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PREFACE‘ . P I R LRI

V 'The a]}ecul relatx.vmr theory, ﬁluch wuamplg a syaton'nhc extension of the: ~ '
electrodynamms of Maxwell xand Lorentz, had: consequenwe wluch reu:hed b&‘ T
yond. itself .. A

. Einstein, wntmg in The Ttmn November 28 1919 T

Imagme a large number of abmlnps, containing well found laboratoriea and corhi
petent physicists, moving along' different ‘straight lines at different constant’ qpcsdn
Experiments can be carried out on board each ship, and astfophyaical observations may"
be made from each ship..In each and every ship scientific instruments work in ‘the dame
way, standard: laboratory experiments give the same results and from both laboratory
experiments and astrophysical observations everyone infers the same fundamental laws’
of physics ...the swarm: of st-rships exists.in a universe ;everned by a principle o!
" relativity.

-~ Look at some individual expenments Intcntellu ana.loguu of Galileo and Newton'
play with billiard balls in their laboratories and find' them to be governed by Newto-
nian mechanics. Analogues of Huyghens; Fresnel and Young study optics, analogues of
Coulomb, Ampere and Faraday study electricity and maghetism. Analogue Maxwells
synthesise the Maxwell equations. In every ship the same physical laws are found, and
in particular every analogue Michelson discovers that the speed of light is independent
of its.direction, and it has the same measured value in every ship. Now there is a prob-
lem, because the invariance of the speed of light is at odds with the vector addition of
velocities worked out by the mechanics.

The universe is 80 constructed that the speed of light is indeed measured to be the
same, in all directions, regardless of which starship the measurement is made in.. The
vector addition of velocities worked out using billiard balls or relatively low velocity
excursion modules is in fact wrong, and measured velocities do not compound in that’
way as any velocity becomes significant in comparison with that of light. This is all
experimental fact and at first sight seems incomprehensible.

Incomprehension lifts (to some extent) with the realisation that measurements are
made with instruments, instruments are made of matter, and matter is complicated
.80 complicated that a measuring stick moving very fm relative to any one of our
stmhxps is contracted along the line of relative motion, a clock moving very fast runs
slow, and mass is an increasing function of velocity. All these features are inherent in
classical electromagnetmm, and must be shared by all forms of matter in a universe
governed by ‘a principle of relativity. Such a principle places stringent restrictions on
the form of physical law and this is the matter of the special theory of relativity.
Special relativity is now 80 years old and is diffusing into the early stages of uni-
versity physics courses. There is a feeling abroad that exciting things like relativity
should be taught as early as possible, the implication being that the physics of the
19*h century is not exciting. This is unfortunate, for the physics of the 19*® century is
enormously impressive and exciting and much of it is novel to the student commenc-
ing university work. Special relativity only just avoided the 19*® century and is the
daughter of classical electromagnetic theory, which was formulated only some 40 years
earlier.

An early introduction to special relativity has duadvmtages One is that for lack
of appropriate mathematical tools rather arid problems in kinematics assume a dispro-
portionate importance. Another is that familiarity breeds contempt, and many will!
conclude that relativity, too, is dull. But to my mind the greatest disadvantage is that
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vi PREFACE

an early course in relativity usually precedes study of electromagnetism and the student
is thereby deprived of a background which makes sense of the apparently nonsensical.

A number of years ago I lectured to second year undergraduates at Oxford on
the subject of special relativity, but. it was only recently that I was goaded (by the
perversity of some of my colleagues) to write up that material for publication. My aim
when preparing the lectures which appéar in this book was to give a cancise account
of the essential content of special relativity, without compromising the development
of the subject by avoiding (relatively) advanced mathematics. Since the lectures were °
designed for students wio knew little or no relativity, I was also concerned to pay
particular attention to those difficulties, conceptual rather than mathematical, which
invariably snare the vast majority.

