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Preface .

The rise of the neutral theory of molecular evolution seems to have aroused a
renewed interest in mathematical population genetics among biologists, who
are primarily experimenters rather than theoreticians. This has encouraged
me to set out the mathematics of the evolutionary process in a manner that, I
hope, will be comprehensible to those with only a basic knowledge of calculus
and matrix algebra. I must acknowledge from the start my great debt to my
students. Equipped initially with rather limited mathematics, they have
pursued the subject with much enthusiasm and success. This has enabled me
to try a number of different approaches over the years. I was particularly
grateful to Dr L. J. Eaves and Professor W. E. Nance for the opportunity to
give a one-semester course at the Medical College of Virginia, and I would
like to thank them, their colleagues and their students for the many
kindnesses shown to me during my visit.

1 have concentrated almost entirely on stochastic topics, since these cause
the greatest problems for non-mathematicians. The latter are particularly
concerned with the range of validity of formulae. A sense of confidence in
applying these formulae is, almost certainly, best gained by following their
derivation. I have set out proofs in fair detail, since, in my experience, minor
points of algebraic manipulation occasionally cause problems. To avoid loss
of continuity, I have sometimes put material in notes at the end of chapters.
In such a tightly knit subject, the need to refer back repeatedly from later to
earlier chapters can be a serious obstacle, as beginners have often told me. To
minimize this difficulty, T have risked trying the reader’s patience by
repeating earlier material on occasion.

1 long hesitated on whether to give detailed references in the main text; the
traditions in biological and mathematical writing are rather different here.
Finally, I decided to follow the usual biological practice and give extensive
references, in the hope that this would encourage the reader to consult the
original work, the reading of which has given me so much pleasure.

I am most grateful to Dr A. J. Birley, Dr 1. J. Mackay, Dr C. S. Haley,
Dr C. P. Werner, Dr R. C. Jones, Dr A. J. Girling and Professor P. D. S.
Caligari for information, comments and advice. I am much indebted to Mrs
E. A. Badger for typing the manuscript and Mrs P. Hill for preparing the
diagrams. Finally, I should like to thank the publishers for unfailing
helpfulness.

_I8G.

Birmingham
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Introduction

May the Deluder of Intélligenoes never trouble the
. profundity of thine apprehension.
J. B. S. Haldane, My Friend Mr Leakey

‘Any theory of evolution must be based on the properties of Mendelian
factors, and beyond this, must be concerned largely with the statistical
situation in the species’; thus wrote Wright (1931) in the introduction to his
famous paper ‘Evolution in Mendelian populations’. Similar statements can
be found in the writings of Fisher (e.g. Fisher 1921) and Haldane (e.g.
Haldane 1924a). The attempt, by these three workers, to analyse the
evolutionary process quantitatively proved a brilliant success and provided
an intellectual standard by which all subsequent discussions of evolution are
judged. Their findings, which were accepted remarkably rapidly by almost all
biologists, had a profound effect on evolutionary thinking. Most important
was the distovery that natural selection, even of very modest intensity, will
have a critical effect on both the direction and speed of the evolutionary
process, particularly in large populations. It remained to be demonstrated
whether, in natural populations, the intensity of selection at most loci would
in fact be sufficiently large for the effects of natural selection to overwhelm
those of other factors under most circumstances. Although initially there was
much controversy on this question, observations on natural populations by
ecological geneticists, led by Dobzhansky in the USA and by Ford in
England, appeared to settle the matter. These workers demonstrated the
presence of remarkably large intensities of selection in a number of cases in
which natural selection was by no means obvious a priori. It was natural to
conclude, provisionally, that intensities of selection in general, while not
necessarily as large as in the cases just mentioned, would usually be
sufficiently large for natural selection alone to determine the genetic composi-
tion of natural populations.

