

ENERGY SCIENCE AND ENGINEERING: Resources, technology, management

AN INTERNATIONAL SERIES

SOLAR CELL DEVICE PHYSICS

STEPHEN J. FONASH

Solar Cell Device Physics

Stephen J. Fonash

Engineering Science Program The Pennsylvania State University University Park, Pennsylvania

1981

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers New York London Toronto Sydney San Francisco COPYRIGHT © 1981, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 7DX

Library of Congress Cataloging in Publication Data

Fonash, S. J. Solar cell device physics.

(Energy science and engineering) Includes bibliographical references and index. 1. Solar cells. 2. Solid state physics. I. Title. II. Series. TK2960.F66 621.31'244 81-14934 ISBN 0-12-261980-3 AACR2

PRINTED IN THE UNITED STATES OF AMERICA

81 82 83 84 9 8 7 6 5 4 3 2 1

Solar Cell Device Physics

.

ENERGY SCIENCE AND ENGINEERING: RESOURCES, TECHNOLOGY, MANAGEMENT An International Series EDITOR JESSE DENTON Belton, Texas

- LARRY L. ANDERSON and DAVID A. TILLMAN (eds.), Fuels from Waste, 1977
- A. J. ELLIS and W. A. J. MAHON, Chemistry and Geothermal Systems, 1977
- FRANCIS G. SHINSKEY, Energy Conservation through Control, 1978
- N. BERKOWITZ, An Introduction to Coal Technology, 1979
- JAN F. KREIDER, Medium and High Temperature Solar Processes, 1979

STEPHEN J. FONASH, Solar Cell Device Physics

To My parents Margaret and Raymond for setting me on the path toward intellectual pursuits My wife Joyce for her continuing support along the way My sons Stephen and David for making the journey so enjoyable

Preface

This book is concerned with the physical principles and operating characteristics of solar cell devices. Its approach is to provide a balanced, in-depth qualitative and quantitative treatment. Physical principles and physical insight are stressed throughout the book so that it may be used to understand the operation of the devices of today as well as the devices of the future.

Sections such as "qualitative discussion," "configurations and performance," and "notes for the experimentalist," found in each of the chapters on specific devices, are presented in the belief that a physical "feel" for device operation and a knowledge of the advantages and disadvantages of a specific device are necessities. The more mathematically oriented sections are presented in the belief that the serious student and researcher alike want to know the assumptions behind the mathematical models used to quantify device behavior. Only then can they judge the appropriateness of the assumptions to new devices and new materials.

The level of the book is such that it is appropriate for use as a textbook for graduate students in engineering and the sciences, and as a reference book for those actively involved in solar cell research and development. Since the book has extensive qualitative discussion of physical phenomena and device operation, it can also serve as a textbook for seniors in electrical engineering and applied physics. When used at this level, the more mathematically oriented sections can be omitted and the emphasis placed on the physical description, the final mathematical model for the operating characteristics of the device, and device performance data. At whatever level the book is used, it will be essential for the reader to have an introductory knowledge of solid state physics and devices as provided in standard texts.

Assuming this background, the book begins, after an introductory chapter, with a review of the physics and materials properties basic to photovoltaic energy conversion (Chapter 2). Careful attention is given in Chapter 2 to the electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials being considered. The manner in which these properties change from one material class to another, and the fundamental reasons for these changes with their implications for photovoltaics, are discussed.

Generation, recombination, and bulk transport are also covered in Chapter 2. The latter is discussed for both transport via delocalized band states and transport via states in the gap. Rather than simply presenting the usual equations of solid state for generation, recombination, and transport phenomena, the origins of the mathematical models are explored. This is done to point out the assumptions on which our models are built. Only with that knowledge can one select the proper model for a particular material and situation. Chapter 2 closes with a discussion of the fundamental origins of photovoltaic action in materials.

Chapter 3 begins with a comparison of the two mechanisms of photocarrier collection in solar cells: drift and diffusion. The importance of interfaces in the collection process is pointed out, and interface types, interface modeling, and interface transport are discussed. A unified approach, which stresses the roles of thermodynamics, defects created in the act of forming the barrier, intrinsic surface states, and interface or intermediary layers is used in determining interface properties for configurations as diverse as semiconductor-semiconductor heterojunctions and liquid-semiconductor junctions. An extensive tabulation of semiconductor data important to photovoltaics is presented, together with data on work functions which include effective work functions for selected redox couples.

