MICROPROCESSOR
DATA BOOK

S. A. Money

R 73503
7 e

MICROPROCESSOR
DATA BOOK

S. A. Money

~ T Eng (CEl), MITE, MBCS

j"%ﬁfgf{;\"

& @‘\
me |
Aegs /

o iifs

GRANADA
London Toronto Sydney New York

5506699

Granada Publishing Limited — Technical Books Division
Frogmore, St Albans, Herts AL2 2NF

and

36 Golden Square, London W1R 4AH

866 United Nations Plaza, New York, NY 10017, USA

117 York Street, Sydney, NSW 2000, Australia

100 Skyway Avenue, Rexdale, Ontario, Canada MIW 3A6
61 Beach Road, Auckland, New Zealand

Copyright © 1982 by S. A. Money

British Library Cataloguing in Publication Data
Money, S. A. .

Microprocessor data book.

1. Microcomputers 2. Microprocessors

I. Title

621.3819°580212 QA76.5

ISBN 0-246-11531-9

First published in Great Britain 1982
by Granada Publishing Ltd

_Printed and bound in Great Britain at The Pitman Press, Bath

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by an
means, electronic, mechanical, photocopying, recording or otlérwise,
without the prior permission of the publishers.

Granada ®
Granada Publishing ®

T3l

57

'CONTENTS

Preface

1 INTRODUCTION

Architecture. Bus systems. CPU control. CPU
execution. Subroutines and stacks. Interrupts.
Memory. Input-output. Word length. Types of
device. Fabrication technology. Choosing a
microprocessor or microcomputer. Micro-
processor prices.

2 4-BIT MICROPROCESSORS AND
MICROCOMPUTERS

AMD Am2900 series

AMI 2000 series

Hitachi HMCS40 series

Matsushita MN1400/1500 series

Motorola MC10800 series

National COPS2 series

N.E.C. uCOM40 series

OKI Series 40

Rockwell PPS4/1 series -

Texas Instruments TMS1000 series

3 8-BIT MICROPROCESSORS AND
MICROCOMPUTERS

Fairchild F8 family

General Instrument PIC1650 series

Intel 8048 series

Intel 8051 series

Intel 8080A

Intel 8085A

Mostek 3870 series

Motorola MC6800 series

Motorola MC6801 and MC6803 series

Motorola MC6802 series

Motorola MC6805 series

Motorola MC6809 series

Motorola MC146805 series

Mullard MAB8400 series

National 8060/8070 series

National NSC800 .

MOS Technology MCS6502 serics

N.E.C. uPD7801 microcomputcr

RCA 1800 series

Rockwell R6500/1 series

Signetics 8X300

Signetics 2650A

Zilog 78

Zilog Z80

vii

16
19
21
23
24
26

28

31
34
36

45
48
50
54
57

63

69
73
77
79
82
85

93
96
98
02
105
107
110
113

4 16-BIT MICROPROCESSORS AND
MICROCOMPUTERS

AMD Am29116

Fairchild Microflame 9440/45

Ferranti F100L

General Instrument CP1600

Intel IAPX86 series

Intel iAPX8S series

Motorola MC68000 series

National NS16000 series

Texas Instruments TMS9900

Texas Instruments TMS9940 and 9985

Texas Instruments TMS9980

Texas Instruments TMS9995

Western Digital Pascal Microengine

Zilog Z8000 series

5 OTHER MICROPROCESSOR TYPES
Intel 2920 Analogue Signal Processor
Intersil IM6100

6 PARALLEL /O DEVICES

Principles

IEEE488 Interface Bus

Intel 8255 PPI

Motorola MC6821 PIA

Zilog Z80-P10

Intel 8291 GPIB listener-talker

Intel 8292 GPIB controller

Motorola MC68488 GPIB interface

Texas Instruments TMS9914 GPIB adapter

7 SERIAL 1/O DEVICES
Principles

Intel 8251 A PCI

Intel 8273 PDLC

Intersil IM6402 UART

Motorola MC6850 ACIA
Motorola MC6852 SSDA
Motorola MC6854 ADLC
N.E.C. uPD379 USRT

Signetic 2651 PCI

Synertek SY6551 ACIA
Signetics 2661

Texas Instruments TMS9902 ACC
Texas Instruments TMS9903 SCC
Zilog Z280-S10

8 MEMORY DEVICES
Introduction

121
123
125
127
129
132
136
139
141
144
147
150

152

154

159
162

167
168
169
170
171
172
173
174
175

179
181
182
183
184
186
187
188
189
190
191
192
193
194

197

MICROPROCESSGR DATA BOOK

2101/11/12 series 1k bit static RAM

2102 series 1k bit static RAM

256 % 4 bit CMOS static RAM

2114 series 1k X 4 bit static RAM

256 x 8 bit erasable nMOS PROM

512 x 8 bit nMOS erasable PROM
2708 series 8192 bit 1tMOS erasable PROM
2716 series 16k bit erasable PROM
2532/2732 type 32k bit erasable PROM
64k bit dynamic RAM

9 PERIPHERAL DEVICE CONTROLLERS
Visual display controllers

Motorola MC6845

Motorola MC6847

Thomson EFCIS EF9365/6

Thomson EFCIS 96364

Floppy disk controllers

Disk controller data

199
201
203
205
207
209
211
213
215
217

221
224
226
228
230
231
232

10 OTHER SUPPORT DEVICES
Intel 8252 Timer

Motorola MC6840

Zilog Z80 CTC

Analogue converter device data
Analogue device manufacturers

11 DEVELOPMENT AIDS
Evaluation boards
Full development systems

12 DIRECTORY OF
MANUFACTURERS

13 GLOSSARY
OF MICROPROCESSOR TERMS

239
240
241
242

247

. 248

250

258

PREFACE

Advances in the techniques for manufacturing large
scale integrated (LSI) circuits have, in recent years,
made it feasible to incorporate most, or in some cases
all, of the complex logic required for a small digital
computer system on to a single silicon chip. One
example of the application of these LSI techniques is in
the familiar digital pocket calculator, which is in fact a
specialised digital computer. In these devices all of the
electronic logic is contained in a single integrated circuit
package.