Lecture 1 is concerned with the nature of a principle of relativity, the definition of
inertial frames and the relationship between coordinates measured in different frames.
The conflict between Newtonian mechanics, electromagnetism and a universal principle
of relativity is spelt out and illustrated, and the lecture ends with a demonstration
that electromagnetic matter will suffer Lorentz contraction. I believe that the real-
isation that classical electromagnetism predicts that electromagnetic measurihg rods
are shrunk and electromagnetic clocks are slowed when moving relative to the putative
aether is of great help in understanding that tke Lorentz transformations are physically
perfectly acceptable. Lecture 2 is devoted to a-careful and rigorous derivation of thé .
Lorentz transformations themselves, with particular réference to their reciprocal nature.
Lecture 3 deals with the related phenomena of time dilation and Lorents contraction.
Here I have been concerned to make clear which way round the formulae should.be
worked, the reciprocal nature of each phenomenon, and the absence of paradox.

Lecture 4 is largely devoted to the mathematical techniques which are necessary
for grasping the essence of special relatiyity and which make so much easier many cal- .
culations where they cannot be held essentia]. These techniques are then put to work
in obtaining the relativistic Doppler shift and_ in studying the covariance of Maxwell’s
equations. The requirement that conservation of energy and momentum be covariant
leads in Lecture 5 to the identification of the correct expressions for energy and mo-
mentum as components of a 4-vector. The famous relation E = mc? is extracted and
its physical significance is discussed. 4-forces are introduced and the relations between
force, rate of change of momentum and acceleration are developed. The whole works is
illustrated by writing the Lorentz force law in manifestly covariant terms.

Special relativity is verified continually in any high energy physics laboratory and
the manipulation of relativistic kinematics is a tool of the trade of the high energy
physicist. Lecture 6 is concerned wholly with the tricks of this trade and is liberally
illustrated with real examples and problems drawn from high energy ‘physics. It is for -
the reader who wisheg to become familiar with. this practical application of relativity
and may be skimmed or skipped by those who find such appfication repellept. <

Lecture 7 returns to the subject of the correct equations of motion of particles
experiencing a force and deals briefly with the treatment of physical laws obtaining
in an accelerated frame of reference—one of our starships when the drive is on. The
interminable problem known as the twin paradox is then treated in considerable detail—
80 years after the genesis of special relativity this problem continues to perplex successive
generations of students, and not a few of their seniors. '

Lecture 8 is to a large extent disjoint from the rest of the book. In’ the context
of special relativity, neither matter, energy nor informatjon can be propagated faster
than light. But there are lots of things which go faster than light and in the absence
of a careful analysis the.consistency of special relativity as a covering principle for the
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physical world may be questioned. The lecture consists éf a nufnber of examples of
things which go faster than light, ranging from the homely example of scissors through
the old problems of phase and group velocity in classical physics to examples drawn
from astrophysics, such as the apparent superluminal expansion of certain quasars.

The conceptual problems egcouniered in arrangmg a marriage between relativity and
quantum mechanics are discussed.

It would be best if the reader of this book were already acquainted with electro-

- magnetism up to the level of Maxwell’s equations and waves in empty space. 1 hope
however that the book is sufficiently self explanatory that those whose studies are not
that far advanced will nonetheless be able to acquire an understanding of the principle
of relativity and tbe marvellous construction of the physncal world which is expressed
therein.

As in my previous lecture note volume, Lectures on Statistical Mechanscs (Perga-
mon, 1982), PROBLEMS are scattered liberally throughout, the text. They should be
regarded as an integral part of the course. Many are simple éxercises designed to further
understa.ndmg of the fundamental material, while others are there to inculcate facility
in solving realistic problems. The vast majority are very quick and easy . ..but n9t all.
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Lecture 1 WHAT IS RELATIVITY? Y

A particular physical system satisfies a principle of relativity if the laws governing
that system take the same form in all frames of reference moving with constant velocity.
Thus formulated, relativity is a property of a particular set of physical theories. If all
laws of physics take the same form, then the principle of relativity becomes rather a con-
ceptual framework which must be satisfied by any particular theory, and a fundamental
property of the physical universe. -~

Special relativity (Einstein’s relatwnty) provides such a framework, into which the
whole of physics seems to fit and which provides general principles within which any new
theoretical model should be constructed. This framework has superseded that of Galileo
and Newton (which was very fruitful and is very accurate provided only relatively small
velocities are involved), which in turn superseded that of Aristotle (essentially useless).
Relativistic mechanics (the theory of mechanics which satisfies the principles contained
within special r~lativity) is no more difficult than Newtonian mechanics: electrodynam-
ics as formulated by Maxwell satisfied these principles from the outset.

