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Preface ‘

In the early years of chemistry the identification of new reactions pre-
ceded serious consideration of reaction kinetics, and it was not until
Berthelot derived the bimolecular rate equation in 1861 that' chemical
kinetics offered any real value to the practicing chemist. Fortunately,
biochemistry, which had its roots in the late nineteenth century, experi-
enced the benefit of developments in kinetic theory. In fact, kinetic argu-
‘ments have played a major role in defining the metabolic pathways, the
mechanistic action of enzymes, and even the processing of genetic ma-
terial. Nevertheless, it is amusing to witness the disdain of many investi-
gators toward mechanistic conclusions drawn from kinetic data. After
all, kinetic arguments are frequently tediously detailed with algebra and
calculus, and so many refuse to believe that such abstract constructs
truly apply to real systems. For those of us who derive much fascination,
excitement, and satisfaction from the combination of chemical and kinetic
probes of enzyme mechanism and regulation, the statement that *‘kinetics
never proves anything’' is especially amusing. When one views the defi-
nition of the word “‘proof’as an operation designed to test the validity of
a fact or truth, the preceding statement serves only to demonstrate that
we have failed to communicate the power and scope of kinetic arguments.
The purpose of this volume is to initiate those who are interested in an
advanced treatment of enzyme Kinetic theory and practice. Indeed, this
area of biochemistry is rich in information and experimental diversity,
and it is the only means to examine the most fundamental characteristic
of enzymes —catalytic rate enhancement.

Parts A (Volume 63) and B (Volume 64) are the first of a series of vol-
umes to treat enzyme Kinetics and mechanism, and the chapters pre-
sented have been written to provide practical as well as theoretical con-
siderations. However, there has been no attempt on my part to impose
a uniform format of symbols, rate constants, and notation. Certainly,
uniformity may aid the novice, but I believe that it would also present a
burden to those wishing to examine the literature. There, the diversity of
notation is enormous, and with good reason, because the textural mean-
ing of particular terms must be considered. In this respect, the practice
of utilizing a variety of notations should encourage the student to develop
some flexibility and thereby ease the entry into the chemical literature of
enzyme dynamics and mechanism. Each of the contributors is an expert
in_the literature, and I have been especially pleased by the constant ref-
erence to key sources of experimental detail. '

I wish to acknowledge with pleasure and gratitude the cooperation

ix



X . PREFACE

and ideas of these contributors, and I am indebted in particular to Pro-
fessors Fromm and Cleland for many suggestions during the initial stages
of developing the scope of this presentation. My students, certainly
R. Donald Allison, also deserve much praise for surveying the literature
and convincing me that a balanced view of the field may be presented in
the confines of this series. The staff of Academic Press has also provided
great encoliragement and guidance, and to them I am deeply indebted.
Finally. I wish to acknowledge the wisdom and friendship offered to me
by Sidney Colowick and Nathan Kaplan.

DaNieL L. PuURICH
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1 INITIAL RATE KINETICS 3

[1] Practical Considerations in the Design of Initial
Velocity Enzyme Rate Assays

By R. DONALD ALLISON and DANIEL L. PURICH

Developing a reliable initial velocity enzyme assay procedure is of
prime importance for achieving a detailed and faithful analysis of any en-
zyme. This objective is quite different from the use of enzyme assays in
enzyme purification or clinical chemistry, where the focus is on estimates
of the enzyme content of various samples. In that case, one is particularly
concerned with optimizing assay conditions by including substrates, co-
factors, and activators at optimal (often saturating) levels and with mini-
mizing interfering agents. Thus, the emphasis is on determining enzyme
concentration in a routine, easy, and reproducible fashion. On the other
hand, the enzyme kineticist must often work at subsaturating substrate and
effector levels to evaluate the rate-saturation behavior. When two or
more substrates are involved, the problem of obtaining initial velocity
data becomes more considerable. This chapter treats of the practical as-
pects of initial rate enzyme assay.

General Experimental Design

The initial rate phase of an enzymnc reaction typically persists for
10 sec to several hundred seconds. Thus, various methods including spec-
trophotometry, radioactive assay, and pH-stat procedures may be used
along with manual mixing and manipulation of samples. Prior to addition
of the enzyme (or one of the substrates) to initiate the reaction, the assay
sample (usually in 0.05-3.0 ml volumes) is preincubated at the reaction
temperature for several minutes to achieve thermal equilibration, and a
small aliquot of enzyme is added to initiate the reaction. The increase in.
the product concentration or the drop in substrate concentration may then
be measured. The basic goals are to initiate the reaction in a manner that
leads to immediate attainment of the initial velocity phase and to obtain an
accurate record of the reaction progress.