In designing modern electronic systems the engineer

must now take into account the ready availability of -

microcomputer and microprocessor devices which can
simplify design, making the end product more versatile
or more economical to produce.

One problem which faces the designer planning to use
a microprocessor is the great multiplicity of devices that
have become available. Choosing a suitable micro-
processor could involve collecting together and search-
ing through a mountain of different data sheets and
manuals.

In this book condensed data have been provided for
most of the available types of microprocessor and micro-
computer device. For each major type or series a des-
cription is given of the internal architecture, instruction
set, main electrical data and package details.

Most of the popular devices are manufactured by
several different suppliers, and a list of alternative
sources and type numbers have beenincluded in the data
for each type. Support chips designed for that processor
have also been listed. . i

For convenience the devices have been divided into
groups covering 4, 8 and 16-bit types and other pro-
cessors. It would not be practical to include full details of
each type, but it is hoped that sufficient information has
been provided to allow the designer to narrow down his
choice to perhaps one or two types. The manufacturer’s
data sheets or manuals may then be consulted for more
detailed operating and application information.

In order to choose a processor for a project some
knowledge of the basic principles of the devices is re-

quired, and this has been covered in the introductory
chapter. A general guide has also been included on the
factors involved when a processor type is chosen.

A complete system normally consists of a micropro-
cessor together with a selection of supporting devices to
handle input—output, external device control and to
provide memory. The number of support devices avail-
able is even greater than that of microprocessor types, so
no attempt has been made to include details of all of
these. Some descriptions have been included covering
the major support device functions, and data have been
included on some of the more popular types as a guide to
the facilities provided by such devices.

At the end of the book a directory of microprocessor
manufacturers has been included and there is also a
glossary of some of the terminology used in the micro-
processor field.

It is hoped that the information given in this book will
assist designers in choosing stitable devices and that it
will be generally useful to those engaged in designing or
planning microprocessor based progucts.

One problem encountered in producing any data
book which deals with a rapidly advancing field, such as
microprocessors, is that new devices are continually
being introduced. To deal with this situation plans are
being made for the publication, from time to time, of a
supplement giving data on recently introduced devices.
Readers wishing to have details of these supplements
should complete and mail the coupon enclosed in this
book, or alternatively write to the publishers, when they
will automatically receive advance details of these sup-
plements. . R

The reader will notice that for a limited number of
devices in this book only limited data are given. This is
because at the time of compilation only preliminary
information was available. The reader is referred to the
supplement for full information.

Finally, I would like to express my thanks to all those
manufacturers and distributors who supplied the data
and other information which made it possible to compile
this book.

1 INTRODUCTION

Inrecent years the advent of microprocessors and micro-
computers has revolutionised the whole process of
digital system design. Projects which, a few years ago,
might have required tens or hundreds of digital logic
devices can today be implemented by using perhaps one
or two LSI circuits. Of course, LSI circuits have been
around for some years, but economic considerations
have usually limited their use to applications, such as
digital calculators, where high volume production is pos-
sible and high design costs can be recovered quickly. The
advantage of the microcomputer is that a standard
device can be used for many applications by merely
altering the program of instructions held in its memory.
Thus design costs can be reduced and a variety of prod-
ucts may be built using perhaps a standard circuit board.
Microcomputers, however, bring with them a number
of new design concepts which may be unfamiliar to the
systemn designer used to working with conventional dig-
ital logic systems. In this introductory section we shall
examine the internal organisation of microcomputer sys-
tems and their general principles of operation. Later we
shall consider the various factors that are involved in
choosing a suitable type of microprocessor for a design
project. '

ARCHITECTURE

The general organisation or architecture of a digital
computer, whether it be a mainframe, a minicomputer
or a microcomputer, follows the basic arrangement
shown in fig. 1.1. ' ‘

A

CPU . : r r MEMORY
CONTROL AND W PROGRAM
TIMING LOGIC ! 1—7 (ROM OR RAM)
PROGRAM Lo
COUNTER (PC) DATA
STACK
INSTRUCTION (RAM)
DECODER
ALU
ACCUMULATOR <> INPUT AND
WORKING bt
REGISTERS - outPuT

PORTS
j y

ADDRESS DATA CONTROL IN-0OUT

BUS BUS BUS LINES

Fig. 1.1

At the heart of the system is the central processor unit.
generally referred to as the CPU. Functionally the CPU
can be broken down into two subsections, one of which

INTRODUCTION

is used to control the timing and sequence of operations
in the system, whilst the other executes the required
arithmetic and logical functions and handles the data
being processed. A memory system is connected to the
CPU and is used to store the list of instructions to be
executed, known as the program, and the data being
processed. In some types the data and program
memories are separated but for most of the general
purpose microprocessors a common memory is used.
Communication with the outside world is handled by
two further sections, known as the input and output
ports, which allow data to be transferred to and from °
external devices such as keyboards, display units and
printers. The various components of the microcomputer
system are tied together by a system of bus lines which
are common to all units. This is of course a very much
simplified description of a microcomputer system and
we shallnow go on to look at each section in more detail.

