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PREFACHK

Fast transforms are playing an increasingly important role in applied engi-
neering practices. Not only do they provide spectral analysis in speech,
sonar, radar, and vibration detection, but also they provide bandwidth re-
duction in video transmission and signal filtering. Fast transforms are used
directly to filter signals in the frequency domain and indirectly to design
digital filters for time domain processing. They are also used for convolution
evaluation and signal decomposition. Perhaps the reader can anticipate
other applications, and as time passes the list of applications will doubtlessly
grow. )

At the present time to the authors’ knowledge there is no single book that
discasses the many fast transforms and their uses. The purpose of this book
is to provide a single source that covers fast transform algorithms, analyses,
and applications. It is the result of collaboration by an author in the aero-
space industry with another in the university community. The authors hope
that the collaboration has resulted in a suitable mix of theoretical develop-
ment and practical uses of fast transforms. '

This book has grown from notes used by the authors to instruct fast
transform classes. One class was sponsored by the Training Department of”
Rockwell International, and another was sponsored by the Department of
Electrical Engineering of The University of Texas at Arlington. Some of . the
material was also used in a short course sponsored by the University of
Southern California. The authors are indebted to their students for motivat-
ing the writing of this book and for suggestions to improve it.

The development in this book is at a level suitable for advanced under-
graduate or beginning graduate students and for practicing engineers and
scientists. It is assumed that the reader has a knowledge of linear system
theory and the applied mathematics that is part of a standard undergraduate
engineering curriculum. The emphasis in this book is on material not directly
covered in other books at the time it was written. Thus readers will find
practical approaches not covered elsewhere for the design and development
of spectral analysis systems. ‘

The long list of references at the end of the book attests to the volume of
literature on fast transforms and related digital signal processing. Since it is
impractical to cover all of the information available, the authors have tried to
list as many relevant references as possible under some of the topics dis-
cussed only briefly. The authors hope this will serve as a guide to those
seeking additional material.

Digital computer programs for evaluation of the transforms are not listed,
as these are readily available in the literature. Problems have been used to
convey information by means of the format: If A is true, use B to show C.
This format gives useful information both in the premise and in the conclu-
sion. The format also gives an approach to the solution of the problem.
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NOTATION

.,S ymbol

A, B, ...
A®B
AT

A i

f4(1)]
1293

DN

DFT[x(n)]

[D}(L)]
E
LEXD)]
F,

[GALY)
[Hon(L)]

Meaniny

Matrices are designated by
capital letters

The Kronecker product of 4
and B (see Appendix}

The transpose of matrix 4

The inverse of matrix A

DCT matrix of size (2F x 2¥)

Periodic DFT filter frequency
response, whichfor P =1 s
is given by

1Y sin{nf)
exp[—jnf(l - )J . T
N/ AN sin(af N)
Periodic frequency response
of DFT with weighted
input (windowed output)
Nonperiodic DFT filter fre-
quency response which for
P =1sis given by

exp[~/mf/(l = L MY [sin(zf)] ()

Nonperiodic fregquency re-
sponse of DFT with
weighted input (windowed
output)

The discrete Fourier trans-
form of the sequence
{x(0), x(1y. ... (N = 1)}

Jth matrix factor of [G(L)]

Expectation operator

Jjth matrix factor of [ M,(L)]}

tth Fermat number, F, =
Q¥4+ e=0.12...

(GT), matrix of size (2" x 2%)

MWHT matrix of size
(2F x 2%

Symbol

[HJ(L)]

(Ha(L)]
fHh,(L)]

im

14!
fg
Im[ ]

IDFT[ X(k)]

[K(L)]
L
My

Meaning

Walsh Hadamard matrix of
size (2% x 25). The sub-
script scan bew_ h. p. or cs.
denoting Walsh,
Hadamard, Paley or cal sal

-ordering. respectively.