For most enzyme rate equations to apply to real systems, one must be
certain that the conditions placed upon the mathematical derivation are
satisfied in the experiment. Since rate equations become quite complex as
product accrual becomes significant, the initial rate assumption is fre-
quently taken to linearize the equations. Experimentally, one draws the
tangent to the reaction progress curve as shown in Fig. 1. The best esti-
mates of the slope of this line will be obtained from the most complete

Copyright © 1979 by Academic Press, Inc.
METHODS IN ENZYMOLOGY, VOL. 63 All rights of reproduction in any form reserved.
ISBN 0-12-181963-9



4 INITIAL RATE METHODS ( f1]

PRODUCT FORMED
\Y

REACTION TIME

FiG. 1. Plot of product formation versus reaction time for an enzyme-catalyzed reaction.
The solid line represents the reaction progress, and the dashed line is the tangent to the
curve at low product formation. This tangent is the initial velocity, and it is expressed in
units of molarity per minute.

record of the initial rate phase, and continuous assays are thus preferable
to single-point assays (see below). The duration of the linear initial rate
phase depends upon many factors, including the equilibrium constant, the
fractional saturation of the enzyme with substrate(s) and product(s), the
buffering capacity of the medium, and the concentration ratio of the least
abundant substrate relative to the enzyme. Below a [S)gta1/[EJota Value of
100, the steady state may not persist for long, and nonlinear initial rates
will frequently be observed. In some cases, the rate may appear linear,
but, virtual linearity should not be the only criterion used in establishing
reaction conditions. With conditions such as a very favorable equilibrium
constant, no product inhibition, and a high [Skea/[Elia Value, the initial
reaction velocities can be maintained for a considerable period of time.

The Initial Rate Condition

As a general guideline, one assumes that the initial rate persists for a
period of time during which the substrate(s) concentration is within 10% of
the initial value. This is probably true only for reactions that are thermo-
dynamically quite favorable, and even so it is best to choose an assay
method that is safely within this range. Nonetheless, there is no a priori
guarantee that product inhibition will not account for a significant error in
the estimation of initial rates, and tests should be m#de for even the most
favorable reactions (see below). Since the equilibrium constant for the
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particular reaction will presumably be known, one may estimate the ex-
tent of the reaction by the following simple expression:

K,h(Po+x)(go+I)(R.+x) L.
Y7 (Ag — X)(Bo — xNCo— x) . . .

where K; is the apparent product : substrate ratio (or *‘mass action ratio’’)
at time ¢, x is the concentration change measured at the midpoint of the
experimental assay (i.e., time 1), and A,, By, Co, Po, Qo, and R, are the ini-
tial substrate and product concentrations. If it is found that X, is not much
different from the apparent equilibrium constant (K’) for the reaction,
then one must reduce x by use of a more sensitive assay. Let us consider
the case of yeast hexokinase, where the apparent equilibrium constant
(K’ = 4.9 x 10° at pH 7.5) is quite favorable. Assuming we have both the
glucose and ATP concentrations at 0.1 mM (i.e., near their Michaelis con-
stants), then a 5% conversion would yield a K; of 2.8 x 1073, suggesting
that the system is quite far from equilibrium. On the other hand, we may
consider the acetate kinase reaction (written in the direction of acetyl
phosphate formation where K’ = 3.3 x 10~ at pH 7.4). At an acetate
concentration of 10 mM and an ATP level of 1 mM, a 5% conversion of
substrate to products would yield a K] of 2.7 x 10~*, not far away from
the equilibrium value. In this case, it would be advisable to reduce the
percentage of substrate conversion in the rate assay. An obvious exten-
sion of these comments is that the deviation from initial rates may be a
greater problem in some product inhibition studies. .

It is not certain that product accumulation during the *‘initial rate’ will
lead to insignifiCant error even when substrate conversion is quite low. In-
deed, for some systems the inhibition constants for a particular product may
be quite low. Consider the brain hexokinase reaction where Kaucose-s—p
is approximately 10~% M but the Kgycos is about S-fold higher. Another
case in point is the PRPP: ATP phosphoribosyltransferase from Sal-
monella typhimurium; here N'-phosphoribosyl-ATP has a dissociation
constant of 3.8 X 10~¢ M, but the affinity for either substrate is‘consider-
ably lower.? The reduced coenzyme in NAD*-dependent dehydrogenases
is frequently a potent inhibitor as well. One strategy around | the problem
of product accumulation is to remove the product by use of an auxiliary
enzyme system (see this volume [2]). This can be especially useful when
the auxiliary system.also serves to regenerate one of the substrates. For
example, the pyruvate kinase/lactate dehydrogenase coupled assay for
kinases maintains the initial ATP concentration, and it also provides for a

)

!'J. Ning, D. L. Purich, and H. J. Fromm, J. Biol. Chem. 244, 3840 (1969).
*J. E. Kleeman and S. M. Parsons, Arch. Biochem. Biophys. 178, 687 (1976).