Consider a physicist studying a particular physical system. The simplest system
he could study is a single particle not acted on by any force. It is an abstraction
from experience that such a particle moves in a straight line at constant speed, when
measured with linearly calibrated instruments, unless the physicist and his instruments
are themselves accelerated. A frame of reference in which such a free test particle moves
uniformly is called an snertial frame of reference.

A second observer, moving with his laboratory paraphenalia with constant velocity
relative to the first, will see the single free test particle move with a different constant
velocity. (The simplest situation is a particle at rest with respect to the apparatus
of one observer, but moving with constant velocity with respect to the other). These
considerations serve to define the set of inertial frames of reference.

We now let our observers watch the behaviour of a more complicated physical
system: billiard balls on elastic strings, an atom emitting radiation, a star cluster,
or whatever you like. If a universal principle of relativity holds, any physicist in any
inertial frame will deduce the same laws of physics: the same in form and the same
in numerical content; that is, the laws of physics assume the same form in all inertial
frames of reference.

H.wever philosophically attractive such a principle may seem, its applicability to
the real world must be tested by investigating the real world (and remember that in
accelerated frames of reference the laws of physics seem to assume a different form).

Newtonian mechanics embodies a principle of relativity — not Einstein’s relativity
but Galileo’s.

Consider Newton'’s laws:

. ‘A body will move in a straight line at constant speed so long as no external force
acts on it’,

(This is not circular: it is implicit that something must be around to produce a
force).

We had better add explicitly the qualification ‘observed from an inertial frame,
measurements being made with linearly calibrated instruments’ and assume that we
really can make such measurements. This law may be taken as defining the family of
inertial frames.

2. Force = mass' x acceleration



2 Special Relativity

which may be expressed in any of the forms

d’x d’z.-
F=ma or F-—mw or F'_mdt’

F and a (and x) are vectors: this equation retains its form and numerical content under -
both rotations and translations of the coordinate system. The quantities z; are the
three orthogonal spatial coordinates and ¢ (time) is a universal parameter which can be
eliminated to yield the trajectory (as opposed to the equation of motion) of an object
(for example the parabola described by a flung brick or the ellipse traced by a planet).

How are the coordinates of a particle in one frame related to the coordinates of the
same particle as measured in another (inertial) frame? Let the two frames move with
relative velocity v alorg common z axes

S ' S

A marker at fixed z’ in S’ moves with velocity v along the z axis in S, such that

dz
— =v (1.1)
dt|g,
and conversely
dz’ .
F s = —v (12)

These relations constitute the definition of relative velocity. The Galilean relation be-

tween z and 2’ is (choosing coincident origins for convenience)
=z-vt t'=t or
z=1 + ot t=t¢t'

(1.3)

These are ‘:onsistent equations which satisfy (1.1) and (1.2), but they are NOT the
ONLY equatiox‘s satisfying (1.1} and (1.2).

[PROBLEM: Find another set]
Suppose that in S’

d®z’
Fo=ma
The Galilean transformation then yields
dr’ _dx' _dz . :
F—'I—Et——v or Uy =Ug — VU
dy di=z
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and so if F and m are the same in all such inertial frames the Galilean transformation\
takes you from Newton’s laws in one frame to Newton’s laws in another — same form
and same numerical content. Newton’s laws are covariant with respect to the Galilean
transformations. Look into the origin of force a little further and introduce a potential:

a8 a
37 "3 © V=V

and £y’
mar

d*x

mar

and the equation holds equally well for all observers in inertial frames, provided that

the scalar potential ¢ has the same value at the location of the particle in all frames;
that is, ¢ is invariant under the Galilean transformations.

=-V'¢ transforms into

= —V¢

The corollary of all this is that there is no way of using Newtonian mechanics to
define a meaningful absolute velocity — but if this seems obvious, contrast the case of
accelerations.

The relation
v=u-v

may seem obvious. It isn’t. Many people have terrible difficulties with problems involv-
ing vector addition of velocities at the first encounter. Obvious or not, it works — at -
low velocities. ~

Let’s go on to anotker part of antediluvian physics — optics and electromagnetism
as amalgamated by Maxwell. Maxwell’s equations give the velocity of light equal to ¢
(see Appendix) and we at once ask: with respect to what?

