Foundations of Programming

Jacques Arsac

Ecole Normale Supérieure
Paris, France

Translated by Fraser Duncan

Foundations of Programming

Jacques Arsac

Ecole Normale Supérieure
Paris, France

Translated by Fraser Duncan

mm—

1985

ACADEMIC PRESS

(Harcourt Brace Jovanovich, Publishers)
London Orlando San Diego New York
Toronto Montreal Sydney Tokyo

COPYRIGHT © 1985, BY ACADEMIC PRESS INC. (LONDON) LTD.
ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC

OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR

ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Ovai Road
LONDON NW1 7DX

United States Edition published by
ACADEMIC PRESS, INC.
Orlando, Florida 32887

British Library Cataloguing in Publication Data

Arsac, Jacques
Foundations of programming.—(APIC studies
in data processing) /
i. Eiecuonic digital comiputers—Programming
I. Title II. Les bases de la programmation.
English 111. Series
000.64’2 QA76.6

Library of Congress Cataloging in Publication Data

Arsac, Jacques.
Foundations of programming.

(A.P.1C. studies in data processing)
, Translation of: Les bases de la programmation.
Includes index.
1. Electronic digital computers—-Programming.
1. Title. 1I. Series.
QA76.6.A75813 1985 001.64°2 84-14436
ISBN 0-12-064460—-6 (alk. paper)

~

»~
PRINTED IN THE UNITED STATES OF AMERICA

85 86 87 88 987654321

's ~Lo2

FOUNDATIONS OF PROGRAMMING. Translated from the original French edition
entitled LES BASES DE LA PROGRAMMATION, published by Dunod, Paris,
© BORDAS 1983.

Preface

Informatics (or computer science or information processing) is too young
a science to have become the subject of many historical studies or philosoph-
ical analyses. To me, however, its history seems quite exceptional. It is
normal for a science to be born out of the observation of nature. When a

“sufficient number of duly observed facts have been recorded, the outline ofa
model can be sketched, and this in its turn allows the prediction of new
patterns of behaviour which are then subject to experimental verification.

Technology comes later; the model being confirmed, to a certain degree of
precision, by experiment, possible applications are conceived and come to
birth. The discovery of electricity is typical of such an evolution. The electric
motor and incandescent {amp did not appear until well after the develop-
ment of the first theoretical models of electrostatics and of electromag-
netism,

Much more rarely, technology has come before science. The steam engine
was built long before the science of thermodynamics enabled its output to be
calculated. In informatics we have an extreme exampe of this class.

The computer was engendered by thé nevessity for computation experi-
enced during the Second World War. It was not the brainchild of some
brilliant dabbler, but the produet of a technology fousided on a well-estab-
lished science, electronics, and supported by a no less well-founded mathe-
matical model, Boolean algebra. There is nothing unusudl about this. But it
was followed by wild speculation on the part of industrialists who believed
that such monsters might have applications in everyday life and who engi-
neered these machines for the market. This theme is to be found developed
in a book by Rene Moreau [MOR).

From then on we have witnessed an incredible development of the means
of computation, requiring the support of numerous technicians—
operators, programmers, This in turn led to the need to establish

xiii

xiv Preface

numerous new educational programmes, which began to be satisfied in
about 1960. But the universities which took responsibility for this realised
very quickly that they were not dealing simply with an application of the
science of electronics aided by a very old branch of mathematics, numerical
analysis. We were face to face with something fundamental, with a very old
activity of the human mind, but one whose significance we were not able to
grasp because there was no technical means of allowing it to take full flight.

In the same way as astronomy began with the telescopes of Galileo, but
was unable fully to develop until better means of observation became tech-
nically possible, so informatics, the science of information processing, will
not be able to show itself clearly until the proper means are found to exercise
it [AR]. It would not be right to allow the reader to believe that what is said
here is an absolute and proven truth, recognised by universal consensus.
There are very many who believe in the existence of a science of informatics,
as is shown, for example, by academic instances in every country: in all the
great universities there are departments of “‘computer science”’; the French
Academy defines “I'informatique” as a science, and the French Academy of
Sciences has two headings “informatique” in its proceedings. But there are
just as many again who would restrict its scope, and deny it all claim to a
character of its own. In this sense, the position of the Academy of Sciences is
ambiguous: there is not one unique classification for informatics, as would
be the case for a well-established discipline, but rather two, one for theoreti-
cal information science, a branch of mathematics concerned with the prob-
lems posed by information processing, and the other at the level of “science
for the engineer.” Many professionals see in informatics nothing more than a
technique, sufficiently complicated to require a specific training, but of
narrow breadth. Bruno Lussato has become a champion of this idea, assert-
ing that informatics can be learat in three weeks [LUS].