BUS SYSTEMS

Data is transferred between the various units of the
system over sets of parallel wires known as buses. Norm-
ally there are three buses, one for data, one for ad-
dresses and the third for control signals.

The data bus allows data to be transferred between
the CPU and the memory or input—output lines. This bus
is in fact bidirectional and controlled by the CPU. A
read-write line, which forms part of the control bus,
determines the direction of data flow along the data bus.
This signal is generated by the CPU and if set to write
allows data to be output from the CPU to other parts of
the system. When the control line is set to read the CPU
accepts data which have been placed on the data bus by
one of the other units in the system. The bus may only be
driven by one device at a time, although all of the other
devices may read data from the bus simultaneously.

The address bus is used to provide an address signal
for the memory to select one particular location within
the memory for connection to the data bus. Normally
the address bus is an output from the CPU ard data
always travels from the CPU to the memory. The
address bus may also be used to select individual input or
output channels when there are several of these con-
nected to the data bus. Some of the smaller processors
may have separate address lines for program memory
and data memory.

The control bus provides a selection of control signals
to and from the CPU to govern timing and control of
transfers of data on the other bus lines. Among these
may be signals for halting the operation of the CPU and
perhaps disconnecting it from the bus system. The
address and data buses are normally tri-state in opera-
tion. Apart from the normal 0 and 1 states the CPU, or
memory, may be switched into a high impedance state
which effectively disconnects it from the bus. This facil-
ity may be used when it is desired to have another device
take over control of the bus system. Typical applications
are in multiprocessor systems where a bus is shared
between two or more CPUs, only one of which may
access the bus at a time.

In a large system the output drivers of the CPU and
other devices may not be capable of driving all of the
loads on the bus. In such cases bus drivers ot bus trans-

3

2506699

MICRQPROCESSOR DATA BOOK

]

ceivers would be used where each device connects to the
bus system. In some such systems the data signals on the
data bus may be inverted by the transceivers or buffers.

CPU CONTROL

Apart from system timing and control logic the control
part of the CPU normally contains a register called the
program counter, an address register, an instruction de-
coder, a stack or stack pointer register and some inter-
rupt logic. ‘

Instructions making up the program to be executed
are stored in the memory and are normally called up in
sequence for execution. The function of the program
counter is to give the memory address of the next in-
struction to be executed. At the start of a program the
program counter wil. be loaded with the memory ad-
dress of the first instruction. When the system starts
running this address will be transferred to the address
bus and the instruction code- will be read in from
memory. One part of the instruction is called the opera-
tion code or opcode and determines tlie type of oper-
ation to be performed. Typical operations might be
ADD, SUBTRACT or AND, each of which will have a
different opcode pattern. The opcode data read in from
memory are passed to the instruction decoder, which
then sets up all of the logic linkages required within the
CPU to perform the desired operation. At this point the
.contents of the program counter will be updated to give
the address of the next opcode in the memory. Some
operations will require data, as well as an instruction
code, and for these one or two additional words of data
may fpllow the opcode in the memory. These data words
will be dealt with as the instruction is executed. When
such data exist the contents of the program counter may
be incremented by two or three to provide the correct
address for the next opcode. This updating i§ governed
by the instruction decoder according to the type of op-
code detected.

A typical instruction execution sequence consists of
one or more instruction cycles. The first cycle riormally

calls in the opcode from memory,and is called the in-

struction fetch cycle. On simple instructions this will be
followed by an execution cycle, when the required oper-
ation is carried out. If data are required extra cycles are
required to read in the data words following the opcode.
In some cases these words may be @ memory address,
and once in the CPU will be transferred to the address
register and address bus during the execution cycle.

Timing varies from one type of processor to another.
In some types, such as the 6800 and 6502 series the
timing is relatively simple with each instruction cycle
divided into a pair of time periods called ¢t and $2.
Internal CPU functions occur during ¢1, sich as ex-
ecition, and memory access occurs during ¢2. Thus a
simple instruction calls in the opcode on ¢2 and executes
the instruction during the following ¢1 cycle. Other pro-
cessors may divide up the instruction cycle into many
different time periods, which may vary according to the
type of operation being performed. Manufacturer’s data
sheets should be - consulted for detailed instruction
timing for any given processor type.

We shall look at the stack and interrupt functions in
more detail later. The timing clock for the CPU will
often be a multiphase type, but in many of the newer

4

i
*

types of device it will be generated by an on-chip oscil-
lator which merely needs an external quartz crystal for
timing. Older types often do require multiphase clocks
but usually a special clock chip is available to generate
these, using a crystal for timing. In some cases the
system clock will also be needed to control the timing of
the memory and input-output channels.

CPU EXECUTION

In the execution section of a microcomputer CPU there
will be an arithmetic and logic unit or ALU, which is a
complex logic array to carry out the desired arithmetic or
logic function. Associated with the ALU is a special
register called the accurnularor. Normally the ALU has
two data inputs and one output whichmay eachbe 4, £ or
16 bits wide. Data for one of the ALU inputs are
provided by the accumulator and the results of the
operation are placed in the accumaulator after executon.

Apart from the ALU and the accumulator the execu-
tion unit may also contain a number of general storage
registers, which may be used to hold data or inter-
mediate results. In some types of processor these ad-
ditional general purpose registers may be used as ac-
cumulators. Data may be transferred to and from the
accumulator, ALU input and general registers and
memory via the data bus.

Using the internal registers for data storage can speed
up the operation of the program, since these registers
can be specified by the opcode, thus avoiding the need
for extra memory access cycles when the instruction is
executed. Some CPUs, such as the 6800 and 6500 series,
use memory locations as general purpose registers
allowing operations such as shifts and incrementing or
complementing of data directly within the memory.

