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PREFACE

Optimization problems are encountered in many spheres of human life.
Every rational action is optimal in some sense, because it is, as a rule,
chosen after onc has compared it with other possible variants. The interest
in problems of optimal choice has always been high, but it has grown
enormously in recent years due to widespread industrial application. On
the one hand, there is increasing pressure to seek the most cffective
utilization of available resources. On the other hand, advances in computer
technology have increased the scope of computer control of processes.
Because of the complexity of problems in applications dccision-making is
of necessity based less and less on intuition or experience. Instead, the
scientific approach drawing on conscious mathematical models is becoming
unavoidable.

Problems involving extremal properties of geometric figures (circle,
square, eic.) were studied and resolved already in antiquity. A powerful
impetus to the development of optimization methods was the creation of
differential calculus. In the eighteenth century the calculus of variations was
developed. As a result of the industrial needs, the theory as well as practice
of optimization began to develop rapidly. In the course of a short period of
time, new areas of the theory emerged (linear programming, optimal control
theory, among others), which have led to effective numerical methods of
solving various extremal problems arsing in practice. The study of
optimization methods is evolving continuously and the sphere of their
application is constantly widening. .

In our book we present the basic methods used currently to solve
various optimization problems. The emphasis is on the major problem, with
detailed description of established, classical methods. Some techniques are
discussed and illustrated by concrete problems demonstrating general
principles.

The second edition of this textbook is different from the first in
content, form, as well as order of presentation. We have drawn on our
experience in teaching the material at the Department of Applied
Mathematics of Belorussian State University, and incorporated results of
recent research,
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viii PREFACE

We begin by describing the classical methods of lincar programming.
In the first edition this material followed the general resulits of nonlinear
and convex programming. In the second edition it is the core of the course.
This order of presentation has allowed us to combine optimization with
linear programming, taught separately in some universities. The results of
Chapter 1 are extensively and repeatedly used in other chapters in studying
general problems of optimization. We have developed the compact and
elementary treatment, which does not require the theory of inequalities or
the theory of convex polygons. As a result, the structure of the books has
changed. The simplex method is given first in the form convenient for
computer implem:ntation, and the traditional tabular form, which has not
been used in computer codes for some time, is explained later in solving
examples. The duality theory of linear programming (Section 1.2) is derived
from the analysis of the simplex method. This makes it, t0 some extent,
constructive and allows us to introduce the dual simplex method (Section
1.3). In the second edition the unity of the primal and the dual simplex
methods is emphasized. Also new is the way of presentation of the methods
for reatment of the methods of solving transportation problems, which are
based on the network model, the method of potentials being adjusted to the
matrix form.

The discussion of convex programming (Chapter 2) in the second
edition is based mainly on the results obtained in linear programming.
Furthermore, a finite method for solving convex problems of quadratic
programming is given, which is an immediate generalization of the primal
simplex method.

In discussing the theory of nonlinear programming (Chapter 3), the
same questions as in the first edition are considered, but the proofs are
different, drawing on the results of Chapter 1.

We have substantially revised the material on computational methods
of nonlinear programming (Chapter 4) and included search methods, in
particular. The methods are presented on the basis of the principle of
sequential approximation. The basic ideas of other methods of optimization
used in solving applied problems are also outlined.

Dynamic programming (Chapter 5) in the second editon is treated as
the method of solving special problems, following the general computational
methods of nonlinear programming. Using some problems with a clear
physical content, we explain the fundamental principles of dynamic
programming and various forms of their implementation, accounting for
specific characteristics of the problems. The application of dynamic
programming to optimal control problems is given in Chapter 7.

The basic results of the classical calculus of variations (Chapter 6) are
complemented with some new ones, but, as in the first edition, we consider
only conditons for a weak minimum. The conditions for a strong minimum
(Chapter 7) are derived from optimal control theory.

The discussion concludes with the treatment of the basic problems of
optimal control theory (Chapter 7). In the second edition this material has
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been revised and extended with new topics, which have arisen in practice
only recently.