I believe this to be a consequence of the very peculiar development of the
discipline. As had been said, the technology came first, founded as always on
a science, solid-state physics, but remote from its proper concern, the treat-
ment of information. Since then we have spent much energy trying to master
techniques for which, the need not having been foreseen, we were never
adequatelyprepamd.'l‘herehashardlybeentimetothink The history iof
programming, within the h;story of mfotmancs, is in this respect. very: e~
vealing.

In the besmmu there were the ﬁmt computers, for wlnch we had to write
programs in the only language which they could interpret, their own, the
machine language. This was extremely tedious, with a very high risk of error;
and so machine languages were very soon replaced by assembly languages,
" maintaining in their forms the structures of the machine languages, and
offering no more distinct opurations than the machines could cope with by

Preface XV

hardware. It very soon became clear that the fragmentation of thought im-
posed by the very restricted set of these primitive operations was a handicap,
and the first developed language, Fortran, appeared about 1955. This was a
decisive step. The choice of structures for this language and the manner of
writing of its compiler were to leave a deep mark on the history of program-
ming.

In fact, the language was conceived fundamentally as an abbreviation of
assembly languages, and maintained two of their principal characteristics:

—the assignment instruction, or modification of the contents of a unit
storage in the computer,

— the idea of the instruction sequence, broken by the GO TO instruction,
conditional or unconditional.

Very many languages developed rapidly from this common origin. The
principal languages still in use today, Algol 60, Cobol, Basic, . . . , ap-
peared over a period of at most five years. Lisp is of the same period, but it
deserves special mention; it was not constructed on the same universal
primitives, having no concept of assignment, no loop, no instruction se-
quence, but it was based on the recursive definition of functions:

This language explosion, this modern Babel, has caused much dissipation
of energy in the writing of compilers, and in heated argument over a false
problem —that of the comparative merits of the different languages. Un-
happily, this game has not yet stopped. Take any assembly, anywhere, of
sleepy computer scientists, and turn the discussion on to a programming
language. They will all wake up and throw themselves into the debate. If you
think about this, it is worrying, indeed deeply disturbing. All these languages
in fact have been built upon the same universal primitives, as has already
been pointed out; and the principal problems flow from this fact. Two of the
chief difficulties in programming practice arise from the assignment instruc-
tion and the branch instruction. Why such rivalry between: snch close
cousms'7

As long as we work ourselves into such excitement over these languages,
we are apt to forget that they are only a means of expression and that the
essential thing'is 0 have something to say, not how to say it.

Ce que I'on ooncmt bien s'énonce clairement et les mots pour le dire
arrivent aisement [BOI).

. [*“That which is well conceived can be expressed clearly, and the words for
saying it will come easily” — Nicolas Boileau, 1636-1711.]
The means for the construction of programs were rudimentary, mdeed
non-existent. The literature of the period abounds in works of the type
“Programming in Basic” or “Programming in Fortran IV.” Teaching was no

xvi Preface

more than the presentation of a language, a trivial matter for these languages
are remarkably poor. After that, the programming apprentice was left to his
own devices. Consequently, each one became self-taught, and no transmis-
sion of competence was possible. The programmer of the eighties is no better
off than the programmer of the sixties, and the accumulated mistakes of
twenty years are there to prevent him avoiding the many programming traps
into which he will fall.

All this was done in an entirely empirical fashion. (I hardly know why I use
the past tense. If it is true that a few universities now operate differently and
that a small number of industrial centres have at least understood the signifi-
cance of new methods and adopted them, how many more practitioners go
on in the same old way! More seriously, how many teachers, not to say recent
authors, remain faithful to what cannot in any way be described by the name
of “method.”) The programmer sketches out the work to be done and makes
a schematic representation of his program, setting out all the branch instruc-
tions, in the form of a flow-chart. Then he writes out the instructions, and
begins the long grind of program testing. The program is put into the com-
puter, and a compiler detects the syntactic errors. Some sophisticated com-

-pilers now even detect semantic errors (chiefly errors concerned with data
types). The program is corrected and eventually accepted by the compiler,
but that does not yet mean that it is correct. It still has to be made to run with
test data. If the results appear correct, the program is declared to be correct.
Otherwise, the program is examined for any apparent abnormalities, and
modified to prevent their unfortunate consequences. It is the method called