Suppose we suggest half an answer: with respect to some particular inertial frame
(the aether frame). Then we expect that in some other inertial frame that a pulse of
light would propagate with velocity ¢/ = ¢ —v and Maxwell’s wonderful equations would
not be true in any other frame. Why worry? After all, the wave equation for sound gives
the velocity with respect to the medium supporting it and this is Newtonian physics.
Surely we can keep a principle of relativity in the same sense for electromagnetism?
Philosophically yes, but such a principle would be barren for light pervades the entire
universe and would seem to define a universal fancy reference frame defined by Maxwell’s -
equations being true in that frame only.

Let’s look at the troubles with light a bit more quantitatively. The wave
E = E¢sin(k.x — wt) K== (1.4)

and its associated magnetic field satisfy Maxwell’s equations in empty space. The'
argument of the oscillatory function is the phase of the wave and is a pure number
(proportional to a number of wave crests). It may Le visualised as the number of wave
crests passing the point x (or x’) between the time of arrival of the crest which was
at x = 0, ¢ = O and the time ¢, multiplied by (—2x). Since the origins of S, S’ were
defined to coincide and x’ at ¢’ = t refers to the same point in space as x at the time t,
the counting operation will yield the same number in any inertial frame and the phase

¢=kx—wt
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will thus be an invariant.

[PROBLEM: Convince yourself of this. Remember that a wave crest passing the origin
could be marked by introducing a small distortion and the time ¢ could be signalled at
x by funning up a flag]

Rotating coordinates so that x lies along k
¢=kz—wt

and
= ‘{- =c (1.5)

and is the phase velocity in the direction of k, normal to the wavefront. (Notice that
the velocity with which the intersection of a plane of constant phase with any other axis
travels is >c).

Then observer O (in the frame in which Maxwell’s equations hold) measures a
phase ¢ at z, t, and propagation vector k, frequency w. An observer O’ in some other
frame measures the same value of the phase ¢ but k', w’ such that

k'ox' — w't' = kx - wt

where the relation is an identity because the phase is the same number in all frames
for any values of z, t. Using the Galilean relations z’ = z — vt, t/ = ¢ and equating
coefficients we have

k'.(x -vt) -t =k.x —wt

and hence

a

K =k, w'=w-v.k'=w—v.k=w(1-1:—‘) (1.6)

where k is a unit vector normal to the wave front. This of course is the familiar Doppler
shift. The phase velocity in S’ is given by : :

¢ = ik vk  (not equal toc) (r.7)
Note that ¢’ is the phase velocity, normal to the wavefront and is not in general equal
~ 1
to the velocity of a pulse of light (or a photon) given by u’ = ¢ — v (although k.u = ¢').
In S’ a pulse of radiation does not propagate normal to the wavefront (and it does if
Maxwell’s equations are true).

For propagation along the common z axis,
sin(k'z’ — w't') = sin(kz’ — w(1 - g)t')
c

‘and as v — ¢ this equation predicts that an observer chasing the electromagnetic wave
sees a field oscillating sinusoidally in space but not in time. This is not a solution
" of Maxwell’s equations: the free field equations are not covariant with respect to the
Galilean transformations. '

Here is another example, in which sources of the fields are important. Consider the
force per unit length acting between two (infinitely long) strings of charge, at rest in a
frame where Maxwell’s equations hold:
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6[1 6g =06l

This is an elementary problem in electrostatics. The relevant Maxwell equation is
V.E = 4np where p is (three dimensional) charge density
whence / E.dS = 4nq where ¢ is the charge enclosed

within the surface S. If the charge per unit length on a string is o, then E is radial and

given by
2xE(d) = 4no

E@)=2% (18)
d
The force per unit length is
3
Fg = % outward (1.9)
Il

Now suppose the strings move in the direction of their lengths with velo‘gl'fy v relative
to a frame in which Maxwell’s equations hold. The electrical force still takes the form
(1.9), but there is also a magnetic force between the two strings. For steady currents

VxB:%J

and applying Stokes’ theorem
2mm@=%1

21
B(d) = o (1.10)
The force is 1B(d)/c per unit length, or
22
B= 5y inward (1.11)
and I (charge per second) is given by
I=ov
so that the total force per unit length is
202 v?
=20 (v 1.12
Pe2 (%) (112)

[The two infinitely long strings were chosen to get rid of retardation effects. The results
are correct in a frame in which Maxwell’s equations are true, although the result for
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the electric field of a moving string may surprise you if you xnow the result for the
transverse field of a moving (point like) particle]. If the measured value of o is the same
in the Maxwell frame and in a frame moving with the strings, then the two different
values obtained for F are inconsistent with Galilean relativity and again the appropriate
Maxwell equations could not hold in the moving frame.