' In our work on the second edition we have been assisted by our
collegues at the Optima! Control Methods Department of the Belorussian
State University and at the Laboratory of the Theory of Control Processes
of the Mathematics Institute of the Academy of Sciences of the Belorussian
SSR: O.1 Kostyukova helped in writing Section 2.3 and Sections 5.2 t0 5.5;
V.M. Raketskij helped with Section 2.4; A.Ya. Kruger wrote Section 3.5;
V.V. Gorokhovik wrote Sections 7.3 and 7.8; V.S. Glushenkov derived a
new proof of the Bland modification; T.N. Gurina and M.P. Dymkov
assisted in preparing the manuscript to publication. To all of them the
authors express their gratitude.
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Chapter 1
LINEAR PROGRAMMING

Linear programming refers generally to the class of numerical techniques
for maximizing or minimizing linear functions on sets defined by linear
equalitics and/fer inequalities. Linear programming problems were first
formulated and studied by the Soviet mathematician L.V. Kantorovich in the
1930s. In the 1940s, the American mathematician G.B. Danzig developed
the simplex method of solution, which opened the way for wide-ranging
practical applications, and initiated a whole new area of research as well,

1.1 The Simplex Method

The simplex method is the basic computational tool of lincar program-
ming.

1.1.1 The canonical problem. Basic solutions

The classical simplex method was developed for the canonical problem
of linear programming, viz. the maximization problem

CiXy + Caxy + = + C, X, - Mmax ¢))

of a linear function in n variables x, x, ..., x, satisfying m linear equa-
lities

anxy + aypxxs + 0 + ay X, = b) B
Xy + apXxy + v+ dy,x, = by,
(2)
G Xy + BppXy + 2+ 4, %, = b,

(b1, by, ..., b, 2 0) and n linear inequalities

20 x20 .., x, 20. 3)



2 CHAPTER 1 LINEAR PROGRAMMING

In what follows, we shall normally use matrix notation. Let us introduce
the index sets 1 = {1, 2, ..., m} and J = {1, 2, ..., n}. Then the set of
variables x,, x3, ..., x, can be written as the vectorx x(J)={x;,je J}
Similarly, ¢ = c(J) = {cj.je JYand b=b) = {b;, i e I} The coeffi-
cient set ay;, ajz, ..., a,,,. g, @22, .oy Qg oo Qpeys ooy Ay, 1S TEPTE-
Sented conveniently by the matrix A = A(/, J) = {a;, iel jeJ}
‘Operations on vectors and matrices will follow the mles of matrix algebra.
Vectors being operated on will be written as column vectors. To represent a
Tow vector, we use the operation of transposition, which we designate by a
prime ('). Thus the scalar product of the vectors ¢ = ¢(J) and x = x(J) is
writteff ¢’x. The expressions x = 0 and x = 0 for a vector x represent the set
of componentwise equalities x; = 0, j € J, and inequalities 520 je J

In our new notation the canonical problem (1)-(3) assumes the com-
pact form

c'x < max, Ax = b, x20, 4)

It is customary to call the vector ¢ the cost vector and its components
the cost coefficients. Likewise b is called the constraint vector, A is the
condition matrix (input mamx), and its columns a; = A(l, j) are the condi-
tion vectors. The function c’x is called the objective function of the problem,
the equality

Ax = b )

is the fundamental constraint, and the inequality x > 0 is.the direct con-
straint of the canonical problem.

DEFINITION 1. An n-vector x which satisfies every constraint of the pmblem
is called a feasible solution.

DEFINITION 2. A feasible solution x° which solves problem (4),
cx®° = max ¢’x, Ax = b, x20,
is called an optimal solution.

The notion of a basic feasible solution is essential for the simplex
method.

DEFINITION 3. A feasible solution x is called basic if n - m of its com-
ponents are zero, and to the remaining components,

Kivr iy oo ij ’ ©)
there corresponds a linearly independent set of condition vectors

a., &, .. a . )
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We shall call the set Jg = {ji, ja, -.., jm } the set of basic indices, and
Jy = J\Jp the set of nonbasic indices. Definition 3 is then equivalent to
the following: the feasible solution x = x(J) is basic provided xy = x(Jy) =
0, and det AB # 0, where AB = A(I, JB)'

The set of vectors (7) is called the basis of the basic solution and the
matrix Ap consisting of the vectors of the basis, is the basic matrix. The
components x;, j € Jp, are called the basic variables, and the x;, j € Jy,
are the nonbasic variables of the solution x.