Under these circumstances, many biologists were teluctant to undertake
the labour required to understand the theory in detail. Since the general
principles were agreed, a brief acquaintance with the theory wouid, it was
often felt, suffice. Moreover, the theory was, at that time, exceptionally
difficult to follow. Bartletl’s (1955) description of the work of Fisher, Haldane
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INTRODUCTION

and Wright, ‘as technical a body of research as that in statistical mechanics,
say, and requiring as detailed a study’, was, of course, intended as a
compliment, but must, one feels, have struck a chill in almost any biologist
who came across it. Brilliant intuitions, daring approximations, arguments
set out so briefly that one was not always sure precisely what was being
argued, however much diluted by passages of limpid lucidity, posed a very
formidable task for the reader.

Fortunately, this is no longer so. One of the most attractive features of the
revival of theoretical population genetics, which began in the early 1950s with
the work of Feller and of Kimura, has been a systematic examination of the
writings of the founders of the subject (of course, much new work has also
been done). As a result, the subject has become very much more accessible.
The arguments have been set out in detail and discussed in a very much more
rigorous manner than in the original; as is usually the case in mathematics,
this rigorous treatment has made the whole subject decidedly easier. Finally,
although faute de mieux informal arguments are still fairly prominent, the
advent of computers has made the checking of results from such arguments a
very straightforward matter. Wright’s famous paper on self-sterility alleles
(Wright 1939a) is a particularly interesting example. This paper has a history
reminiscent of that of the Greek bronze horse in the Metropolitan Museum.
Long admired as a masterpiece, it was declared non-genuine on the basis of
perfectly reasonable arguments, only to be restored to favour in the end.
More generally, computer checking has revealed that many formulae are
valid over a much wider range of circumstances than might be supposed from
their derivation, thus giving much comfort to the biologist who wishes to use
such formulae in situations arising in his or her work.

We should note that both the pionéers and the more recent workers, while
producing a very impressive range of results, have relied on quite a limited
repertoire of mathematical techniques, many of which are standard in applied
mathematics. In the author’s experience, lack of familiarity with these
standard methods is the main source of difficulty for less mathematical
biologists wishing to understand our subject. They have difficulty in locating
elementary accounts of these methods and find it confusing when, as véry
often happens, such accounts are illustrated solely by examples in physics or
engineering. Were this not so, they might be more willing to accept the view
of the mathematician who described Kimura’s (1964) famous review article
as ‘very readable’. At any rate, these methods are not very difficult to follow;
the present author is much indebted to the many writers (e.g. Sagan 1961,
Sneddon 1961, Mackie 1965, Stephenson 1968, Spiegel 1971) who have
shown how these methods can be set out in a simple manner, which he will
endeavour to follow.

These simplifications are indeed fortunate, in view of recent developments
in evolutionary theory. We recall the demonstration, critical to evolutionary
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INTRODUCTION )