Since the validity of a universal principle of relativity is to be determined exper-
imentally, consider the results of experiments which tested explicitly for the existence
of a preferred frame. The original experiment was that of Michelson and Morley, in
which a Michelson interferometer with two equal length arms at right angles was ro-
tated through 90° while the fnnges formed were observed. A movement of the fringes
by an amount proportional to % 1—, where v is the velocity of the interferometer through
the aether (or with respect to “the Maxwell frame) was expected: no fringe shift was
observed.

[PROBLEM: Work out the expression for the fringe shift as a function of the arm
lengths, wavelength of light employed and velocity v. Evaluate it for arm lengths of
1m and v ~ 30kms™! (orbital velocity of *he earth), v ~ 200 km s~ (velocity of the
sun around the galaxy) and v ~ 400 kms~! (velocity of the sun with respect to the
microwave background).]

The most sensitive experiment looking for motion relative to a preferred frame
employed the Mdssbauer effect to look for Doppler shift variations, eq. (1.6). 14.4 KeV
photons from the decay of 57 Fe (fed by 8 emission from 57Co) have a natural line width
A“’ ~ 1071% and at room temperature the iron nuclei are sufficiently locked into the
crystal lattice that the recoil momentum is taken up by a patch of crystal rather than
by the daughter nucleus. First order Doppler shifts due to thermal jiggling are also
absent. If an absorbing iron foil (enriched in 57Fe) is moved towards or away from a
14.4 KeV 57Fe source, the change in absorbtion as a function of velocity is sensitive to
velocities < 0.1 mms~*.

Consider a source moving through the preferred frame with velocity v,, frequency
(in the source frame) w,. Then from (1.6)

u,=w(1——1“)

where w is the frequency in the Maxwell frame. The frequency measured in the absorber
frame is similarly
We =W (1 - El})
¢
Vo=V, »

W, — W =w———Kk
c

so that

V, =U, -V, VvV, =u, ~ v where u,, u, are the laboratory velocities of the source and
absorber and v is the velocity of the laboratory through the preferred frame. Thus

w,—wa=w(u) & (1.13) .

c

At first sight, (1.13) is independent of v. This is not in fact the case, for the scalar
product contains dependence on v. The direction of travel of the photons P is offset
from k by ~ ¥ and so if p.(u, -- u,) = 0 then

w, ~ wg = wlug — u.).:—, (1.14)



What is Relativity? 7

In the aether drift experiment, the source and abeorber were mounted at opposite ends
of the diameter of a turntable which could be rotated at high speed. Then p.(us —u,)
is indeed zero and so “«=“s will oscillate with the rotational frequency of the turntable
and an amplitude propomonal to the component of v in the plane of the turntable. A
limit v < 5cms~! has been set [Reference G. R. Isaak, Phys. Bull. 21 255 (1970)].

[PROBLEM: (There is no easy way to solve this—it has to be worked out carefully and
requires some playing around. These sort of considerations are of enormous importance
in real experimental physics). At first sight, p.(us — u,) = 0 seems obvious for the
turntable — the photon travels along a diameter, doesn’t it? The answer is no, because
of the finite speed of light in the laboratory, which changes with orientation of the source
and absorber relative to v. So first show that p.(u, — u,) really is zero, for source and
absotber opposite, each at a radius R, independent of the velocity with which the photon
travels in the laboratory. But you will never locate them precisely at a distance R, so
take radii R, and R, and show that p.(u, — u,) is still sero. Then remember that the
source and absorber will not be precisely located on a diameter (and in any case cover
finite areas) so show that even so p.(u, — u,) is zerol]

So experiments designed to detect the motion of a terrestrial laboratory relative to
an aether frame reveal no such effect — what do we do? Make some guesses (and in
the early stages we don’t worry if the philosophers tell us our hypotheses are ad hoc.)

1. Perhaps an aether (with mechanical properties) is dragged along as a boundary
layer with the earth? NO (because the apparent angular position of stars changes with
a period of 1 year — stellar parallax.)

