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Preface

This book coptains selected tepics in stochastic processes that we believe
can be studied profitably by a reader familiar with basic measure-theoretic
probability. The bachground is given in * Real Analysis and Probability ™ by
Ronert B. Ash. Acedemic Press, 1972, A student who has learned this mater-
ial from other sources will be in good shape if he feels reasonably comfort-
able with infinite sequences of random variables. In particular, a reader who
has studied versions of the strong law of large numbers and the central limit
theorem. as well as basic properties of martingale sequences. should find our
presentation accessible.

We should comment en our choice of topics. In using the tools of
measure-theoretic probability. one is unavoidably operating at a high level
of abstraction. Within this imitation. we have trizd to emphasize processes
that have a definite physical interpretation and for which explicit numerical
resultc can be obtained. if Jesired. Thus we begin (Chapters 1 and 2) with I2
stochastic processes and prediction theory. Onde the underlving mathemati-
cal foundation has been built. results which have been used for many years
by engipeers and physicists are obtained. The main result of Chapter 3, the
ergodic theorem. may be regarded as a version of the strong law of large
numbers for stationary stochastic processes. We describe several interesting
applications 1o real analysis, Markov chains, and information theory.

In Chapter 4 we discuss the sample function behavior of continuous
parameter processes. General properties of martingales and Markov

vii



viii PREFACE

processes are given, and one-dimensional Brownian motion is analyzed in
detail. The purpose is to illustrate those concepts and constructions that are
basic in any discussion of continuous parameter processes, and to open the
gate to allow the reader to proceed to more advanced material on Markov
processes and potential theory. In Chapter 5 we use the theory of continuous
parameter processes to develop the It stochastic integral and to discuss the
solution of stochastic differential equations. The results are of current inter-
est in communication and control theory.

The text has essentially three independent units: Chapters 1 and 2;
Chapter 3; and Chapters 4 and §. The system of notation is standard; for
example, 2.3.1 means Chapter 2, Section 3, Part 1. A reference to *“Real
Analysis and Probability” is denoted by RAP.

Problems are given at the end of each section. Fairly detailed solutions
are given to many problems.

We are indebted to Mary Ellen Bock and Ed Perkins for reading the
manuscript and offering many helpful suggestions.

Once again we thank Mrs. Dee Keel for her superb typing, and the staff
of Academic Press for their constant support and encouragement.
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Chapter 1

L? Stochastic Processes

1.1 Introduction

We shall begin our work in stochastic processes by considering a down-
to-earth class of such processes, those whose random wvariables have finite
second moments. The objective of this chapter is to develop some intuition
in handling stochastic processes, and to prepare for the study of spectral
theory and prediction in Chapter 2.

_First we must recall some notation from probability and measure theory.

1.1.1 Terminology

. A measurable space (S, &) is a set S with a o-field & of subsets of S. A
probability space (Q, #, P) is a measure space (QQ, #) with a probability
. measure P on #. If X is a function from Q to §, X is said to be measurable
(notation X: (Q, #) — (S, ) it X ~1(4) € # foreach 4 € &. If Sis the set
R of reals and & = #(R), the class of Borel sets of R, X is called a random
variable or, for emphasis, a real random variable; if S = R (the extended
reals) and & = #(R), X is said to be an extended random variable;if S = C
(the complex numbers) and & = B(C); X is called-a complex random
~ variable. More generally, i€ § is the set R" of n-tuples of real numbers, and
& = R(R"), X is called an n-dimensional random vector; X may be regarded
as an-n-tuple (X |, ..., X,) of random variables {RAP, p. 212). If § = R, the
set of all sequences of real numbers, and & = B(R™), X is said to be a

1



2 1 I? STOCHASTIC PROCESSES

random sequence; X may be regarded as a sequence (X, X,, ...) of random
variables (RAP, 5.11.3, p. 233).

We now give the general definition of a stochastic process, and the
probability student will see that he has already encountered many examples
of such processes.