Many CPUs have data pointer or index regsters
within the register bank. These registers may be used to
hold memory addresses rather than data and for certain
instructions their contents may be placed on the address
bus to select data in the memory. Such registers may be
incremented or decremented to allow tables of data to
be handled in the memory.

Typical functions provided by the ALU and accumu-
lator are ADD, SUBTRACT, AND, OR, EXCLU-
SIVE OR, complement and clear. It is also possible to
shift data left or right by one bit in the registers and to
rotate data where the bit pushed out at une end of the
register may be inserted again at the other end to give a
continuous loop of data moving through the register.
Other operations include incrementing and decrement-
ing contents of registers. Normally arithmetic uses pure
binary numbers, but for some applications binary coded
decimal (BCD) format may be used where groups of
four binary bits are used to represent decimal digits.

On a few more sophisticated processors multiplication
and division instructions may be provided, but for most
types these operations must be implemented by a small
sequence of instructions. Many processors with a multi-
ply or divide will use an internally stored program to
carry out the operation which will be relatively slow to
execute. Some types, however, use a hardware logic
array within the chip to give very fast multiplication
execution times.

A very important facility in microprocessors is the

ability of the CPU to test the results of an operation and
to take alternative courses of action depending upon
those results. Typical tests provided are zero, minus,
carry and overflow. Carry indicates that a carry out of
the accumulator was generated by the operation and
overflow indicates that the result is a number larger than
the register can handle. As a result of these tests the
CPU may be made to skip, branch or jump instead of
executing the next instruction.

A skip operation causes the CPU to skip over the next
instruction in sequence and execute the fodowing one.
In a branch or jump instruction a new value is placed in
the program counter and execution is transferred to
another point in the program. For jumps the new in-
struction address follows the jump instruction as data in
memory. Branch instructions often use relative address-
ing, where the data following the branch instruction are
added to the current contents of the program counter to
generate the new instruction address. In a conditional
brarch the program will branch to a new point if the
condition of the branch is true, whilst execution will
continue with the next instruction if the condition is not
true. When an unconditional branch or jump occurs the
program will always go to the new poini specified by the
branch or jump. ,

Typical branch conditions are Branch if Zero, Branch
if Not Zero, Branch if Plus, Branch if Minus and so on.
Results of the various tests are normally stored as flag
bits in a status register, Often these flags can be manip-
ulated by the program so that if desired the carry bit
could be set or reset directly by the program.

SUBROUTINES AND STACKS

Often there will be frequently repeated sequences of
instructions in a program. Typical of these might be the
set of instructions to read data from a keyboard or to
carry out a multiplication. Whilst these instructions
could simply be repeated as desired throughout the
program a more convenient technique is to make use of a
subroutine. In a subroutine the small sequence of in-
structions is treated as a small separate sub-program and
is stored once in the memory. When the subroutine is to
be used a special jump to subroutine or CALL instruc-
tion is used. This causes the contents of the program
counter to be temporarily stored away and thena jump is
made to the start of the subroutine instructions. At the
end of the subroutine a RETURN instruction is exec-
uted which causes the old program counter contents to
be restored and the program will then continue to
execute with the instruction immediately after the
CALL.

In simple processors a single temporary register is
used for saving the program counter, but with such a
scheme it will not be possible to call a subroutine from
within another subroutine. Some processors may have
several save registers, which are called the stack, and as
each register is filled a new one is selected for loading. In
suci a system the last register loaded will be the first to
be read out, and this type of memory is sometimes called
a first in last out or FILO type. In computers this type of
memory arrangement is called a stack and in most of the
general purpose processors the stack is built up in the
main memory. To keep track of the current stack top
location a data pointer register known as the stack

INTRODUCTION

pointer is used.and this is normally part of the CPU
control section. On each subroutine call the contents of
the program counter are written to the top of the stack in
memory and the stack pointer is automatically updated
to point to the next free location in the stack. Onareturn
from subroutine the stack pointer is moved down to
point to the last data written to the stack and then those
data are transferred to the program counter. Most
general purpose processors will allow data to be moved
to and from the stack by using PUSH and PULL (or
POP) instructions with the stack pointer being updated
as required. Some of the more advanced processors have
two stack pointers, one for storage of subroutine ad-
dresses and generally called the system or supervisor
stack, whilst the other may be used for data storage and
is called the user stack.

When a stack is implemented in memory subroutines
may call other subroutines, a process known as nesting.
As the inner subroutines complete executior the prog-
ram transfers to the next subroutine up until eventually a
return is made to the main program. When nesting is
used the size of the stack space available will determine
the number of levels to which subroutines may be nested.
In some processors the return from a subroutine may be
made conditional so that returns may be made from
different points in a subroutine, according to the results
of operations carried out within the subroutine.

Sometimes it may be desirable to transfer data from
the main program into a subroutine. This can be done by
pushing the data on to the stack before the subroutine
call. Once inside the subroutine the stack pointer may be
manipulated to allow access to the data and perhaps to
replace them with data to be transferred back to the
main program. The only critical point here is that the
stack pointer must be restored to its proper position
pointing to the return address before the return from
subroutine is executed.