Chapters 4-6 deal with specific solar cell device classes defined in terms of the interface structure employed: Chapter 4 covers homojunctions (p-n, p-i-n); Chapter 5 covers semiconductor-semiconductor heterojunctions (isotype and anisotype) including S-I-S; and Chapter 6 covers surface-barrier devices (M-S, M-I-S, and liquid-semiconductor). Each of these chapters contains a qualitative discussion of the operation and the design considerations of the device class. Each of these chapters also includes an in-depth quantitative analysis of the device characteristics, which clearly shows the assumptions and range of validity of the analysis. In the quantitative sections the mathematical development is always given a physical interpretation. The mathematics is viewed as a tool to quantify and catalog the important aspects of device behavior. Each device chapter closes with an extensive survey of specific device configurations and experimental results.

Acknowledgments

The book evolved out of notes used in "solar cell device physics," a graduate course given at The Pennsylvania State University. That evolution was helped along considerably by the comments of the series of graduate students who took the course over its six-year history. Among them I must especially single out Patricia Wiley and Paul Lester, whose comments and corrections of errors were very helpful. Also, a number of colleagues, including Dr. John Houlihan and Dr. S. Ashok, have contributed comments and suggestions. In particular, I am very grateful to Professor Ashok whose suggestions, stimulating comments, and diligent, critical reading of the manuscript greatly improved the final result.

Lastly, I must mention the three people without whom this book never would have been completed: Stella Updegraff, who typed the manuscript, helped in its editing, and retyped the final manuscript; Dr. John Mentzer, who provided the environment that allowed an undertaking such as this; and my wife Joyce, who greatly assisted and supported the effort.

List of Basic Symbols

SYMBOL	DEFINITION	UNITS
а, с	Lattice parameters	nm
A*	Effective Richardson constant	$amp/m^2/^{\circ}K^2$
С	Capacitance per area	farads/m²
d	Interfacial layer thickness	m
D*	Ambipolar diffusion coefficient	m ² /sec
е	Magnitude of the charge on an electron = 1.602×10^{-19}	C or coulomb
Ε	Energy of an electron	joules, eV
E _c	Conduction band edge	eV
$E_{\rm F}$	Fermi level or electrochemical potential	eV
$E_{ m F}^{i}$	Quasi-Fermi level for <i>i</i> th localized state grouping	eV
$E_{\rm Fi}$	Intrinsic Fermi level	eV
$E_{\mathrm{F}n}, E_{\mathrm{F}p}$	Electron and hole quasi-Fermi levels	eV
E_{g}	Forbidden energy gap	eV
E_{gm}	Mobility energy gap	eV

SYMBOL	DEFINITION	UNITS
E_{go}	Optical energy gap	eV
E_{p}^{gc}	Energy of phonon	joules, eV
E_{ph}^{P}	Energy of a photon	joules, eV
$E_{\rm redox}^{0}$	Standard redox potential measured	eV
iedox	with respect to the standard	
	hydrogen electrode (obtained for	
	$N_0^{\rm re} = N_0^{\rm ox})$	
E_{v}	Valence band edge	eV
E _{VL}	Vacuum level	eV
f	Probability of occupation function	
f_0	Probability of occupation in	
50	thermodynamic equilibrium (the	
	Fermi function)	
F _e	Total force on an electron in a	Ν
0	solid ($F_e = -e[\xi + \xi'_n]$)	
Fh	Total force on a hole in a solid	Ν
	$(F_h = e[\xi + \xi'_p])$	
FF	Fill factor defined by $(V_{mp}J_{mp})/$	
	$(V_{\rm oc} J_{\rm sc})$	
g	Generation rate	$sec^{-1}m^{-3}$
$g_{e}(E)$	Density of electron states in energy	$eV^{-1}m^{-3}$
	per volume of the solid	
$g_{p}(E)$	Density of phonon states in energy	$eV^{-1}m^{-3}$
	per volume of the solid	
$G_{\mathbf{e}}^{\mathbf{c}}(\mathbf{r},\mathbf{v})$	Density of conduction-band states	sec ³ m ⁻⁶
• • •	per volume of velocity space per	
	volume	
$G_{e}^{v}(\mathbf{r},\mathbf{v})$	Density of valence-band states per	sec ³ m ⁻⁶
	volume of velocity space per	
	volume	
G_{L}	Optical generation rate	m ⁻³ sec ⁻¹
h	Planck's constant = 6.625×10^{-34}	joule-sec
ň	Planck's constant/ $2\pi = 1.054 \times 10^{-34}$	joule-sec
J	Current density	amp/m ²
J_{bk}	Bucking current $J_{bk} = J_{bk}(\Phi_0, V);$	amp/m ²
	in general, goes to zero as $V \rightarrow 0$	
$J_{\rm fe}$	Field emission current density	amp/m ²
J _{ir}	Interface recombination current	amp/m ²
	density	-
$J_{\rm mp}$	Current density at the maximum	amp/m ²
	power point	