1.1.2 Definitions and Comments

Let {Q, #, P) be a probability space, (S, &) an arbitrary measurable
space, and T an arbitrary set. A stochastic process on (Q, #, P) with state
space (S, %) and index set T is a family of measurable functions X,:
Q7)) (S, ), teT.

Note that if T is the set of positive integers and § = R, & = #(R), the
stochastic process {X,, t € T} is a sequence of random variables. Similarly,
we can obtain n-dimensional random vectors (T ={1, ..., n}, S=R,
& = #(R)) and even single random variables (n = 1).

A synonym for stochastic process is random function; let us try to explain
this terminology. Let ST be the collection of all functions from 7 to S, and let
FT be the product o-field on S7. (Recall that &7 is the smallest o-field
containing all measurable rectangles

lwe ST:w(t;)e By, .., w(,)€ B},

typ-., ,€ T, By, ...,B,e £,n=1,2,...;see RAP, 44.1, p. 189.)
Now suppose that for each t € T we have a function X,: Q — §; define
X Q-8 by

X(@) = (Xw), te T)

Then X is a measurable map of (Q, &) into (§¥, #7)iffeach X, is a measur-
able map of (Q, #) into (S, &) (see Problem 1).

Thus a stochastic process is a measurable mapping X from  into the
function space S. Intuitively, the performance of the experiment produces a
sample point ®, and this in turn determines a collection of elements
X(t, ®) = X (w), t € T. In other words, the outcome of the experiment
determines a function from T to S, called the sample function corresponding
to the point w. If T is an interval of reals, it is often helpful to visualizerasa
time parameter, and to think of a stochastic process as a random time
function. :

In this chapter we shall be concerned with IZ processes, defined as fol-
lows. An I? stochastic process is a family of real or complex random var-
iables X,, t € T, such that || X, |* = E{(|X,[*) < o for all t € T. Thus the
state space is R or C, and we have a second moment restriction.
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1.1.3  Examples

(a) Let 8bearandom variable, uniformly distributed between 0 and 2n.
(We may take Q = [0, 27), F = Z[0, 2n), P(B) = {5 (1/2n) dx, 0(w) = w.)
We define a stochastic process by X, = sin (at + 6) where a is fixed and ¢
ranges over all real numbers. Explicitly, X (@) = sin (at + O(w)), w € Q.

Thus the process represents a sine wave with a random phase angle (see
Figure 1.1). )

A X lw)
Qlw)=7/3
// V// (w)=0
/ .y
[e] 2w/a
i
FiGURE 1.1

(b) LetV and W .be independent random variables with distribution
functions F and G (take Q = R?, # = #B(R?), P(B) = ||, dF(x) dG(y).
V(x,y) =x, W(x,y)=y). For r real, let X,=0fort <V, X, = W for
t >V, that is, X,(w) =0 for t < V(w), X,(w) = W for all 1 > V{w). The
process represents a step function with random starting time and random
amplitude (see Figure 1.2).

X (w)

W (w)

Py

Viw)

FIGURE 1.2

We now describe a basic approach to the construction of stochastic
processes.
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1.1.4 The Kolmogorov Construction

"~ If{X,,t € T} is a stochastic process, we may compute the distribution of
(X,,...,X, )oreacht,,....,t,e T,1, < .- (If T is not a subset of the
reals, a ﬁxed total ordermg is assumed on T Thls avoids the problem of

having to deal with all permutations of ¢, ..., t,.) For example, in 1.1.3(b)
we have

PX;>1,2< Xs<4,X,;>3) =PV <2,3<W<4
= F(2)(G(4) — G(3)).

In fact if we specify in a consistent manner the distribution of (X,,, ...,
X.) for all finite subsets {t,, ..., f,} of T, it is possible to construct a sto-
chastic process with the given ﬁmte-dlmensnonal distributions. This is a con-
sequence of the Kolmogorov extension theorem (RAP, 4.4.3, p. 191). To see
how the theorem is applied, let Q = §7, F = &¥7; we assume throughout
that S is a complete, separable metric space and & = %(S), the class of Borel
sets of S. For each finite subset v = {t,,..., t,} of T, suppose that we specify a
probability measure P, on &"; P(B) is to represent P{w € Q: (X, (), ...,
X,,(0)) € B}, which will equal P{lw € Q: (w(ty), ..., ,)) € B} if we take
X,(w)=ow(t),teT. : o .