REMARK. For a basic solution, the fundamental constraint (5) assumes the
form Ap xp = b, where xp = x(J). Therefore the basic solution x = {xz, xy } -
can be constructed from the basic matrix Ag: xz = A;'b, xy = 0. We can
also replace Definition 3 by defining, at the outset, a basic matrix to be
an}' invertible m x m submatrix A, of A which satisfies the inequality
Agb 2 0, and thus construct a basic solution.

DEFINITION 4. A basic solution is said to be nondegenerate if all its basic
variables (6) are positive: x; 2 0,je Jg.
1.1.2 A Formula for the increment of the objective function
Let x be a basic solution with basic matrix Ay = A(l, J,). Consider
another feasible solution (not necessarily basic) ¥ = x + Ax. We shall find
a formula for the increment in the objective function,
C'X-c'x = c'Ax. )
By assumption, Ax = b, and AX = b. Hence the change in the solu-
tion Ax = x — x satisfies the equation AAx = 0, which componentwise as-
sumes the form
ABAXB + A~AIN =0 ’
AN = A(I, JN)’ AIB = AX(JB). AIN = AI(JN) . (9)
From (9) we obtain
Axy = —AG Ay Axy (10)
and substitute the result into (8):
C'Ax = cgAry + cyAxy = {czAp Ay —cy)Ayy . (11)

CB = C(JE) B
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We introduce the m-dimensional potential vector u = u(l):
W o= cyAy (12)
and the (n — m)-dimensional bound vector Ay = A(Jy):
Ay = uWAy - cy . 13)

Taking (12) and (13) into account, we obtain from (11) for the increment
in the objective function:

CX—CI——ANAXN——Z AAX (14)
]EJN

From (14) and the general definition of the derivative as a rate of
change, we obtain a physical interpretation of the estimate A;r it is the
negauve rate of change of the objective function at the point x for an in-
crease in the jth nonbasic variable of the basic solution x.

1.1.3 Optimality criterion

Let x be a basic solution with basic matrix Agz. The first question
which arises in connection with problem (4) is: When is a given solution
optimal? We first compute the bound vector (13) for the solution x.

THEOREM 1 (Optimality criterion). The inequality
AUy 2 0 (15)

is a sufficient condition for a basic solution x to be optlmal If x is non-
degenerate, the condition is also necessary.

Proof. Sufficiency. By the definition of a basic solution we have x(Jy) =
0. From the direct constraint it follows that every solution x satisfies the
relations

Ax(Uy) = EUy) - xUy) = X0Uy) 2 0. (16)

Substituting the vectors A(Jy) and Ax(Jy) from (15) and (16) ino the
. increment formula (14), we obtain the inequality ¢'x — ¢'x S 0, which
proves the optimality of the solution x.

Necessity. Suppose that the nondegenerate basic solution x satisfying,
by definition,

xJg) >0, - Qa7n
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does not saiisfy inequality (15), i.e., for some j, € Jy the bound A is
negative:

4, < 0. (18)
0

Form the vector x = x + Ax, where Ax is defined as follows. Let the
nonbasic components be

Ay = © 20, Ay=0, j#jojely. (19

The basic components are determined from (10):
AxJp) = ~AgAyAxUy) = -© A} a4 . Qo)

By (9), for arbitrary © the vector x satisfies the fundamental constraint:
AX = Ax + AAx = Ax = b. Ii follows from (19) that the component x(Jy)
satisfies, for all © > 0, the direct constraint:

AUy = xUy) + AxUy) = Ax(ly) 20, 1)
From (20), for the comporent x(Jp) we get

X(Ug) = xUp) + Awp) = aUp) - ©4; g . (22)

It is seen from (17) that we can find a sufficiently smail ® > 0 such that

x(Jg) 2 0. Hence, for such a value of © the vector ¥ is a feasible solution

of problem (4). Using (18) and (19) in the increment formula (14) yields
the incquality

¢'x -~ ¢’'x = -84, > 0, (23)

which contradicts the optimality of the solution x. This proves the theorem.