Personal and the second second

Bran Brand State

SYMBOL	DEFINITION	UNITS
J_{ob}	Thermionic emission current density	amp/m ²
$J_{\rm ph}$	Photocurrent $J_{ph} = J_{ph}(\Phi_0, V)$; in general, goes to zero as $\Phi_0 \rightarrow 0$.	amp/m ²
$J_{\rm sc}$	Short-circuit current density	amp/m ²
$J_{\rm tf}$	Thermionic field emission current density	amp/m ²
k	Wave vector	m^{-1}
L^*	Ambipolar diffusion length	m
$L_{Dn} \text{ or } L_n \& \\ L_{Dp} \text{ or } L_p$	Diffusion length for electrons or holes	m
$L_{\xi n}, \dot{L}_{\xi p}$	Drift length for electrons or holes	m
m	Mass	kg
m _e	Mass of a free electron = 9.108×10^{-31}	kg
m_{e}^{*}	Effective mass of electron	kg
$m_{\rm h}^{*}$	Effective mass of hole	kg m ⁻³
n	Conduction-band number density; Diode quality factor	
n _i	Intrinsic number density	m^{-3}
N _c	Conduction-band effective density of states	m ⁻³
N_0^{ox}	Concentration of oxidized species of a redox couple when system is in thermodynamic equilibrium	m ⁻³
N ₀ ^{re}	Concentration of reduced species of a redox couple when system is in thermodynamic equilibrium	m ⁻³
N_{v}	Valence-band effective density of states	m ⁻³
р	Valence-band number density	m ⁻³
P _{in}	Power per area impinging on cell structure	Watts/m ² or W/m ²
Q	Collection efficiency	
\tilde{Q}_{b}^{-} or Q_{b}^{+}	Charge/area developed in a semiconductor space charge region	coulombs/m ²
Qe	Charge/area developed in electrolyte (Helmholtz and Gouy layers)	coulombs/m ²

SYMBOL	DEFINITION	UNITS
$Q_{\rm fix}$	Fixed charge/area	coulombs/m ²
$\widetilde{Q}_{ m s}^{-}$ or $Q_{ m s}^{+}$	Charge/area developed at an	coulombs/m ²
2. 2.	interface or surface	,
r	Recombination rate	sec ⁻¹ m ⁻³
R	Net recombination rate	$\sec^{-1}m^{-3}$
S	Seebeck coefficient	eV/°K
t	Time	sec
Т	Temperature	°K
$\langle v \rangle$	Thermal speed	m/sec
V	Voltage	volts
V_{bi}	That part of the total electrostatic	eV
	potential which is developed in a	
	semiconductor	
V_j	Change in the band bending across	V or eV
	a junction	
V_{mp}	Voltage at maximum power point	amp/m ²
$V_n(\mathbf{r})$	Defined by $V_n(\mathbf{r}) = E_c(\mathbf{r}) - E_{Fn}(\mathbf{r})$	eV
V_0	Total electrostatic potential energy	eV
	developed across an interface in	
	thermodynamic equilibrium	
V _{oc}	Open-circuit voltage	volts
$V_p(\mathbf{r})$	Defined by $V_p(\mathbf{r}) = E_{\mathbf{F}p}(\mathbf{r}) - E_{\mathbf{v}}(\mathbf{r})$	eV
W	Activation energy for hopping;	eV
	Space charge layer width	m _1 _1
α.	Absorption coefficient	m^{-1}, cm^{-1}
$\Delta, \Delta_{\rm I}$	Potential energy developed across	eV
	an interfacial layer or developed	
ΔE	by a surface dipole	-V
	Bandwidth; activation energy	eV for a d/m
3	Permittivity of a material Mobility	farad/m m²/(V-sec)
μ n	Thermodynamic efficiency defined	III /(v -sec)
η		
ξ	by $V_{mp}J_{mp}/P_{in}$ Electrostatic field	V/m
s Sn	Electron effective force field arising	
nc	from varying material properties	V/m
ξ'_p	Hole effective force field arising	V/m
d c	from varying material properties	*/111
Ξ	Transmission probability	_
$\frac{1}{\rho}$	Resistivity	Ω-m
ρ σ	Conductivity	ʊ/m
	······································	-/