The hypothesis of the Kolmogorov extension theorem requires that the
P, be consistent, that is, if u = {z,, ..., t,} = v = {t,, ..., t,}, the projection
n,(P,) (RAP, p. 190) must coincide with P,. Now

[RPIIB) = Py = (9(t1), --., ¥(tn) € 8”1 ((zs), ..., y(n)) € B}.

In terms of finite-dimensional distributions, n(P,) gives the distribution of
(X.p ---» X.,) as calculated from the distribution of the larger family (X,,, ...,
X.) whcreas P, gives the distribution of (X, , ..., X,,) as originally specified.
Thus the consistency requirement is quite natural For example, if we want
X,, X,, and X; to be independent, normally distributed random variables,
we cannot at the same time demand that X, be umformly distributed; it
.must be normal.

Now let us recall the precise statement of the Kolmogorov extension

. theorem:

Assume that for each finite nonempty subset v of T we are given a
probability measure P, on %", where n is the number of elements in v;
assume also that the P, are consistent. Then there is a unique probability
measure P on %7 such that n(P) = P, for all v, that is, if v = {t;, ..., .},
B e %" we have ' C

Plw : (o(ty), --., o(t,)) € B} = P(B).
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Thus if we set X (w) = w(t), t& T (or equivalently, if we take X to be the
identity map on S”), we have produced a stochastic process with the given
finite-dimensional distributions.

Now suppose that {Y,, ¢t ¢ T} is another process (on a possibly different
probability space (€, #', P')) with the same finite-dimensional distributions.
Define the mapping Y: Q' — ST by Y(w) = (¥(w), t € T); then (Problem 1)
Y is a measurable function from (€, #') to (ST, 7). If Be &7, we assert
that Py(B) = Py(B); this holds when B is a measurable cylinder since the
two processes have the same finite-dimensional distributions, and the gen-
eral result follows from the Carathéodory extension theorem. The statement
that Py = Py is the precise version of the intuitive statement that the finite-
dimensional distributions determine the distribution of the entire process.

The above discussion applies with only minor notational changes if the
fixed state space (S, &) is replaced by a family of spaces (S,, &,) where each
S, is a complete separable metric space and &, is the class of Borel sets.

We shall often use the Kolmogorov extension theorem to construct
stochastic processes in situations where the initial data consist of the finite-
dimensional distributions. In pauticular, if we specify that X,, ..., X, be
independent whenever t; < --° < t,,, the consistency requirement is satisfied,
so that it is possible to construct a family of independent random variables
X, with arbitrary distribution functions F,, t € T. In some cases, more com-
plicated stochastic processes are constructed using the independent random
variables X ,; the following example illustrates this idea.

1.1.5 Example

Suppose that “customers” arrive at times T,, T, + T,
T+ -+ T, ..., where the T; are independent, strictly positive random
variables, T; having distribution function F, and the T;, i > 1, each having
distribution function F,

Let ¥, =Ty + --- + T, be the arrival time of the nth customer, and let
N(t) be the number of customers arriving in the interval (0, t]. Formally,

N(t)=k if Zh<st<Y,, k=01,.. (define Y, = 0).