INTERRUPTS

When communicating with the outside world there will
often be occasions where the processor is ready to trans-
fer data but the external device isn’t or vice versa. These
situations can be overcome by placing the processor in a
testing loop, where it waits for a ready signal from the
external device. This is inefficient, however, since the
processor is not processing data whilst it is waiting for
the external device. A technique for overcoming this
problem is to use an interrupt system. In an interrupt
system the external device applies a pulse to a special
interrupt request input on the CPU, and this sets a flip
flop within the CPU. When an interrupt occurs the CPU
will complete the execution of the current instruction
and then branch to an interrupt service routine which:
will deal with the external device. The service routine is
in fact very much like a subroutine. When the interrupt
is acted upon the contents of the program counter are
stored as for a subroutine, but usually the status register
contents will also be saved on the stack as well. Some
processors, such as the Motorola 6800, will save the
contents of all of the internal registers when an interrupt
occurs. As with a subroutine at the end of the interrupt
service routine the program counter and any other saved
registers will have their contents restored and program

5

MICROPROCESSOR DATA BOOK

execution continues with the next instruction in the.

program.

The simple interrupt described above is usually called
a non-masked interrupt or NMI. For some purposes it is
useful to be able to inhibit interrupts and this can be
done by using a maskable interrupt. By setting or re-
setting a bit in the status register the interrupt may be
inhibited or activated as desired. Interrupts may be
nested as for subroutines if desired.

A further type of interrupt is the software interrupt,
which is triggered by an instruction rather than by a
pulse from external hardware. This type of interrupt is
generally used for debugging programs, but may also be
used to indicate a fault condition thrown up by a prog-
ram test.

Most processors have only one interrupt request
(IRQ) line for masked interrupts and one for non-
masked interrupts. Normally the non-masked and soft-
ware interrupts will have priority over masked interrupts
and are thus dealt with first if both types occur together.
There may be several external devices sharing the
common interrupt line, and some form of priority of
service may be desired between the various devices. In
such cases priority will usually be determined by exter-
nal logic, but some processors such as the Texas 9900
series do allow for priority decoding within the CPU.

Most general purpose processors use what are known
as vectored interrupts. Here each type of interrupt will
cause the CPU to go to a different address which will
contain the interrupt vector which is the start address for
the service routine corresponding to that particular
interrupt. In some types the vector address of the service
routine must be fed in via the data bus from the external
interrupting device when the CPU acknowledges accep-
tance of the interrupt.

Power on reset or initialisation sequence is a special
form of interrupt. Normally this causes the program
counter to be loaded from either the top location in the
memory or from the bottom location. The CPU then
executes a start up routine which resets the internal logic
and starts execution of the program at the reset vector
address stored at the top or bottom of memory.

MEMORY

The microcomputer memory is used to store both prog-
ram and data. Characteristics of various types of
memory device are discussed in Section 8. Normally the
program will be held in some form of read only memory
for a dedicated system, whilst the data are held in read-
write memory, often referred to as RAM. Some data,
such as constants, may be stored in ROM along with the
program. In a general purpose computer system, such as
a development system or a personal computer, the user
program will often be stored in RAM but the operating
system and its associated programs are often stored in
ROM. In most systems an initialisation program and
various utility routines may be stored in ROM to form
whatis generally called a monitor program.

For large amounts of data storage special memories,
such as magnetic bubble types, may be used or the data
may be held on a floppy disk or a magnetic cassette tape.
Microcomputers generally have a small amount of
scratchpad RAM for data and a medium size ROM for
program storage. Most single-chip types use mask prog-

6

rammed ROMs, which makes them best suited to very
large production levels. Some types may use program-
mable ROMs for the program storage and a few have
erasable PROMs. These types are best suited to specials
and limited production runs.

INPUT-OUTPUT

To be of any use the microcomputer must be able to

‘communicate with the outside world. Often this may be

via a keyboard or keypad for input and visual display or
printer for output. Digital data in and out are transferred
via data ports, which are basically latched registers con-
nected to the data bus and selectable by the CPU for
data transfers. In some cases the signals may be con-
verted to or from analogue signals before reaching the
outside world. Switches, solenoids and servos can be
driven from the CPU via suitable interface circuits.

Apart from the data lines each input or output port
will have a pair of control lines, often referred to as
handshake lines. One of these lines is an output from the
computer to indicate to the external device that it is
ready to transfer data via the port. The second line is an
input to the computer system from the external device
and may be used to indicate either that the peripheral
unit is ready to accept data or that it has placed data on
the port lines for the computer to read. These signals
may also be looked upon as a request for action in one
direction and an acknowledgement signal in the other
direction, or alternatively they may simply be used to
indicate that the device producing an output handshake
signal is busy. Handshake signals are particularly im-
portant where the microprocessor and the external
device operate at different speeds.

WORD LENGTH

Microprocessors and microcomputers work with binary
data, which are handled as groups of binary digits or bits
and these groups are called data words. Typically a word

.may contain 4, 8, 12, 16 or 32 bits of data according to the

type of system being considered. .

The earlier microprocessors, such as the Intel 4004 or
4040, and many of the modern single-chip micro-
computers use 4-bit data words, which are sometimes
called nibbles. In these systems the data bus, ALU and
data registers are all 4-bits wide. The numerical value of
a 4-bit word can range from 0 to 15, and often a system
known as binary coded decimal (BCD) may be used
where each word is used to represent a decimal digit
having a value from 0to 9. Large binary numbers have to
be processed in 4-bit segments.

Most of the popular general purpose microprocessors
use an 8-bit data word. which is referred to as a byte. A
byte may have a numerical value in the range 0 to 255
and is also convenient as a means of encoding text char-
acter information, where perhaps 96 different upper and
lower case letters and various punctuation signs and
numbers have to be identified. In an 8-bit system the
data paths, ALU and registers are normally 8 bits wide.
A data byte may be used to hold two BCD digits when
that type of data is to be handled. -

For large systems the word length and data path size

may be 16 bits, allowing data values from 0 to 65535.
Some of the 16-bit processors may include registers 32
bits long, so that 32-bit wide data can be handled inside
the CPU, but at the time of writing no 32-bit systems are
available although some minicomputers can handle 32-
bit wide data.