thinking in the 1950s and 1960s, of relatively large intensities of selection im
natural populations. Now, these studies of natural selection were carried gut
on characters visible to the naked eye, or visible under the microscope. In the.
absence of evidence to the contrary, it was natural to assume that lagk.
controlling such morphological characters evolve in a manner typical of loci
as a whole. The development of new techniques for detecting variation, first
in proteins and much more recently in DNA itself, provided an opportunity
for testing this view. If the DNA controlling morphological characters
evolves in a manner representative of the whole DNA, we would expect the
two to change roughly in parallel over evolutionary time. Thus a (relatively)
rapid change of environment would produce, barring extinction, a (relatively)
rapid advance towards a new adaptive pattern, reflected in (relatively) rapid
changes at many levels of the genome. In a static environment, neither
morphology nor anything else would change at any but a very slow rate. In
fact, this simple picture is not correct (for detailed summaries see Kimura
1983, Li et al. 1985, Nei 1987). Consider, for example, changes in coding
sequences that lead to changes in corresponding proteins. Any given protein
changes in amino-acid composition at a characteristic rate per year, which
does not differ very substantially from one line of descent to another, even
when different lines are grossly discrepant in rate of evolution of morph-
ology. Analogous results are found for some other changes in the genome.
The changes studied in detail fall into three classes: (a) changes in pseudo-
genes (genes that apparently once coded for a functional protein but have lost
this capacity owing, for example, to a frame-shift mutation); (b) changes in
introns (non-coding sequences of DNA bases that lie within the coding
sequences); and (c) synonymous changes (base-pair changes in coding
sequences that do not lead to a change in protein). For each of these classes,
evolutionary change occurs at a rate characteristic of the class, at least to a
first approximation (but see Li et al. 1985, 1987, Kimura 1987 for possible
qualification of this statement). In fact, no portion of the genome has yet been
identified whose rate of change is coupled with that of a morphological
character or group of these characters. Possibly morphological characters
evolve mainly by changes at regulatory loci, the evolution of which is not
understood. Whether or not this is so, the old assumption that one could,
without further discussion, extrapolate results from field studies of morpholog-
ical characters to DNA in general is clearly unjustified. Even if the differences
in morphology under study arise solely from differences in protein structure,
there is no guarantee that the results would apply to protein structural
differences in general, still less to.differences in tite DNA as a whole. It is
generally accepted that non-morphological differences must be investigated
in their own right.

Of course, one may still argue that these ‘purely molecular’ changes,
although not the same as the morphological changes in some important
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INTRODUCTION

respects, are still of the same substance, in that natural selection is the main
factor responsible for either type of change. In this view, virtually any change
in DNA composition is either sufficiently disadvantageous or sufficiently
advantageous for its future to be decided by selection. Thus any noticeable
increase in frequency of the changed DNA would be attributed to ‘positive’
selection, that is to a selective advantage conferred by that change. Alternati-
vely, one might propose a more limited role for natural selection, e.g, all-
important for evolution of proteins but unimportant for evolution of
pseudogenes or perhaps significant but not all-important for most molecular
changes.

However, in the view of Kimura, first formulated in Kimura (1968a), ‘only
a minute fraction of DNA changes in evolution are adaptive in nature’
(Kimura 1983). Disadvantageous mutations are normally eliminated by
natural selection (‘negative’ selection); nearly all other mutations are sup-
posed neutral or almost so. While adaptive changes proceed in the familiar
manner, a noticeable increase in frequency of changed DNA would normally
be due to random genetic drift, although of course positive selection would be
critical in some cases. Thus, on this view, the theory of changes in frequency
of neutral alleles under drift, often considered in the past as mere fun for the
mathematically minded, is essential for an understanding of the evolution of a
substantial portion of the genome. For example, such familiar questions as
‘How many generations are required for a given change in allele frequency?’
or ‘How can we explain the high level of polymorphism in natural popula-
tions?’ must be discussed in terms of the neutral theory.

For a rigorous test of the neutral theory, we should have to consider all
classes of DNA evolution, including the evolution of regulatory sequences.
Such general information is not yet available. Kimura has, therefore, had to
argue his case on the basis of a restricted set of DNA changes, in the hope that
the evolution of this set is typical of the evolution of the whole genome. Thus
the most that could be demonstrated at the moment is that a biologically
significant fraction of the genome evolves according to the neutralist scheme.
There is strong evidence that this is so. Consider pseudogenes. While it is
possible that these may have some function related to their length, it seems
very unlikely that their base content has any functional significance. Thus
changes in base composition of pseudogenes are unrestrained by negative
selection. On the neutral theory, therefore, we expect pseudogenes to evolve
relatively rapidly (on an evolutionary timescale!) and this has in fact
happened; pseudogenes evolve more rapidly than any other class of DNA
whose rate of evolution has been examined.

Now consider synonymous mutations. These, on balance, evolve rather
more slowly than pseudogenes; this can, however, be explaired by mild
negative selection operating against synonymous mutations. When a sypony-
mous mutation occurs, a different transfer RNA may be required for
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translation; since different transfer RNAs differ in abundance within the cell,
synonymous mutations may sometimes be slightly disadvantageous.