For any t > 0, let Z, be the waiting time from ¢ to the arrival of the next
customer. We claim that

a.e. o -
{Z,<x}=Ult<Y,<t+x<V,,,} (1)
n=1
(We say that the sets A4 and B are equal ae. iff P(4 A B)=0.) For if
1 <Y, <t+x< Y,y the nth customer arrives in (t, ¢t + x], so Z, < x.
Conversely, if Z, < x, then some customer arrives in (t, t + x}, and hence
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(a.e.) there is a last customer to arrive in this interval. (If not, then
Y=, T, < oo, and this has probability zero by the strong law of large
numbers.) If customer n is the last to arrive in (¢, ¢+ x], then
t<Y<t+x<VY,,. “

We now find the distribution of Z,. By (1),

PZ, <x}= YPit<Y,<t+x<VY,4 (2)
n=1

But

Pi<Y,<t+x<Y,}=Pt<Y<t+xY,+T, >t+x}

= jj dFy (u) dFy . (v)

t<u<t+x
utv>t+x

= f P{T,., >t + x — u} dFy(u),

r<ust+x

as would be cxpected by a conditioning argument. Thus

@K

CF)= % [ [ = Fle + x = u)] dFy,(u). (3)

n=1 t%x]

We now assume that the T, n > 1, have ﬁpite expectation m, and
Fi) = [ [1 - Fo) d )
Sy ~m . y)]ay.

(This forces the arrival rate, that is, the average number of customers arriv-
ing per second, to be constant; see Problem 4. We make the assumption in
order to obtain F,, explicitly.) '

By RAP (p. 280, Problem 2), F,(o0) = 1,and hence F, is the distribution
function of a random variable.

Now if X is a random variable with distribution function G, the gener-
alized characteristic function of X (or of G) is defined by

M(s) = j e dG(x). (5)

R
M(s) is defined for those complex numbers s for which the integral is finite. If
we set s = — ju, we obtain the > ordinary” characteristic function. The proof
given in RAP (8.1.2, p. 322) shows that if X,, ..., X, are independent
random variables whose generalized characleristic functions M, ..., M, are
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defined at s, then the generalized characteristic function M of X, + --- + X,
is defined at s, and

M(s) = TIMs) ©

Returning to the original problem, let M, and M be the generalized
characteristic functions of T} and T,, n > 1; we have, for Re s > 0,

* - 85X 1 ® - SX
M, (s) = j e % dFy(x) = — [ e7*(1 - F(x)) dx. (7)
0 mo
We now assume that the T,, n > 1, have a density f(this assumption can be
avoided, but it simplifies the calculations). Note that by (4), T, has density
fi(x) = m™*(1 — F(x)), x = 0. Then (7) becomes

1 1 a X
M) = e J e J, 70 dy dx
1 1 @« k- o]
=i Ty SO jy. e dx dy
S G S N
= s ). SO dy.
Thus
Miyfs) = - (1 = M),
or

1 M, =
=~ MU T MO

But the generalized characteristic function of Y, is M,(s)[M(s)]" "', hence

e ilM,,(s). (3)

Since Ty, ..., T, have densities, so does Y,. Thus

T

S M) = 3|l d

hence by (8),

1 f:e_“l"i fy"(x)] dx. ©)

ms =
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But (ms)™' = [§ e”*m™ ' dx, and it follows from the uniqueness theorem
for Laplace transforms (Problem 7) that

i fr.x) = é a.e.on [0, o) [Lebesgue measure}. (10)
n=1

By (3),
t+x

Falx) = ;-, [0~ P+ x - ) da

— [ U-FONdy  fety=ttx—u)
= Fy(x).

Thus if we start counting at any time ¢, the waiting time to the next
customer has exactly the same distribution as the initial waiting time start-
ingatt=0. ’

(If we do not assume that the T,, n > 1, have a density, the above
analysis may be carried through by replacing expressions of the form
Jr(x) dx by dFy (x). Equation (10) becomes Yy Fyf(x) = x/mae.; this is
proved using the uniqueness theorem for the Laplace transform of a distri-
bution function (see, for example, Widder, 1941).)