1.1.4 A sufficient condition for the unsolvability of the problem

Suppose that a basic solution x does not satisfy the optimality crit-
erion (15), i.e., {or some jy € Jy the bound Ajo is negative (cf. (18)). We
consider the case where the components X;;.» J € Jg, of the vector A;aja are
nonpositive: )

X <0, je Jg . (24)
In this case, by (22), the component x(Jy) is nonnegative for all © > 0,
i.e., for arbitrary © 2 0 the vector x = {xJg), XUy} is a feasible solu-
tion of problem {4). From (23) it is clear that as @ increases the value of

the objective function for the solution ¥ becomes arbitraril y large. We have
thus proved the following:
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THEOREM 2. Suppose x is a basxc solution with a negative bound (A <0)
and the corresponding vector AB a;, has nonpositive components. 'l'hen the
objective function of problem (4) mcrcases without bound as the variable

X, of the solution x increases.

1.1.5 Iteration

To continue the analysis of the basic solution x with basic matrix Ag,
we consider the case where inequalities (24) fail for every negative
bound 4; . It is seen from (23) that if (18) is satisfied, an increase in
© in (19) yields an increase in the objective function. Hence for pro-
blem (4) it is advantageous to choose the largest feasible value of ©.

Componentwise, (22) takes the form ¥; = x; — Ox;; . j € Jp, from which it

follows that as © increases at least one component of the vector ¥(Jp)
becomes negative. The components which are zero are those ¥ x; whichcorrespond

to positive x;; , which occurs obviously for
.
9 = 9,- = M . (25)

If © < min 9 and x”o > 0, then all of the numbers in (25) arc non-

negative, and the vector X = {X(Jp), X(Jyy)} is a feasible solution of (4). If

© > min 6; and x;; > 0, then the vector x has negative components. Hence

the largest possxble 6° for which the vector X = x + Ax is a feasible solu-
tion is

Xx; X;
e =96, = = min ~— . (26)
ia jo *jie>® Xij
jE JB

If the basic solution x is nondegenerate (i.e., x; >0, je Jy), then
e > 0. @n

Suppose we exchange the basic solution x for another feasible solu-
tion x = x + Ax, where Ax is the vector with the components defined in
(19) and (20), with © = 6°. Then by (23) the objective function has increased
by the amount -A; o9 2 0, which, by virtue of (18), (27) is positive if the
original solution x was nondegenerate.

We shall show that x is a basw solution. Among the components x
Jje JN,onlyonecanbeposmve x; -8 On the other hand, amongthe
cogx;(gg)ems x;, je Jg, one compomnt x must be zero, since by (25)
an

X - - sy . = . Zigligly -
Xig = X e Xisjo = %ig X: =0.
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Thus the n — m variables _ - . .
X jeJn, In=Un\j) iy,
of the solution x are zero. To the remaining variables x;, j € Ty, where

Jg = (Jg\ig) U jo, there correspond the condition vectors
a, jely. (28)

Let u;;, i € Jy, j € 1, be the entries of the matrix A . By definition,
the jth column of the matrix consists of the coefficients of the representa-
tion of the unit vector ¢; = {0, 0, ..., 0, 1, 0, ..., O} as a lincar combination

J

of the columns of the matrix Ag = {a;,i e Jg}:

L aquy; = ¢, jel. 29)
iEJB

We write the vector a; asa linear combination of the basis (7):

iEEJB ax; = a . 30)

By (26), t_he number Xiojo is positive. Hence from (30) we .an find

= ——a - Y g [3))
iojo fo Jj €lpi, xioio
Substitute (31) into (29):

—"’—aj + ¥ ai(uij__zu__m.) =e, jel.

