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Preface

Much of the information currently available on the transport systems of bacterial and
animal cell membranes and their mode of coupling to metabolic supply of energy can
be found in this volume. Consideration of the participating enzymes dictated the
choice of topics: Several transport systems where little information is available on the
enzymology of the process are not included, while separate chapters deal with
y-glutamyl transpeptidase and intestinal disaccharidases which meet many of the
requirements of transport enzymes. The volume also includes two chapters on
photosynthetic membranes as a general introduction to the topic. Other aspects of
biological transport and photosynthesis will be developed in detail in a forthcoming
volume now in preparation.

These chapters reveal the excitement and rapid advance of the field, the daily
reports of new concepts, new techniques, and new experimental findings which
instantly interact to generate further progress. Our aim was to provide a starting
point for those who are just beginning, and an opportunity for others to stop, take
stock, and start in a new direction.

My warmest thanks to all who contributed to this volume.

St. Louis, Missouri ANTHONY N. MARTONOSI
January, 1976
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Bacterial Membrane Transport
Proteins

ADAM KEPES

1. Introduction

Bacterial transport systems are historically associated with the acceptance of the
idea that the crossing of the cell membrane by a physiologically significant solute
was mediated by the specialized operation of a protein or an array of molecules
including specific proteins. This idea was in opposition to the predominant-view of
permeability, a membrane property, as the principal factor governing the passage
of solutes.

The concept of the specialized transport protein gained general recognition
primarily because of the possibility of varying the amount of transport protein
separately from that of surface area of the membrane through specific genetic change
and through inductive or repressive regulation of its biosynthesis (Cohen and Monod,
1957). The word “permease” (Rickenberg et al., 1956) stirred up considerable dis-
cussion which served to emphasize the transport proteins. It suggested in a condensed
form the involvement of a protein with enzyme-like specificity and catalytic (i.e.,
cyclic) activity. Unfortunately, it failed to stress distinction between permeability
and active transport which later was recognized to be a nearly universal feature
of all transport systems to which the term has ever been applied (Kepes, 1964).
The enzyme-like denomination “-ase” can be justified on the ground that a typically
enzymatic event, the breakdown of chemical (or electrochemical) energy, is partly
or totally dependent on the transport protein. The phosphoenolpyruvate sugar
phosphotransferase system (Kundig et al., 1964) (see also Kundig, this volume)
is an illustration of this statement, although since the discovery of its chemical

Abpam Kepes * Centre National de la Recherche Scientifique, Université Paris VII, Institut de
Biologie Moléculaire, Laboratoire des Biomembranes, Tour 43-2, place Jussieu, 75221 Paris cedex
05, France.
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Apam KEePEs

mechanism it has seldom been included among permeases. Presumably, once simi-
larly well-defined biochemical mechanisms have been established for all transport
systerns, the term permease will have completely lost its usefulness.

In this chapter both old and recent evidence concerning the membrane location
of transport proteins will be reviewed. This view is supported by their limited
freedom of movement along the membrane surface. Some facts will be reported
which permit speculation about the insertion of membrane protein into membrane
during biosynthesis; other facts and speculations will be relevant to the possibility of
transmembrane movements.

The likelihood of multiple configurational changes during the transport cycle
will be documented by several lines of indirect evidence. The energy coupling to
active transport will be discussed briefly on the basis of experiments with inhibitors
(Kepes, 1974) and isolated membrane vesicles (Kaback, 1971, 1972). The chemi-
osmotic theory and its methodology (Harold, 1972; West, 1970; West and Mitchell,
1972, 1973 ; Rosen, 1973) and the genetic analysis of the energy pathways in bacterial
transport will be briefly reviewed (Haddock and Schairer, 1973; Devor et al., 1974;
Simoni and Shallenberger, 1972). For a large class of transport systems the results
can be tentatively summarized as the utilization of an energized state of the membrane
to fuel active transport. Finally, recent evidence for transport systems utilizing
chemical-bond energy independent from the energized state of the membrane will be
briefly described (Berger, 1973).

II. Transport Proteins as Membrane-Bound Proteins

The plasma membrane is the main diffusion barrier to penetration of hydro-
philic solutes from the medium and to the escape of many hydrophilic metabolites
from the cell. This basic impermeability is the cause of the inaccessibility of intra-
cellular metabolic enzymes to their substrates dissolved in the medium (Deere et al.,
1939). This inaccessibility (termed crypticity) helped establish the generalized
requirement for transport systems to carry out the uptake of all exogenously furnished
nutrients (Cohen and Monod, 1957).

The logical counterpart of the virtual impermeability of the plasma membrane
is the necessary location within its hydrophobic fabric of essential parts of the trans-
port machinery. Some of these must either encompass the thickness of the barrier
permanently or be able to shuttle occasionally or periodically from one face to
another. Such logic does not unambiguously designate a membrane protein. The
best examples of nonprotein carriers are the polyisoprenoid molecules which help
the hydrophilic building blocks of murein or lipopolysaccharide to cross the hydro-
phobic membrane. The logic is somewhat tightened when a transport process is
performed in isolated membranes in the absence of cytoplasmic factors, since only
structures permanently linked to the membrane can participate in the translocation
process from the recognition of the solute to its release on the other side. Such a
sequence implies a stereospecific site for the transport substrate and strongly sup-
ports the presence of the key protein.