In fact if W,, W,, ... are the successive waiting times starting at ¢ (so
W, = Z,), then W}, W;, ... are independent, and W, has the same dlstrlbu-
tion as T; for all i. To see this, note that

XA
WM <x,. . Wsx)= U L<i<ha<t+x,

T2 €%, T < x5 (11)

For it is clear that the set on the right-hand side of (11) is a subset of the set
on the left. Conversely, if W, < x,, ..., W; < x,, then a customer arrives in
(t,t + x,], hence there is a first customer in this interval, say customer n + 1.
Then Y, <t <Y, ,<t+ x;,and also W,=T,,,,i=2,..., k, as desired.
Therefore

||": x

PW, <Xy, ..., Wi < x} = Z <Y S+ Xy (n)

k
= P{Z, < xy} [ F(x:)-
i=2
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Fix j and let x; = oc, i # j, to conclude that the W, are independent and W,
has the same distribution as T; for all i. In particular, N{t + h) — N(t) has
the same distribution as N(h).

The stochastic process {N(t), t > 0} is somectimes caled a delayed renewal
process. (The word delayed refers to the fact that T, has a different distribu-
tion from the T,, n > 1;if the distributions are the same; delayed is omitted.)

Physically, the T; can be regarded as the lifetimes of a succession of
products such as light bulbs, If T, + --- + 1, = ¢, then bulb 1 has burned
out at time ¢, and the light must be renewed by placing bulb n + 1 in
position.

If Fy and F are related as in (4), then |N(t), t > 0} is called a uniform
(delayed) renewal process. The most important example is the Poisson
process, obtained by specifying that the 7,. n > 1, have the exponential
density f(x) = ie™**, x > 0 (where 4 > 0). Then m = 1/4, so by (4),

Fi(x)=4 .[0[1 —(l—e™)]dy=1—-¢** = x>0

Therefore F; = F.
The reason for the use of the name Poisson is that for each 1, N(t) has a
Poisson distribution with parameter At, that is,
e M(it)k

PN =k == 55 k=01,....

To see this, observe that
P{N(t) < k} = P{T, + - + T, > 1},

and T} + +- + T4, has density A**'x*¢~**/k!, x > 0. (This is an exercise in
basic probability theory; see Ash, 1970, p» 197 for details.) Thus

* 1
P{N(t) < k} = j LA Ixte M dx,
. k!

Successive integration by parts (again see Ash, 1970, p. 197) yields

k i
PING) <k} = ) e-u%fl, .
i=0 .
as desired. :

Since E[N(t)} = At, A = 1/E(T;) may be interpreted as the average
number of customers per second. Furthermore, since Var N(t) = At, {N(t),
t > 0} is an I? process.

A key property of the Poisson process is the following.
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1.1.6 Theorem

Let {N(t), t > 0} be a Poisson process. The process has independent
increments, that is, if 0 <t, < --- < t,, then N(t,) — N(0), N(t;) — N(ty),
...» N(t,) — N(t._,) are independent; equivalently, if

0t <t Sty <ty < "<ty y <iay,

then N(t;) — N(t,), N(ts) — N(t3), ..., N(t3,) — N(t2,-,) are independent.

PrOOF We break the argument into several parts. Fix t; > 0, and let W,
W, , ... be the successive waiting times starting from ¢,, as in 1.1.5.

(a) N(t;) and W, are independent.
We do this by an induction argument. First note that

P{N(t;) =0, Wy < x;} = P{t; < Ty < t; + x,}

- e—lu _ e—).(nd-x;) - e—).u(l — e—).xl)
= P{N(t,) = O}P{W, < x,}.

If P{N(t;)=n—-1, W, <x}=P{N({,)=n~-1}P{W, < x,} for all
ty >0, x, =0, then

PIN(t)=nW,<sx;}=P{T, + -+ T, <t
<T+ + Ty St + %}
=j "‘Jl"“e““"”"'”"”) dy, - dy,.,
. A
where.

A={(¥1a~--,)’u+1)30$}’1 <t Y2003 Yar1 20
Yat A Sty =y <Yat+H Yarr S+ Xy = Yk
Thus

P{N(t)) = n, W; < x,}
=I; Ae~WP{Ty + - 4+ T, <ty — y,

<+ + Ty <t +x, =y} dy,
= J.: )'e—}'y'P{N(“l -y)=n—1 W} <x}dy,

where W? is the waiting time starting from z, — y,. By the induction