Xigio °° j eJghiy igfo !
These equalities show that the vectors (28) are linearly independent, and
the entries i, i€ Jg, je I, of the matrix A, the inverse of the new basic
matrix Ap = A(/, Jp), are given by

u. .
Ui = x'. ’ jel,
iojo (32)
- Xijg Yigj -
u3j=uij— x‘u s l#_’o,le.’g,]el.
°

Therefore x is a basic solution with basic matrix A, = A(/, Jg) Jp =
g\ io) U jo.

The transformation x + X from the old basic solution x o the new
basic solution x is called simplex iteration. The calculations above show
that the iteration can be done on a computer in a finite number of steps.
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REMARK. The itcration above began with an arbitrary negative bound 4; . If
- the number of nonbasic variables |Jy1 is small, the following choice is
often preferable:

A, = minA, jely . (33)

If the number of nonbasic variables is large, (33) can prove to be tedious.
Fortunately, there are also other methods for choosing Ajo

The sequential transformation of the basic solution by mcans of sim-
plex iterations constitutes the simiplex method of linear programming.

1.1.6 The simplex algorithm. The mulfiplicative method

The matrix A;', the inverse of the basic matrix, played a major role
in the calculations of Sections 1.1.2—-1.1.5. We shall therefore describe an

algorithm for solving problem (4) in terms of A;l.

At the first stage, the initial inverse matrix is A;‘.

At the kth stage, suppose the matrix is (A',;l), = ([A(1, Jf,)l"‘)k. The
basic solution corresponding to the matrix (A;l)k is x = {x(]f,):(A,}l)kb.

*Un) = 0} Iy = N\Jj.
1) We find the vector u'(I) = ¢’ (J& )(A7)s.
2) We find the bounds A, = w' (AU j) - ¢;, j e Jn.

3) If there are no negative bounds among all the A, je J:, then the
process terminates at an optimal solution x.

4) If the set of Ay J e J:, contains negative bounds, then {rom
among them we choose Ajs <0, jo = jo (k).

5) We compute the components x; of the (A[,’),, AU, jo), je ff,

6) If there are no positive components X J € Jﬁ , then the process
stops: the objective function grows without bound as the joth component of
x increases.

7) For each positive Xjjr J € J;, we calculate the numbers (-Dj =
x;/x;;, and pick the smallest among them, €° = 8, . io = ig(k).

+1 _

8) We replace Jﬁ, !,t; by the new sets JZ” = (Jﬁ\io) U Jos ffv =
(Jf,\jo) U ig, and using (32) we compute the elements ii;;, i € fB ,je I, of the
matrix (A;'),‘H, assuming that in (32) J, = Jf,; w; ie Jf,, Jje 1, are
elements of (A;) - This completes the kth step of the iteration.
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A flow chart of the algorithm is shown in Figure 1.1.

Input: A, b, ¢, Jp;
Af = 1A, Ip)T!

1

Calculate:

x; = Ag(J, b, je Jg
I
Calculate:

u; = ¢’ (Jg)AR (g, i),
iel

i

Calculate:
A, = w (A, j),
j € ‘IN =J\ .13

. No
A; < 0,56 dy? x?

— % =0, jely
d Yes

" Determine jo:
A]'o < 0, jo € ‘]N
T -
Calcula'x_Lé:j o>
je Jp, and
A AU, jo)
1 .
Check:
ijo > O,] € ‘lﬁ)

Qutput: “Objecti\jc
_’0 function unbounded
— on solution set”

4 Yes

-

Calculate:
- Gj = Xj/ijo for
j € 'IB' ijo >0

1

Determine
ip € ‘IB and 8,-0‘.
8,0 = min 9,,
je Jg, x,jo >0

1

Construct:
Jg = (Jg\ig) L jo,
In = Un\jo) U i

1

Calculate:
X = x - 8%,
j€ Jg\jo, X%, = 6,

3

Cavatme A
{e.g. by (32)

Fig. 1.1

At each step of the algorithm we update the m x m matrix ABI. The
matrix inversion can be avoided by a widely used variation of the simplex
method called the multiplicative method. It is based on the fact that the
matrices (45 ) v+ and (45 ), are related, by virtue of (32), by

(A; kel = Dk(Al_i])k , (34)