“trial and error” or, in the professional jargon, “suck it and see:” I have seen
naspmcueedbyaresearchworkermbmlogy His Fortran program was
causing problems, and he had, by program-tracing (printing instructions as
executed, with intermediate values), finally isolated his error. He then told
me with great satisfaction how he had put it right. His program began with
the declaration of two arrays:

DIMENSION A(1000), B(1000)

Onc loop involving the array A was running beyond the array bounds and
was destroying the values of B. I asked him how he had found the error which
caused the bounds to to exceeded, and how he had gone on to correct the
loop. But his reply showed he had done neither. He had simply doubled the
size of A:

DIMENSION A(2000), B(1000)

How can anyone expect correct results from a program which is manifestly
false? How can he go on to publish a paper, saying “It has been found by
computation that. . .”?

Preface xvii

It has been all too easy to denounce this lamentable state of the art [BOE].
Statistics for 1972, dealing with sums of millions of dollars, give the cost of
writing as $75 per instruction, but after program testing $4000 per instruc-
tion. In its estimates at the beginning of its bid for support for ADA, the
United States Department of Defense declared that if the cost of program-
ming errors were to be reduced by only 1%, the total saving would be $25
million per annum. . . .

The answer has been sought in languages with tighter constraints. Increase
control by having more data types. I must be permmed to say that I do not
appreciate this line of reasoning. Let us take a comparison. Because certain
reckless drivers take needless risks and so endanger the community of drivers
and passengers, we need to multiply the methods of control and surveillance
— traffic lights, automatic barriers at stop signs, weighing devices at the
approaches to bridges, radar for speed control, All this translates into
inconvenience for the reasonable driver, penalised for the brutishness of a
few clods. Programming is going the same way. Just because my biologist
does not know how to look after his subscripts and lets them exceed their
declared bounds, at every call of a subscripted variable the run-time system
will make tests to ensure that there is no error, and too bad for me if I have not
made an error. These tests cost computing time, which costs money. I am
paying for fools.

The other cure, the one in which I believe, lies in teaching. The program-
mer can be taught to work properly, to write correct programs, which he
knows are right, and why. :

It is difficult to say who first launched this idea. “Notes on Structured
Programming" of Edsger Dijkstra is, in the view of many, the first important
text in this domain [DI 1). “Testing a pmgram can show only that it contains
errors, never that it is correct.

Many research workers have addmsed themselves to the problem of the
creation of programs, and we shall not attempt here to give an exhaustive
bibliography, being unabile to do so and unwilling to risk being unfair. But
two works stand out along the way. In 1968, Donald Knuth began the
publication of a series of books entitled “The Art of Computer Program-
mmg” [KNU]. In 1981, David Gries published “The Science of Program-
ming” [GRI]. From art to science in ten years! As far as we are concerned, the
most important step has been the introduction of inductive assertions by
R. Floyd [FLO] in 1967, the system axiomatised by Tony Hoare [HOA] in
1969. At first this was regarded as a- tool for proving the correctness of
programs. But experience has shown that 1t can be very difficult to prove a
program written by someone else.

Assertions have been used, therefore, as the basis of a method of program
construction [AR1] [AR2] [GRI]. Thls method will be recalled in the first

Xviii Preface

chapter, below. We presented it first in 1977, and again in a book in 1980,
trying to avoid as far as possible all mathematical formulation; that book was
"intended primarily for school teachers, some of them certainly literate in the
humanities, and it was essential that its language should discourage none of
them. David Gries, on the other hand, regards it as essential to formulate the
assertions in terms of first-order logic, and discusses the relationship between
this and the logic expressible in natural language with AND and OR. We
shall say a few words here about this point. Because we have no wish to write
a book of mathematics, we shall as far as possible keep to assertions expressed

in natural language.
The program construction method is founded on recurrence. “Suppose
that I have been able to solve the problem up to a certain point. . . . Ifthat

is the end, we stop. Otherwise, we move a step nearer the solution by going
back to the recurrence hypothesis. Then we look for a way to begin. In other
words, and in simplified, schematic fashion, suppose I have been able to
compute f(i). If i = n, and f(n) is required, the work is finished. Otherwise, I
compute f(i + 1) in terms of f(i), then I change i + 1 into i/ and start again.
Finally I compute £(0).