In most cases the data bus will define the word size of
the processor system, but there are a few processors,
such as the Intel 8088, which although having a 16-bit
CPU architecture, use an 8-bit data bus and each data
word is transferred as a pair of successive data bytes.

With a 4-bit processor the data word is not wide
enough for use as an instruction opcode since it would
allow only 15 different instructions to be used. It is
normal therefore for 4-bit processors to use an 8-bit
instruction word and to hold the program instructions in
a separate 8-bit wide memory. A few types may use a
10-bit instruction word.

In industrial systems it is common to find 12-bit data,
giving a range of values from 0 to 4095. A few micro-
processor types have been produced for this word length
but generally 12-bit data will be handled by an 8-bit or
16-bit CPU system.

Address systems for the 8-bit processors are usually 16
bits wide, allowing up to 65536 memory locations to be
selected. For the larger 16-bit processors an address of
20 or 24 bits may be used which will allow several mega-
bytes of memory to be directly accessed.

Sometimes in order to reduce the number of leads
needed on the processor package the datd and address
buses may be multiplexed over a common set of lead out
pins. Although this allows the use of a smaller package
and may produce a less expensive CPU device, it can
lead to extra complication in the external logic circuitry,
which may offset the advantages gained by producing a
smaller CPU.

TYPES OF DEVICE

Three basic types of device are available for use in the
construction of a microcomputer system.

Firstly there are the microprocessors which contain
all, or most, of the CPU section on a single silicon chip.
Some types such as the 8080 do require additional ex-
ternal logic to provide a system clock and to control the
data and address buses but the newer microprocessor
types include these functions on the single chip.

For small dedicated systems it is possible to obtain a
single-chip microcomputer which has the CPU, memory
and input-output ports on a single chip. Such a device
can provide a complete microcomputer system with just
a few external discrete components for timing. Most of
these devices use mask programming for the program
memory where the pattern of instructions is built into
the chip as it is being manufactured. A few types do have
programmable read only memories for the computer
program which can be set up in the field.

The third major type of processor device is the bit
slice, where each of the CPU functions is implemented
as a slice of logic typically four bits wide. Normally there
will be an ALU slice and some form of program-
sequencer or control slice to make up the main functions
of the CPU. Other slices may be used for timing. stack
functions and data control. If an 8-bit wide system Is
needed then two 4-bit ALU slices would be operated in

INTRODUCTION

parallel and the program control slices may be dealt with
in a similar way. These devices are generally very fast in
operation and would be used for special purpose pro-
cessors where high speed or some special internal organ-
isation is desired.

FABRICATION TECHNOLOGY

Devices may be built using a wide variety of semi-
conductor fabrication technologies but generally these
can be grouped as four major types of fabrication.

Most of the early microprocessors used pMOS, where
the logic is implemented using p channel field effect
transistors (FETs). These early devices normally
operate from a negative voltage supply and will often
have several different voltage supply rails. Their main
advantage is that pMOS is an older and hence more
established form of construction and generally devices
using it may be cheaper to produce than other types.

The popular modern processors use nMOS tech-
nology, where the internal logic uses n channel FETs
and these devices will normally be designed to operate
from a single +5 V supply rail. nMOS devices are
usually faster than pMOS versions, but they do require
well stabilised supplies of typically +5% tolerance.
Because of high production volume their cost may not be
alot different from that of similar pMOS types.

The third major type of device is made using CMOS,
where a combination of both n and p type FETs is used.
Perhaps the most important feature of CMOS is its very
low power consumption compared with other types of
fabrication. This makes the CMOS microprocessors
ideally suited to applications where battery operation
and hence low power demand are needed. CMOS also
has the advantage of being relatively unaffected by
variations in the power supply voltage and is less sen-
sitive to noise on its input lines. A slight disadvantage of
CMOS is that it tends to be a little slower in operation
than pMOS or nMOS, although some new types of
CMOS device built on a sapphire substrate can achieve
speeds as high as for tMOS systems.

Finally there are the processors that use bipolar
devices for the logic. These may use transistor transistor
logic (TTL), emitter coupled logic (ECL) or integrated
injection logic (I°L) for the actual logic circuits inside the
chip. The main feature of bipolar devices is that they are
very fast in operation and will normally be chosen for
special functions where high speed is essential. Bipolar
circuits generally use up more space on the silicon chip,
so these types tend to be less complex than the types
using MOS technology and bipolar devices also tend to
require more power.

One factor to be considered is that all of the MOS
types, pMOS, nMOS and CMOS, are susceptible to
damage from static electric charges at their very high
impedance inputs. Most of the devices, however. in-
clude diode protection at the inputs to reduce the risk of
damage by static charges, but nevertheless some care
may be required when handling this type of device.

CHOOSING A MICROPROCESSOR
OR MICROCOMPUTER

Unfortunately for the system designer there is no con-

venient magic formula by which the optimum micro-

7

MICROPROCESSOR DATA BOOK

processor or microcomputer device can be selected for a
particular applicaticn. It is, of course, fairly easy to
select a device which may be technically best suited for a
particuiar pro;ect but often it will be aspects of software
design or economic considerations which will dictate the
type of device used.