Haar matrix of size (2" = 2%)

rth order (HHT), matrix of
size (24 x 21

Opposite diagonal matrix,
e.g.,

0 0 0 1
7, = 001 0
6t 0 0
1 0 0 0

Columns of [ are shifted cir-
cularly to the right by mz
places

Columns of 1, are shifted cir-
cularly to the left by m
places

Columns of [y are shifted
dyadically by / places

Identity matrix of size (R x R)

The imaginary part of the
quantity in the square
brackets

The inverse discrete Fourier
transform of the sequence
(X(0), X(1), ..., X(N - 1)}

KLT matrix of size (2 x 2%)

Integer such that N = o*

Mersenne number,

Mp =27 — 1, where Pis a
prime number

xix
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Symbol
[M.(L))

N
N*l

[P(L)]
Py(m)

P.{)

Py(m)
0

Re[ ]
R(D)
[Rh(L)]
[s(L)]
[8™(L)]
(S (L))
[5(Ly]
[Sh(L)]

T
W
W)

WA tB

WE

Meaning

(MGT), matrix of size
(2t x 24
Transform dimension
Multiplicative inverse of the
integer N such that
N x N '''=] (modulo M)
1. Period of periodic time
function in seconds
2. In Chapter 11, prime
number
Diagonal matrix whose
diagonal elements are neg-
ative integer powers of 2
(WHT), circular shift-
imvariant power spectral
point
Ith power spectral point of
(GT),
mth sequency power spectrum
1. Ratio of the filter center
frequency and the filter
bandwidth (Chapter 6)
2. Least significant bit value
(Chapter 7)
The real part of the quantity in
*the square brackets
Rate distortion
RHT matrix of size (2- x 2%)
ST matrix of size (2¢ x 2L)
Shift matrix relating X*°™ and
X
Shift matrix relating X and
X
Shift matrix relating X9 and
X
rth order (SHT), matrix of size
(25 x 24
Sampling interval
1. exp(— j2n/N) for FFT
2. exp(— j2n/a"* ") for FGT
The element - in a matrix
' means — joo so that
W= Wic=ex=y
Shorthand notation for
matrix product W4W?#,

where 4 and Bare N x N »

matrices

Matrix with entry WEk™ ip
row k and column n, where
£1samatrix of size (N x N),
E(k,n) is the entry in row k
and column » for k,
n=01...,N -1

Symbol

NOTATION

Meaning

X(/) or X,(f) Spectrum defined by the

XN

X(k)

IX(k)l?

X,
xcf
_chm)
Kiem)

aeB
ag(c.d)
comb,

Fourier (or generalized)
transform of the (analog)
function x(r)

Power spectral density with
units of watts per hertz
Coefficient number &, £ = 0,
*+1, +2, ..., in series
expansion of periodic

function x(t)

Power spectrum for a function
with a series representation

DCT of x

CFNT of x

Fransform of x°™

Transform of x°™

CMNT of x

CPFNT of x

CPMNT of x

Transform of x%

FNT of x

HT of x

(HHT), of x

KLT of x

MNT of x

MWHT of x

(MGT), of x

PENT of x

PMNT of x

(GT), of x

(GT), of xtm

RHT of x

ST of x

kth WHT coefficient. The
subscript 5 is defined in
LH(L)]

(SHT), of x

Ring of integers modulo M
represented by the set
{0,,2,... M- 1}

Ring of complex integers. If
c=a + jf, where @ =
Re[<] and £ = Im[], then
c 1s represented in Z5, by
4 + jé, where 5 = 4
mod M and £ = ¢ mod M

Give variable g the value of
expression b (or replace a
by b)

a is an element of the set B

cga<d

The infinite series of impulse
functions defined by



NOTATION

Symbol

cube[¢/p]

deg[ ]

S

5

{fty
h(k,n)

log
log;

G

Meaning

i o(r — kT)

Cubic-shaped function
defined by

t ! 1
cube I:;J = tri [—] * tri[u]
P2 Pj2

The degree of the polynomial
in the square brackets

Frequency in hertz

Digit in expansion of

=¥ fid,
k=1

where / is the least
significant digit (Isd) and
m is the most significant
digit (msd)