2.  Perhaps the preferred frame is always the emitter frame? NO (initially ruled out by
observation of binary stars, but this evidence is probably vitiated by the phenomenon
of extinction — light is absorbed and reradiated by the interstellar medium and the
memory of source velocity would disappear in a few light years. But the velocity of
photons from the decay of % travelling with a velocity ~ ¢ in the laboratory has been
measured and is ~ ¢ rather than 2¢ [T. Alvager et al., Phys. Lett. 12 260 (1964)])

3.  Given a theory with a preferred frame, do we really expeét to MEASURE a
direction dependent velocity?

Lorentz’s answer to this question was NO, because Maxwell’s equations, taken as
true in one frame, lead us to expect a longmxdma.l contraction of apparatus moving
with respect to this frame (and so the Lorents contraction is more than an ad hoc
hypothesis).

Suppose a measuring stick (or the arm of a Michelson interferometer) consists of
charges sitting at the bottom of electrostatic potential wells. In regions of space where
the charge density is zero, the scalar potential may be chosen to be a solution of the
equation

vig - 1% _ 0 : (1.15)

in the Maxwell frame.
The scalar potential in a measuring stick at rest with respect to the aether thus
satisfies the Laplace equation
vig=0 .
In motion, the scalar potential ¢  of the stick must satisfy (1.15) in the Maxwell frame, .
because the potential at fixed x changes with time. If the stick moves in the x direction

with velocity v, then
éa = dne(z £ 0t)
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=4 so 2 a2
a ¢M — za ¢M
atr " 9zt

Freezing the picture at a given instant, the potential must satisfy the equation

ém v | 3%m | F¢m
o \1"a)t o e =0 (1.16)

this pattern moving with velocity v through the aether. This equation is just Laplace’s
equation again, in scaled coordinates -

Vidm =0

where
er z

T = e = v = 2.
M \/l_—-v_z/?’ yM =Y,

We may therefore set §ps(xns) = const ¢(x) and the distance between maxima and
minima of ¢as is the same, measured in terms of z,¢, as the separation between maxima
and minima of ¢, measured in terms of the true Maxwell frame coordinate z. Thus for
the moving rod, the distance between maxima and minima measured in terms of z is
reduced by a factor \/1 — v3/c3. This is precisely what is needed to account for the null
result of the Michelson-Morley experiment with equal arm lengths. This result suggests
that charge density is likely to be increased (in order to match the equipotentials) and

[-4

if for a moving string of charge o)y = m THEN we no longer have any problem

with the (transverse) force per unit length acting between strings of charge (eq. (1.12)).
[This also removes the apparent contradiction between the transverse fields of & moving
point particle and eq. (1.8)).

This is of course not the whole story. A purely static distribution of charges is
not stable, but there are a number of other interesting effects which are relevant. The
momentum in the electromagnetic field of a point (or very small) particle can be cal-
culated via Maxwell’s equations and it rises faster than linearly with velocity in the
Maxwell frame, giving rise to different transverse and longitudinal masses. The shape
of the orbit of a bound state of two charges moving through the Maxwell frame can be
calculated and indeed is shrunk by a factor \/1 — v2/c? (where v is the velocity of the
centre of mass of the pair through the aether) AND the period is increased, relative to an

identical molecule at rest. Setting aside the problems of constructing a consistent clas— ——

sical theory of electromagnetic matter, there is every reason to believe that if Maxwell’s
equations are true in a given frame, then pure electromagnetic measuring sticks are
shrunk when moving relative to this frame and pure electromagnetic clocks are slowed.
Electromagnetism is so constructed that pure electromagnetic matter does not allow
you to detect a preferential frame at all, and provided measurements are made with
electromagnetically constructed instruments, Maxwell’s equations will be equally valid
in all inertial frames, but coordinates so measured will not be related by the Galilean
transformations. : ’

Natural reactions:

(1) Horribly complicated.

It is indeed, but this is the way the Lorents transformations were first obtained.
It is fascinating to read the accounts of these hercic struggles given by Lorentz and
by Larmor — despite the (charmingly) archaic phraseology, they speak to the heart of
anyone who has lived through the last twenty years of particle physics.
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(2) But matter is not pure electromagnetic anyway.