In the following notes the general procedure involved
in choosing a suitable processor for a project will be
discussed and the factors which may influence the de-
cisions at each of the stages will be considered. Although
these guidelines will, it is hoped, prove useful the final
decisions will usually depend very much upon the partic-
ular circumstances existing when the choice is made. In
many cases the decision may well require the use of plain
commonsense judgements based upon the available
facts.

Basically the process of choosing a suitable processor
or system can be broken down into the {ollowing stages:

(1) Define exactly what the system must do.

(2) Choose whether a microprocessor, single-chip
microcomputer or bit slice system is to be used.

(3) Choose the word length.

(4) Consider the hardware factors such as speed,
power requirements and availability of existing hard-
ware.

(5) Consider software design with particular
reference to available expertise and development aids.

(6) Examine the economic factors.

At each of these stages it should be possible to
eliminate a number of the available types of processor
until there are perhaps two or three potential devices
from which the final selection can be made.

The first stage may seem very obvious and yet it is
surprising how many system designers will progress to
detailed design before they have defined exactly what is
required. At this stage the system specification can be
divided into two broad areas. First there are those re-
quirements which are absolutely essential, and secondly

“there are the features which, whilst not essential, may be
desirable since they may make a more versatile or attrac-
tive product. These features may be arranged in a list
with some form of priority or value rating given to each.
These secondary features of the system requirements
may be helpful in the later stages of selection where two
more or less equally attractive devices are being con-
sidered.

Once the system requirements have been defined it is
important to ask the question ‘Is a microprocessor
needed at all?’. Consider what is involved in meeting the
system specification using conventional logic, pro-
grammed arrays or off the shelf dedicated circuits. In
many cases these other approaches will be impractical

and a microprocessor type system is inevitable. Where

the other approaches might be practical alternatives
they should be considered along with the micro-
processor solution. It would be ridiculous to use a
microprocessor system when simple logic could provide
a cheaper or simpler solution. '

Choice between bit slice, microcomputer and pro-
cessor will usually be dictated by the technical require-
ments of the system. In general the bit slice approach
would be used where very high speed or some special
processing function is needed. Choice between a single-
chip microcomputer device and a multi-chip system
based around a microprocessor is likely to prove a little
more difficult.

8

Generally a single-chip microcomputer device would
be chosen where space is limited or where a dedicated
system is being produced for which the level of produc
tion is likely to be very high. Most of the single-chip
microcemputers use mask programming and production
runs of at least some 5000-10000 units will probably be
required in order to justify the cost of designing the
mask. In mass production, however, the cost per unit of
a single-chip design is likely to be very much less than
that of a multi-chip arrangement. An important factor
here is that assembly and circuit board costs will be
greatly reduced and these can contribute a large pro-
portion of the final production cost of each unit.
Another factor is that a single-chip design with fewer
lead connections will be potentially more reliable than a
muiti-chip system.

For prototype and small batch production runs the
mask programmed microcomputer becomes unecono-
mical, but devices such as the Intel 8748 or Motorola
MC68705, with a programmable on-chip ROM, may be
used. The unit cost of such devices can be fairly high and
some labour will be involved in programming the on-
chip ROM for each individual unit. However, a system
using such devices does have many of the advantages of
the single-chip approach, such as lower assembly cost,
smaller size and potentially better reliability.

When the system is required to perform a variety of
tasks or the production quantity is low, perhaps one off,
a multi-chip system using a microprocessor with external
1/0 and memory devices may be used. The cost of the
individual devices will generally be low since the micro-
processor itself is likely to be a standard popular type,
such as the 8080 or 6800, which is being mass produced.
The assembly costs for such a system are likely to be
relatively high and the complex interconnections on the
circuit board may lead to potential unreliability.

The word length is usually fairly easy to resolve from
the system technical requirements, although at this stage
it may be permissible to consider alternative word
lengths and leave the final elimination to a later stage.

Generally the 4-bit word length is appropriate for the
smaller systems, particularly where binary coded
decimal data is being handled. This is particularly true
for controller type devices where the input is applied
from a keypad and the output data are displayed on
some form of decimal display.

Where text data are being handled and for general
number processing the 8-bit word length is highly
suitable. The normal set of text symbols can readily be
accommodated within an 8-bit binary code. Most of the
personal computer svstems and small business machines
use the 8-bit word length.

For large processing tasks the 16-bit word length may
be desirable. In general a 16-bit machine will be faster in
operation than an equivalent 8-bit type since instruc-
tions will generally be contained in a single data word
and fewer memory access cycles will be required for each
instruction. In a 16-bit system alphanumeric characters
may be packed two to a word, again saving memory
space and memory accesses. In general 16-bit types may
well be used to perform the tasks that hitherto would
have used a small minicomputer system.

A study of the hardware requirements. such as speed.
power demand and compatibility with other systems,
will often resolve the choice of fabrication technology.
For battery operated and portable equipment CMOS
type devices will usually be chosen, since they have very

-

low power requirements and will tolerate wide vari-
ations in the supply voltage. For most of the other
applications the nMOS type of device will probably be
the best choice, unless the system must be interfaced
with existing pMOS type equipment. Generally the
choice of bipolar technology, such as L and ECL or
TTL, will be reserved for applications where very high
speed operation is required.

When considering the hardware aspects, especially
for multi-chip systems, the availability of ready made
circuit boards should be taken into account, since their
use could greatly simplify hardware design and reduce
design costs. In most cases these boards may contain
some redundant circuits not needed for the current
application, but they are usually less expensive than
specially designed boards when only limited production
is envisaged.

Finally we come to the software, or computer
program, which can represent a major part of the cost
and design effort needed for developing a micro-
processor based product. Unlike conventional logic
systems the microprocessor will do nothing without
software.