It is remarkable that the same reasoning, with little or no modification,
will produce a recursive procedure. We shall give in the second chapter a
certain number of examples of procedure construction for recursive func-
tions. They do not use the assignment instruction, and so their programming
style is very different. It is nearer to axiomatic definition than to computing
strategy. It is computed through a very complex execution mechanism, but
also gives the possibility of deduction from the properties of the recursive
definition. We shall give several examples of this, particularly in connection
with the complexity or precision of computations.

If recurrence is the common base of iteration and recursion, we can build it
into a true programming language. It uses recurrent sequences of depth 1,
and the minimisation operator. In this sense, we can say that it is constructed
on the same universal primitives as its contemporary Lucid [ASH], proposed
by Ashcroft and Wadge. But we would not seek to develop a formal system,
and we use numerical indices for the sequences, although in fact we would
call only on the successor function of natural integers. The important thing is
to have a simple means of expressing recurrence, which is at the centre of the
whole of this study. We shall show how a recurrent algorithm can be inter-
preted and transformed into an iterative program. Our aim is much less to
make of this a-true programming language, endowed with good data struc-
tures, and compilable by a computer, than to be able to write recurrent
algorithms in a recurrent language, and to have a simple method of extract-
ing iterative programs from them. But why this diversion, when in the first
chapter we have shown how to create the iterative program directly? One of

Preface Xix
the reasons is that this recurrent language has no assignment instruction, and
so makes possible substitution, and hence the whole of algebraic manipula-
tion. This allows a recurrent algorithm to be transformed easily into the form
best adapted for translation into a good iterative program. We shall give
several examples of this.

This language proceeds at the same time from recursion, for like that it is
not founded upon assignment, and from iteration, for like that it shows
sequences of values to be computed to reach a result. It is thus not surprising
that it can serve as an intermediary between recursion and iteration. We shall
show how a recurrent program can be created from a recursive function
definition. This will allow us to expose for examination the execution mech-
anism of a recursive procedure, to study in depth the concept of the stack, not
laid down a priori, but deduced from the recurrent scheme, and to discuss the
further significance of this. We shall show afterwards how stronger hypothe-
ses allow simplication of the iterative form, making the stack redundant in
some cases, and often leading finally to the reduction of a program to a single
loop.

Because recursion and iteration are two expressions of the same recur-
rence, there must exist a simple transition from one form to the other. We
shall show in Chapter 5 how we can pass directly form the recursive defini-
tion to an iterative program. A generalisation of the recursive definition gives
the recurrence hypothesis on which the iterative program can be con-
structed. A substitution, a little algebraic manipulation, and then a unifica-
tion lead to the body of the loop. This method is extremely powerful when it
can be used. Thus it proyides a true mechanism for program synthesis.
Beginning with a recursive definition which describes the function, but says
nothing as to how it can be computed, we obtain an iterative program which
exhibits a computing strategy.

This method is valid only for recumvely defined functions. For sub-pro-
grams, other tools are needed. Just as recurrent sequences have played their
part as the hinge between recursion and iteration, so regular actions, pre-
sented in Chapter 6, take on this double aspect, both iterative and recursive.
They can be interpreted as segments of a program which has branch instruc--
tions, but also as recursive procedures without formal parameters or local
variables. In particular they are amenabile to substitution (the replacement of
a procedure name by the procedure body), to identification (an expanded
form of identity between two actions), and to the transformation of their
terminal wcurswn into iteration. We show how this can be used to formulate
the progr#n representing an automaton.

It can also be used for program transformations. We give in Chapter 7
three frequently used syntactic transformations, which do not depend on the
program’s semantics and which do not modify the sequence of computa-

XX Preface

tions defined by the program. But we may well need transformations acting
on this sequence if we are to modify, principally to shorten, it. We give some
transformations which depend only on local properties. With these tools, we
can build up more complex transformations or operate upon programs, for
example to make their termination become clear or to pass from one strategy
to another.

Regular actions and syntactic or local semantic transformations allow
operations on iterative programs. To operate on recursive sub-programs, we
need a more powerful tool. Thus we introduce generalised actions, and show
how they can be regularised. This allows us to pass from parameteriess
recursive procedures to iterative procedures, if necessary through the intro-
duction of an integer variable. To operate upon procedures with formal
parameters and local variables, we must first make semantic transforma-
tions replacing the formal parameters and local variables by global variables.
We give a first example in Chapter 8. .

But that is concerned with the most powerful tool we have for operating on
programs, and its presentation leads us to develop some examples which are
both longer and apparently more sophisticated. We delve more deeply into
the study of the replacement of formal parameters and local variables by
global variables. We try to spell out the choices which are made during the
transformation process and to demonstrate their importance.