xviii

a a contraction of the second s

The second contract of the second second

SYMBOL	DEFINITION	UNITS
σ_n, σ_p	Electron and hole conductivities	്ഗ/m
τη	Minority-carrier lifetime (electrons)	sec
τ_p	Minority-carrier lifetime (holes)	sec
ϕ	Defined such that $\Phi_0 = \phi \Delta \lambda$	$m^{-3}sec^{-1}$
$\phi_{ m B}$	Schottky barrier height	eV
$\phi_{ extsf{M}}$	Metal work function	eV
$\phi_{n,p}$	Semiconductor work function	eV
ϕ_0	Short-range neutrality energy	V or eV
ϕ_{redox}	Redox couple work function	eV
Φ_0	Number of photons of wavelength λ to $\lambda + d\lambda$ per area per second at some reference point x_0	$m^{-2}sec^{-1}$
χ	Electron affinity	eV
ω	Angular frequency of vibrational mode in solid; angular frequency of incident electromagnetic radiation	sec ⁻¹
Ω_n	Capture cross section for electrons	m ²
Ω_p	Capture cross section for holes	m ²

-

Contraction of the second second second

Contents

Preface	
Acknowledaments	xiii
List of Basic Symbols	xv

CHAPTER 1 Introduction

1.1	Photovoltaic Energy Conversion	1
1.2	Solar Cells and Solar Energy Conversion	2
1.3	Solar Cell Applications	3
1.4	General Outline	4
1.5	Some Comments	4
	References	5

CHAPTER 2	Physics and Materials Properties Basic to
	Photovoltaic Energy Conversion
•	

2.1	Introduction	6
2.2	Structure of Solids	7
2.3	Phonon Spectra of Solids	11
2.4	Electron Energy Levels in Solids	14
2.5	Optical Properties of Solids	23
2.6	Recombination, Trapping, and Generation in Solids	30

CONTENTS

2.7Transport Processes in Solids372.8Origins of Photovoltaic Action562.9Concluding Remarks64References66

CHAPTER 3 Solar Cell Materials and Structures

3.1	Introduction	69
3.2	Absorber Materials	70
3.3	Interfaces	75
3.4	Interface Types	85
3.5	Interface Transport Mechanisms	116
3.6	Interface Configurations Used in Solar Cells	120
3.7	Barrier Formation-Localized States and Doping	125
3.8	Optimum Band Gap Selection for the Absorber	127
3.9	Concluding Remarks	130
	References	131

CHAPTER 4 Homojunction Solar Cells

4.1	Introduction	133
4.2	Homojunction Solar Cell Device Physics	137
4.3	Homojunction Cell Configurations and Performance	170
4.4	Notes for the Experimentalist	181
	References	184

CHAPTER 5 Semiconductor-Semiconductor Heterojunction Cells

5.1	Introduction	187
5.2	Heterojunction Solar Cell Device Physics	189
5.3	S-S and S-I-S Heterojunction Cell Configurations and Performance	247
5.4	Notes for the Experimentalist	257
	References	259

CHAPTER 6 Surface-Barrier Solar Cells

6.1	Introduction	262
6.2	Surface-Barrier Solar Cell Device Physics	265
6.3	Surface-Barrier Solar Cell Configurations and Performance	317
6.4	Notes for the Experimentalist	322
	References	324

viii

327