An important factor to be considered is the availa-
bility of in house software expertise. It may well be
better to use a technically less attractive processor with
which the in house software team are familiar, than go to
the trouble and expense of retraining the team in the
software required for a newer type of processor. In some
cases, however, training of the sofiware team may be
justified if the new processor is likely to be widely used in
future projects. The final decision in this matter will
depend upon the possible iong term future benefits that
migit be gained by using a new processor type.

Both the software and hardware development will
require some form of development aids. For small pro-
jects and as an initial training aid the simple evaluation
type board is a useful development aid. However for
any serious work such a system is likely to be inadequate
and a full scale system with editor, assembler and debug
facilities is essential. A disk based operating system is
desirable since this allows rapid operation and an effic-
ient filing system. Some systems, such as the Motorola
6800 PDS, use a cassette filing system but it is very much
slower in operation than a disk based system. Most disk
systems use either standard or mini floppy disks giving
perhaps 100 to 200 kbyte of storage per disk drive. It is
- advisable to have two disk drives since this makes copy-
ing of files much faster and simpler. One disk may be
used for the operating system whilst the second is used
for working files.

Debug facilities normally allow the program to be run
and breakpoints to be inserted as desired. At these
points the program may be stopped and data and status
within the system may be examined. Also the program
may be traced one instruction at a time to see exactly
what is happening during its operation. These facilities
allow errors in the program logic or coding to be
detected and corrected.

For hardware testing an in circuit emulator may be
used. Here a special probe is inserted into the processor
socket on the hardware board being tested. The
emulator allows the main development system to
provide the processor function in the final product board
and the full debug facilities may then be used to discover
the cause of system failures.

In many cases the development system will be pro-

INTRODUCTION

vided by the microprocessor manufacturer and wilt usu-
ally handle only processors made by that manufacturer.
Sometimes different cards will need to be used in the
system according to the actual type of processor being
used.

Some development systems, such as the Futuredata
AMDS produced by General Radio and the Tektronix
8000 series microprocessor lab system, are designed to
handle a wide range of different manufacturers’ devices.
An advantage of this type of system is that the basic
operating system will be the same for all processors,
whereas with other systems each type has its own distinc-
tive operating system. These multiprocessor systems
generally use different processor boards for each
processor type when emulation is required. These
systems may also provide cross assemblers for a wide
range of device types whilst using one control processor
in the development system. This allows machine code
programs to be produced for a range of device types
without the need for board changes.

Some of the more popular processor types may have
their software developed on larger computers such as
the PDP11 minicomputer by using cross assembler
programs.

The choice of microprocessor for a project is likely to
be very much influenced by the availability of some
suitable development system in house. The purchase of
a development system can be a major item of expen-
diture and must be taken into account when choosing a
processor. Here the future use of the system will be an
important factor in deciding whether to use a particular
processor. For a single project it may well be economical
torent a development system specifically for the project.

The cost of producing the software and the availability
of a suitable development system will generally resolve
the final choice of processor to be used fot a project. The
final decision may well be made on politicai or economic
grounds rather than on purely technical factors.
Obviously the aim should always be to choose the best
technical device that can be justified.

It is hoped tnat these notes, used in combination with
the data on microprocessor devices given later in the
book, will assist readers in choosing suitable processor
devices. In the final analysis, however, the decision
made will often depend upon the application of common
sense, past expertence and perhaps a little intuitive
juagement.

MICROPROCESSOR PRICES

One factor which may influence the choice of processor
for a project is the unit price. No attempt will be made to
give actual prices for the various types. since these are
likely to vary from time to time according to the
popularity of the device and the level of production.
Price will also change according to the quantity pur-
chased. However the price of one type relative to
another may influence the final choice, so a guide has
been provided where the prices are based upon those
current in the UK at the time of preparing the book but
are presented as units to a normalised scale. Although
this will perhaps give some guidance to possible price
relativities it is essential that the manufacturer or
supplier be consulted to get realistic prices before the
final choice is made if the price is likely to be a deciding

9

MICROPROCESSOR DATA BOOK

factor. Generally the price will not be important until
the choice has been narrowed to perhaps two or three
types of device.

Relative price data

4-bit processors

Generally the 4-bit devices are microcomputer chips
which are mask programmed and likely to be used in
very large quantities. Final prices will depend upon
negotiations with the actual chip manufacturer and the
number purchased. ‘

AMD 2900 series 8-20
AMI 2000 series 2-5
National COPS2 series 1-2.5
N.E.C. uCOM42 to

p#COMA4S series 1.5-3 .
Rockwell PPS4/1 2-5
Texas TMS1000 1 -4 according to type

8-bit processors

Apuit from the single-chip 8-bit microcomputers most of
the 8-bit types are likely to be used in small to medium
quantity and prices are based around the 100+ level.

10

Intel 8080A 8§-12
Intel 8085A 9-14
Motorola 6800 8§-12
Motorola 6802 10-15
Motorola 6809 25-40
MOS Tech 6502 10-15
RCA 1802P 10-15
National 8060(SCMP2) 12-18
Zilog Z80 8-12
Signetics 2650A 15-20
NEC uPD780C 9-15
Fairchild F8 CPU 10-15
Intel 8748 about 30

16-bit and other processors

Inte! 8086 100-120

Motorola 68000 about 300 — 400 at present
Intersil 6100 12-15

Texas 9900 70-100

Zilog Z8000 series 150-200

Fairchild 9440 180-250

Intel 2920 200-250

2 4-BIT

MICROPROCESSORS
AND

MICROCOMPUTERS

| 1A
175 - 58 |