For we end up, in fact, with a new method of programming. We create a
recursive procedure; by semantic transformations we pass to global vari-
ables; by transformations into regular actions, and their subsequent manipu-
lation, we obtain an iterative program which often seems to have very little
left in common with the initial procedure. During a meeting of an interna-
tional working group at the University of Warwick in 1978, where I pre-
sented this mode of operation, Edsger Dijkstra strongly criticised it, compar-
ing it with the analytical geometry of Descartes. For him, it is worse than
useless to spend hours in covering pieces of paper with tedious computa-
tions, just to get in the end a simple program which a little reflective thought
would have revealed directly. He thinks that it is a waste of time for me to
teach methods of computation which apply to programs and that I would do
better to teach people how to think and how to ponder.

I am sensitive to this criticism. It has truly become an obsession with
me—how does one invent a new program? How do you get a simple idea
which turns into a simple program? I have not for the moment any answer,
and I am afraid there may not be one. Human beings have been confronted
with the problem of creativity for thousands of years, and we still have not a
chance of being able deliberately to create anything new. Nonetheless, the
constraints of computer technology have thrust the assignment instruction
on us, and obliged us to invent new forms of reasoning. Recurrence is an old

s

Preface XXi

form of reasoning; iteration and recursion are creations of informatics. This
book tries to shed some light on their relationships. Will this result in new
ways in matters of program creation, and thence, in problem solving?

For me, analytical programming is a new path of discovery. From simple
premises, and by computational methods which hardly change from one
example to another, 1 can obtain a simple program in which what I am
looking for—a simple strategy —is to be found. In his book, David Gries
says that when we have obtained a simple program in this way, we should
forget the twisted path by which we have come, and look for the straight road
which leads directly to it [GRI]. It would indeed be a good thing to have only
a simple way of producing a simple result. But I do not think that this would
necessarily benefit the student or programming apprentice. He may well be
filled with admiration for the master, but is it not a deceit to be made to
believe that the master has an excess of inventive genius when, on the
contrary, it is computation which has been the principal instrument of his
success?

In this book, we should like to illustrate the mechanism for the creation of
programs by computation, that is, “analytical programming.” We have not
hesitated, in developing the working, freely to jump over several clear but
tedious steps from time to time. We immediately ask the reader on each of
these occasions to do the computations himself, if he wishes to make the
most of what is in front of him.

Henri Ledgard [LE1] has recognised good style with his programming
proverbs. He might have included, from Boileau: “Qui ne sut se borner ne
sut jamais écrire” [“No one who cannot limit himself has ever been able to
write”]. A cruel proverb, and I have suffered a lot here. There are so many
extraordinary examples of program transformations, revealing altogether
unexpected strategies. . . . How to choose the best of them? Where to pub-
lish the others? I have tried to be content with examples not requiring too
much computation and yet producing spectacular results. I have tried hard
not to reproduce the examples of my previous book, still valid even if I have
abandoned its notation as too unreadable and my methods of computation
rather too sketchy [AR2). The reader may wish to refer to it if he needs
further examples.

If he learns from this book that recurrence is the foundation of methodical
informatics, that recursion is an excellent method of programming, and that
there are in general simple transitions from recursion to iteration, I shall
already have achieved an important result. But I have been a little more
ambitious: has the reader been convinced that computation is a reliable tool
for the creation of programs?

I 'am anxious to warn the reader that this book revives my previous work
[AR2], continuing much of its argument in terms which are, it is hoped,

XXii Preface

more simple. Since it was written I have had much new experience, both in
transforming programs and in teaching students. This new book brings all
these things together. I hope the result is rather more readable. . . .
Finally, exercises have been given, because it is not the result which is
significant, but the way in which it is obtained. This aspect needs to be
developed completely —but to do that I shall have to write another book.

List of Programs Discussed in the Book

(Numbers in parentheses are chapter and section numbers.)

Exponentiation
Computation of x*, x real, n natural integer: An incorrect program (1.1),
discussed (1.4), corrected (1.4). Recursive forms (2.2.2), precision (2.5.2),
complexity (2.5.3). Computation (2.3), transformation to iterative (4.2).

Factorial :
Computation of n!: recursive form (2.2.1), aberrant form (2.6.1). Var-
iously derived iterative forms (4.6.1, 4.6.2).

