentioned earlier.
Naturally these routines will then be machine-independent, and to transport the
package between different computers and graphics displays all that is needed is a
FORTRAN 77 compiler and the small number of display specific primitives.
Programs dealing with the display of two- (and three-) dimensional scenes should
rarely directly call the primitives: all communication to these primitives should
be done indirectly using the routines below, which treat objects in terms of their
real (rather than pixel) co-ordinates (listing 1.2).

We assume that the window is HORIZ units horizontally, hence the vertical
side of the window (VERT) is HORIZ * NYPIX/NXPIX units, and we define the
WINDOW co-ordinate origin to be at the centre of the window (figure 1.1). In
order to identify the viewport with this window we must be able to find the
pixel co-ordinates corresponding to any point within the window. The hori-
zontal (and vertical) scaling factor relating window to viewport is XYSCAL =
(NXPIX—1)/HORIZ and since the window origin is in the middle of the window
we note that any point in space with WINDOW co-ordinates (X, Y) will be map-
ped into a pixel in the viewport with horizontal component IFIX (X #* XYSCAL
+ (NXPIX—1) * 0.5 +0.5) and vertical component IFIX (Y * XYSCAL + (NYPIX
—1) * 0.5 + 0.5). Here IFIX is the FORTRAN function that rounds down —
hence the final 0.5 for rounding to the nearest integer. These two components
are programmed as two functions IFX and IFY, included in the library of
routines in listing 1.2. All information needed about the dimensicns of the
window is stored in COMMON block /WINDOW/

COMMON/WINDOW/HORIZ, VERT, XYSCAL

Note if we do not assume that ABSOLUTE and WINDOW systems are identical
and we have an object defined in ABSOLUTE system co-ordinates, then each
point in the object must be transformed to its WINDOW co-ordinates before it
can be drawn in the viewport — but more of this in chapter 4. The scaling factor
(NXPIX—-1)/HORIZ is chosen, and not NXPIX/HORIZ, to ensure that all points
(tHORIZ/2, +VERT/2) actually lie in the screen pixel area.

Listing 1.2

C kkkkkhkkkkkkkkkhkkkkkkk
SUBROUTINE START(H)

C khkkhkkhkhkAhhhkhhkhkhkkkxhk

COMMON/WINDOW/ HORIZ,VERT,XYSCAL
COMMON/VIEWPT/ NXPIX,NYPIX

(o} Set up viewport.
CALL PREPIT

C Set up window dimensions.
HORIZ=H
VERT=H*FLOAT(NYPIX)/FLOAT(NXPIX)
XYSCAL=FLOAT(NXPIX-1)/HORIZ
RETURN
END