A neutralist explanation is also proposed for evolution of introns. These
also evolve rather more slowly than pseudogenes. Mutations, such as those
found in some cases of B-thalassaemia, that upset excision of RNA corre-
sponding to an intron from the primary RNA transcript, are disadvanta-
geous, but other mutations in introns are supposed inconsequential (we
exclude here introns in mitochondria and those nuclear introns which are
known to assume a non-intronic role under some circumstances). Thus
intron evolution is presumed to be restrained only by mild negative selection
(on balance). The argument depends critically on the belief that introns have
no function, or at least no function related to their base content; all that is
required of them is a grateful exit when appropriate.

He nothing common did or mean
Upon that memorable scene:

But with his keener eye

The axe’s edge did try.

While this may be so, all that can be said with certainty is that nuclear introns
cannot normally code for polypeptides, since they gencrally have termination
codons in all reading frames (Lewin 1987); other possi“le functions have not
been excluded.

Perhaps most controversial of all is the case of DNA changes that lead to
protein differences. Of course, most of these will disrupt or at least diminish
protein activity, so that the intensity of negative selection against this class of
mutations is very much greater than for other classes so far considered, with a
correspondingly greatly reduced rate of evolution. In some specific cases, a
rough idea of this selection intensity can be obtained from a study of the
biochemical functioning of the protein concerned; the greater the fraction of
mutants likely to be disadvantageous, the slower the rate of evolution. While
observed rates conform to this prediction, this result is compatible with both
the neutralist and selectionist views, although the roughly constant rate of
evolution, for a given protein, accords best with the neutral theory. On the
other hand, no-one doubts that some cases of protein evolution have occurred
under positive selection; the controversy relates to the proportion of such
cases. The relative importance of positive selection and drift for protein
variation and evolution have been discussed many times (e.g. Gale 1980),
with no generally agreed conclusion, and we shall not weary the reader with a
repetition of familiar arguments. Our main point is made: there is strong
evidence that a significant fraction of the genome evolves in neutralist fashion
and the revival of interest in the neutral theory seems justified. More
generally, random genetic drift may play a more conspicuous part in
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evolutionary theory than has been the case in the recent past. For example,
the experimental work of Hartl & Dykhuizen (reviewed 1985) on enzymes
mediating carbohydrate metabolism in Escherichia coli provides strong
evidence that, under normal circumnstances for this species, variants of these
enzymes are neutral (or almost neutral) inter se; only under rather excep-
tional circumstances would natural selection discriminate between them. We
should note that, in standard selection theory, the rcle of drift is greater than
beginners sometimes suppose. To demonstrate the conditions under which
‘the long-term composition of natural populations is decided by natural
selection only is rather an intricate matter, which we shall discuss in due
course. We shall merely note for the moment that situations may exist in
nature in which the long-term effects of drift and of natural selection are
comparable in magnitude; possibly these situations are common, as has long
been proposed by Wright.

On the other hand, some geneticists still favour the strongly selectionist
view. They do not, of course, contest the role of negative selection and indeed
accept the view (which long pre-dates current controversies) that'the more
marked the effect of a mutation on the phenotype, the more likely is the effect
to be harmful. The selectionist argument (Fisher 1930b, Clarke 1971) is that
the less marked the effect of a mutation, the more likely is the effect to be
advantageous (rather than neutral). It is supposed that all, or nearly all, the
genome is functional. The fraction of mutations that are advantageous would
be greatest for pseudogenes, smaller for introns and synonymous mutations,
and smallest for non-synonymous mutations. Differences between classes of
DNA in rate of evolution would then reflect these class-to-class differences in
the supply of advantageous mutations. A possible difficulty for this view has
been pointed out by Kimura (1983). The rate of evolution for a given class
under selection would depend not only on the supply of advantageous
mutations for that class but also on the magnitude of the selective advantage;
the smaller the latter, the slower the rate, other things being equal. Kimura
suggests that advantageous mutants with small effect would confer only a
small advantage and that this could more than offset the effect of increased
supply on the rate of evolution. He gives an interesting quantitative discus-
sion of this problem, which we shall mention later.