True, but perhaps nature has organised a conspiracy so that we can never detect
these effects with anything? Then we could forget about preferred frames. We make
T measurements with real rods and clocks and in motion they do funny things relative to
Galilean space. Maxwell’s equations (interpreted in terms of real measurements with
apparatus constructed from electromagnetism) are covariant under a set of transforma-
tions other than the Galilean — the Lorentz transformations. If there is a universal
conspiracy, we may adopt the point of view that velocity does the same funny things to
all clocks and rods or we may work directly in terms of real measurements and relate the
coordinates of an event measured in two different inertial frames through the Lorentz
transformations rather than the Galilean. These two points of view are operationally
indistinguishable. We shall investigate the second — special relativity. We shall find the
Lorentz transformations of course, and a corollary. If a principle of relativity embody-
ing the Lorentz transformations holds universally, then Newtonian mechanics requires
modification.

GENERAL REFERENCES
Lorentz’s viewpoint may be found in a paper (1904) reprinted in

The Principle of Relativity, A. Einstein et al (Dover 1952) — still in print.
It is also discussed in ’

The Theory of Electrons, H. A. Lorentz (2nd ed. Leipzig, New York 1916)
Larmor’s work is contained in

Aether and Matter, J. Larmor (Cambridge 1900)

These two books are relatively rare but can be found in some libraries. A modern
account of this approach is given by

J. 8. Bell, Prog. Scientific Culture 1/2 135 (1976)



Lecture 2 THE LORENTZ TRANSFORMATIONS

In the first lecture we more or less defined the concept of a principle of relativity,
defined inertial frames, investigated the Galilean transformations and Newton’s laws
and then passed on to electromagnetism. We found that even in an aether theory
there are good grounds for expecting the null result of the Michelson-Morley experiment
because the theory predicts the contraction of measuring rods (and the slowing of clocks)
travelling through the aether. The contraction also fixes up the force between moving
strings of charge and in no case is motion with respect to the aether observable. If all
forms of matter are identically affected by velocity, then we may retain a principle of
relativity.

We retain the idea of inertial frames, in which particles which are not acted on by
any force move with constant velocity and in which physics does not depend on either the
origin or orientation of the coordinate system. We postulate that Maxwell’s equations
take the same form, with the same numerical content, in all such inertial frames, and seek
a relation between measured coordinates (z;, t) in one inertial frame S and the measured
coordinates of the same event (z, t') in another frame S’, such that this condition is
satisfied; in particular the measured velocity of light is a universal constant. In special
relativity we further postulate that all inertial frames are equivalent, that the whole of
physics is governed by equations equally true for all unaccelerated observers and that
these equations retain their form and numerical content under the transformations we
are seeking. Because we have learned that in an aether theory funny things happen to
rods and clocks as a function of velocity, the transformations we seek need not accord
with our intuition (but they had better reduce to the Galilean transformations in the
low velocity limit).

Philosophically, we are shifting our view of space and time from one in which they
are marked off in absolute units, to which a key exists, to an operational view in which
space is that which is measured with measuring sticks and time is that which is measured
with clocks. It is convenient and appropriate, seems obvious once spelt out,, but is not
strictly necessary.

(z:, t) are the coordinates of an event measured by a given observer and his as-
sistants in an inertial frame S, using standard instruments. (For example, the unit of
length could be 10® 2C atoms, the unit of time a reciprocal atomic frequency, and
clocks at different places in S synchronised using the laws of physics obtaining in S).
The same event (make it a supernova explosion if you want to be spectacular) has coor-
dirates (z{, t') measured by an observer in S, using instruments constructed according
to the same physical specification as those in S. What must the relation be between
(s, t) and (2!, t') if both observers find Maxwell’s equations are true?

There is no correct way. of deriving these transformations (the Lorentz transforma-
tions). Lorentz discovered them by playing about with Maxwell’s equations, a long and
hard route. The important thing is the output, not the input. It is perfectly in order to
make plausible guesses, so long as the answer is satisfactory. A rigorous derivation can
only proceed from a set of assumptions, usually with the benefit of hindsight, and here
we shall work from two very simple assumptions. The first (abstracted from Maxwell’s
equations) is that the speed of light is a universal constant ¢, measured in any inertial
frame. The second assumption is that the transformations are linear in (z;, t), (z/, t').

A general transformation is

z; = fi(zi:t)
t, = f‘(z,',t)
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