String reversal -
Mirror image of a character string, NOEL giving LEON: Recursive defini-
tion (2.2.3), its nature (2.4), complexity (2.6.2). Transformation to itera-
tion (5.3.1), added strategy (5.3.1). Application to the representation of an
integer in binary; conversion of an odd binary integer into the integer
whose binary representation is the image of that of the given number;
recursive and iterative forms (5.5).

Conversion of an integer to base b .
Regarded as a character string: recursive definition (2.2.4), property
(2.5.1). Regarded as a decimal number: beginning with 7= 5and b = 2,
write 101 (the number one hundred and one, not the string one, zero, one).
Recursive definition (4.8.2), transformation to recurrent (4.8.2), to itera-
tive (5.3.2).

Fibonacci sequence
Dyadic recursive definition (2.2.5): computation (2.3.2), complexity (2.7),
transformation to monadic recursive procedure (2.7), complexity (2.7),
recurrent form (3.6.3).

Product of two integers
Dyadic recursive form (2.2.6): transformation to monadic (4.8.1), then to
iterative (4.8.1). Other iterative forms (9.2). Recurrent form from another
algorithm (3.6.1), associated iterative form (3.8.2).

i

XXiv List of Programs Discussed in the Book

Hamming sequence
Sequence, in increasing order of integers with no other prime factors than
2,3,0rs:

2 3456 89 10 13 15 16 18 20 24 25
27

Recursive definition (2.7), iterative form (5.7).

“Function 917
A dyadic recursive definition which computes a constant: Definition,
value, complexity (2.8.1).

Christmas Day
Recurrent algorithm giving the day of the week on which Christmas Day
falls in a given year (3.1).

Perpetual calendar
Gives the day of the week corresponding to a specified date (3.2).

Integral square root
Recurrent algorithm and improved forms, associated iterative forms (3.9).

Iterative form operating in base b by subtraction of successive odd num-
bers (3.10). :

Euclidean division of integers
Recursive form (4.1.1), associated iterative form (4.3).

Addition of integers by successor and predecessor functions only
Recursive and associated iterative forms (4.7.2, 4.7.3).

Longest common left-prefix of two integers in base b
In base b, the two integers are represented by character strings; the longest
common prefix (leftmost part) of the two strings is taken as representing
an integer in base b, the required result (5.4).

Greatest common divisor of two integers
Recursive form based on Euclid’s algorithm and associated iterative form
(5.4), automatic change of strategy (7.9).

Happy numbers
Sequence of integers obtained from a variant of the sieve of Eratosthenes,
by crossing out at each stage only numbers which have not yet been
crossed out. Complete elaboration of an iterative form, improvement, and
comparison with another form (5.6).

Equality of two character strings apart from blanks
Automaton (6.1), change to an iterative program and improvement (6.8).

List of Programs Discussed in the Buok XXV
Search for a sub-string in a given string

Automaton (6.7.2), iterative form (6.7.2), change of form: (6.3).
A problem of termination, due to Dijkstia (7.8)

Closing parenthesis associated with an opzniag parenthesis
Recursive form (8.1.1), assembly language form (8.1.3), iterative form
with counter (8.3).

Permutations of a vector (9.3)
Towers of Elanoi (9.4, 9.6, 9.7)

Notations

These are not intended to be learnt by heart, but only, should the need arise, to be consulted in

cases of doubt.

1
ali. . .j]
ali. . .j1<c

AND, and
OR, or

SbS(C, i, “ u)

sbsl(c, i, j)

sbs(c, i, i)

“<Sequence of
characters not
including a
quotation mark>”

[138 1]

pos(c, i, d)

Multiplication sign

Integer quotient (only for natural integers)

Real division)

Sign for concatenation of character strings giving
the string resulting from placing the operand
strings end to end

Exponentiation, x T n = x"

Sequence a[i], ali + 1], . . . a[j], empty if j < i

Equivalenttoa[i] <cANDa[i+ 1] <cAND. . .
alj]1<c

Forms of the boolean operator giving the value
TRUE if and only if the two operands both have
the value TRUE

Forms of the boolean operator giving the value
FALSE if and only if the two operands both have
the value FALSE

Sub-string taken from the string ¢ beginning at the
character in position j and finishing at the end of ¢

Sub-string taken from the string ¢ beginning at the
character in position i and comprising j charac-
ters

Special case of the foregoing: the character of ¢ in

. position §

A constant string whose value is the string enclosed
between the quotation marks

Empiy constant string

- ¢ and d are character strings; the value of this func-

tion is 0 if d does not occur within ¢ with its

XXxvii