However, the neutral theory also has its difficulties, although we can only
indicate the most important of these at this early stage of the discussion. We
shall show repeatedly that the selection theory is very much easier to accept if
population sizes are typically very large, whereas the neutral theory requires
rather moderate or small population sizes. However, the term ‘population
size’ requires very careful specification. In an early controversy with Wright,
Fisher (1929) maintained that the world population size of the species was
usually the relevant quantity when discussing neutral theory, rather than the
local population size, as proposed by Wright; Fisher’s view was later justified

6



INTRODUCTION

by the work of Maruyama (e.g. 1970a, b, 1977). At first sight, this would
suggest a very large population sizé. To overcome this difficulty, the
neutralist advocates a substantial discount of the world population size, on
the grounds that the bulk of the population at any time may contribute very
little to the long-term gene pool of the species. Thus large differences between
adulis in fecundity and periodic marked reductions in the overall size of the
adult population would entail a fairly large mark-down of population size
(Wright 1938a, 1939b). A further possibility has been proposed recently by
Maruyama & Kimura (1980). Suppose the species is made up of subpopula-
tions and that subpopulation extinction occurs fairly often; when a sub-
population becomes extinct, its habitat is recolonized from another
subpopulation of the species. Then, at any time, the number of breeding
adults in the whole species may be very large, but this is deceptive, since many
individuals are subject to long-term genetic death. It is possible in principle,
but uncertain in practice, that these various factors are sufficient to reduce
population sizes to the level required by the neutral theory; the data available
are quite inadequate for a decision on this point. At the moment, we have to
assume the neutral theory correct in order to estimate appropriate population
sizes, so that the estimates given, while possibly correct, provide no indepen-
dent support for the theory. Thus the role of random genetic drift in the
evolution of natural populations remains uncertain. ;

On the other hand, there can be no doubt of the importance of drift in
applied genetics. In animal and plant breeding, population sizes are often
small and this has a crucial effect on ultimate response to selection (Robert-
son 1960, 1970, 1977, Hill 1970, Hill & Robertson 1966). Similarly in the
conservation of genetic resources; for many crops, seed has a limited
longevity under storage, so that at intervals (perhaps every five years) a seed
bank must be ‘regenerated’ by raising and crossing plants to obtain new
batches of seed. At every regeneration, alleles may be lost by drift. Obviously,
the conservation programme should be designed to keep this loss as small as
practically possible; as we shall show, this is easily done once a few standard
points in population genetics theory have been established.

Finally, we may ask; ‘How should the population geneticist approach
recent discoveries on the nature of the genome?’ Obviously, our theory first
developed under very primitive notions of the nature of the hereditary
material. It is occasionally suggested that, in the light of modern findings (e.g.
introns, transposable elements, clustering of genes of identical or closely
related function), the old theory is altogether outmoded and that a complete
reconstruction of the theory is required. While there can be no certainty here,
it seems very unlikely that we shall have to jettison the old theory in the
comprehensive manner proposed. This theory was, of course, based on the
standard Mendelian scheme, so well supported by the observations of the
early geneticists. Hence there must be an area of reality that is well delineated
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INTRODUCTION

by our older theory. In fact, this theory will work well enough for many
purposes, provided we follow the usual modern practice of defining the gene
as the unit of function. For example, the ‘gene for alcohol dehydrogenase’ is
that region of the DNA that includes the sequences coding for alcohol
dehydrogenase together with the corresponding leader sequence, trailer
sequence and introns (note that the latter, even if functionless, must be
included, since a mutation upsetting splicing will destroy gene function).
Clearly, from our earlier discussion, we sometimes need to distinguish
different classes of DNA within such a gene. Often, however, this is not
necessary. For example, in describing the spread of a fungal pathogen, it
would be sufficient to note a mutation to virulence, without specifying where
in the gene the mutation occurred. In such cases, the classical notion of the
gene is quite adequate. Generally, we use the simplest representation of the
gene consistent with the problem under study.