J, = 1/T is the sampling
frequency

Sk at-a

Element of [ H{(L)] in row k
and column 7n. The
subscript s is defined in
[H,(L)]

J=1

Transform coefficient number

The decimal number obtained
by the bit reversal of the L
bit binary representation of
k

The integer defined by

r+1
Y k27
=0
wheres=r+2,r+3,..., L,
k=20, 20%0 2=,
and k,,/=0,1,...,r+ 1,
is a bit in the binary
representation of k
Logarithm to the base e
(natural logarithm)
Logarithm to the base 10
Logarithm to the base 2
Data sequence number
Integerization of frequency
given by

=)
qx = “ z i1
1= -2

Symbol

r

rad(m, 1)
rect[?/P]

rep,[X(/f)]

s

sinc(fQ)

t

trf ]
tri[¢/ P]

w(t— 1)

walyk, 1)

x(n)

x(n) e X(k)
x(t)

X()
x(1) > X(f)
x(1)

X&)y
Xo¥

(x)a

xxi

Meaning

Integer in the set
., 1,2,...,L—-1D
mth Rademacher function
Rectangular-shaped function
defined by

[#)-4

rect| — | =

P 0,

The repetition of X(f) every f,
units as defined by the
convolution X(f)+comby,

Seconds

[sin{n/Q)1/(n/Q)

Time in seconds

Trace of a matrix

Triangular-shaped function
defined by

(7)==l )=l5)
trif — { = rect] — |srTECt] ——
P PR P2

Unit step function defined by

1l < P2

otherwise

{l, 1>t

(i = fo) 0, otherwise

kth Walsh function. The sub-
script s is defined in
[(H(D)]

Complex conjugate of x

x shifted circularly to the left
by m places

x shifted circularly to the right
by m places

x is shifted dyadically by /
places

Sampled-data value of x for
sample number n

Both x(n) and X{k) exist

Time domain scalar-valued
function at time ¢

Time domain vector-valued
function at time ¢

Both x(r) and X(f) exist

Sampled function

The convolution of x and y

Element by element multi-
plication of the elements in
xand y,eg,ifa=xoy,
then a(k) = x(k)y(k)

Expression for x in number
system with radix a, e.g..
(10.1); = 2.5)10
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. Symbol

« =/ (modulon)

+ mod /

n“)

Meaning

FLot = T)] = expl — j2afT)

Fourier transform operator

The remainder when . is
divided by #

Generalized transform
operator

Fourier transform of ...(r)

Script lower case letters ..,

/.. .. and the italic letters /,

k,l.m,n, p.q.r(Chapter 5

only), K, L. M, and N de-

note integers

Al n)= 4/ n), where «

and / are either integers or

polynomials

A /), where «+ and 7 are
either integers or poly-
nomials

/divides V. i.e.. the ratio N//is
an integer and the set of
such integers includes | and
N

Steps per second taken by the
generalized transform basis
functions

Weighting function applied to
modify DFT filter fre-
quency response

Covariance matrix of x

Number system radix or
primitive root of order N

Number of equal sectors on
the unit circle in the com-
plex plane with first sector
starting on the posttive real
aAXIS

Symbol

ofr — 1)

Ur( [)
H
‘)

HN)

$ulr)

1]
fiCOH

re

TEp)

NOTATION

Meaning

Kronecker delta function with
the property that

. 0,
Oy = 1

Dirac delta function with the
property that

ki
k=1

x

x(lo) = J ot — 1,)x(1) dt

-

/th phase spectral point of
(GT),
Jth eigenvalue of [ZT4L)]

Elx]
Correlation coefficient
ET(x — 1)?]

The number of integers less
than N and relatively prime
to N

kth basis function ¢,(r) eval-
uated at t = nT

Magnitude of ()

Integerize by truncation (or
rounding)

Smallest integer > (-), e.g.,
[3.51=4,[-25]= -2

Largest integer < (), e.g,,
(3.5} =3,1-25/= -3

Signed digit addition per-
formed digit by digit
modulo «
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