While this approach leads to an easier theory, it may seem perverse ever to
employ an out-of-date model of the hereditary material; to ignore, say, the
fact that coding sequences are split or to discuss mutation without mention-
ing that many mutations arise from the insertion of a transposable element.
Here a well known analogy from physics may help. For well over 200 years,
physicists described the world in terms of Newtonian mechanics. Later, it
emerged that some of the assumptions of the Newtonian scheme, such as the
absoluteness of lime, cannot be reconciled with observation. For example, if
time were absolute, the half-life of a given unstable elementary particle would
be independent of circumstances and muons formed in the upper atmosphere
would have disintegrated before reaching the Earth’s surface; to explain their
behaviour, we need the relativistic mechanics of Einstein. But this does not
mean that Newtonian mechanics should never be used and that those who
teach this subject are practising an impudent fraud. For many practical
purposes, the Newtonian assumptions are near-enough correct and it is quite
unnecessary to complicate the problem by using a more ‘truthful’ but more
difficult and no more relevant approach. Similarly, even the most contentious
of cricketers would hardly contest a groundsman’s statement that he had
rolled the pitch ‘flat’ on the argument that the groundsman had ignored the
curvature of the Earth, although strictly the cricketer would be right.

It is indeed fortunate that the simple Mendelian model is often appropri-
ate, since we can be confident that this model may be applied whatever the
species under study. On the other hand, as Lewin (1987) reminds us, ‘the
eucaryotic kingdom is extremely broad, and at present we have detailed in-
formation about the genetic organization of only a few types of species . . .we
are dealing with features that may be represented to widely varying degrees
in different individual genomes’. When considering, then, the population
genetics of the many recently discovered features of the cucaryote genome, we
must bear in mind that these features are not necessarily universal.
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NOTES AND EXERCISES

Notes and exercises

The following problem, adapted and extended from a problem in Kemeny et
al. (1965), will introduce the reader to some leading features of the genetics of
populations.

A man lives on a street M paces long. At one end of the street is his house,
at the other end a lake. Somewhere on the street, n paces from the lake, is a
bar. He leaves the bar in a regrettable state.

Let P be the probability that, on any occasion he moves, he goes one pace
towards home, and let Q be the corresponding probability that he goes one
pace towards the lake; P + Q = 1.

Let y, be the probability that, starting n paces from the lake, he eventuaily
reaches home, rather than falling into the lake. We want to find y, for several
cases of interest.

(a) For definiteness, take y, = 0 i.e. if he starts at the lake, he falls in.

(b) Also, yy = 1, i.e. if he starts at home, he reaches home with probability
1.

(+) For all other n, we ‘decompose’ his movements into first step, remaining
steps.

On his first step, he either moves one pace homewards, with probability P,
after which he is n + 1 paces from the lake, so that his probability of
eventually reaching home is y,.,; or he moves one pace lakewards, with
probability Q, after which his probability of reaching home is y,.,. Thus

yn=PYn+l +Qyn~1

It may be shown that this equation, taken in conmjunction with our
conditions y, = 0, y,, = |, determines y, uniquely.
The reader will easily verify that the standard formula

Y= % in cases where P = Q
= 11*_:_——((3/1}};,)-);; in cases where P #0 *

satisfies our equation and conditions and therefore is the solution to our
problem.

1 Suppose n = 1M, ie. our drinker starts halfway to home.

(@) When P = Q, we have y, = 4. This is indeed obvious, but the next
result is not.
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