the basics of

BASIC

Alfredo C.Gomez

C
basics of
BASIC

Alfredo C. Gomez

Broward Community College
Fort Lauderdale, Florida

Digital Data Systems, Inc.
Fort Lauderdale, Florida

Holt, Rinehart and Winston

New York * Chicago < San Francisco ¢ Philadelphia
Montreal ¢ Toronto * London < Sydney °* Tokyo
Mexico City + Rio de Janeiro * Madrid

The computer-generated art shown on the cover was supplied by Dr. Melvin L. Prueitt, Los Alamos National
Laboratory. It is a summation of exponential functions, and the colors denote altitudes.

Copyright © 1983 CBS College Publishing
All rights reserved.

Address correspondence to:

383 Madison Avenue, New York, NY 10017

Library of Congress Cataloging in Publication Data

Gomez, Alfredo, 1939-
The basics of BASIC.

Includes index.
1. Basic (Computer program language). 1. Title.
QA76.73.B3G645 1983 001.64'24 83-8431

ISBN 0-03-0b30kL9-X

Printed in the United States of America
Published simultaneously in Canada
3456 039 987654321
CBS COLLEGE PUBLISHING

Holt, Rinehart and Winston

The Dryden Press
Saunders College Publishing

the
basics of
BASIC

To my father and mother
who made it possible

Preface

The question is often asked: Why another BASIC programming book? This text meets
the needs of college students and professionals by providing a comprehensive, machine-
independent manual. Most of the programming examples are business oriented, but
some math examples have been used to illustrate specific concepts.

The book contains a large number of programming examples. A two-step technique
has been used to illustrate each concept. Following one or two simple programs a more
realistic, longer program is given. This allows the reader to become familiar with
practical programs.

Each BASIC statement or programming concept is first illustrated using the most
elementary form of BASIC. However, what can be done with more advanced versions of
BASIC is also explained.

Chapter 4 covers an introduction to the programming process, flowcharts, and
structured programming. I feel these concepts introduced early in the book are of
considerable value. Flowcharts and structured programming techniques are illustrated
throughout the book.

A question and answer section follows most chapters. The purpose of these sections
is to cover some of the more subtle items that often come up when learning program-
ming. The questions are based on the questions students normally ask in my classes.

Realizing the importance of file handling, a separate chapter has been included.
Chapter 11 includes examples of file handling in three major versions of BASIC: BASIC
PLUS by Digital Equipment Corporation, TRS-80 Level II by Radio Shack, and
AppleSoft by Apple Computers.

For those students who have never taken a course in introductory data processing,
Appendix A covers most of the elementary concepts that are needed prior to taking a
course in BASIC programming. The appendixes also include a summary of all BASIC
statements and a description of several of the most popular versions of BASIC.

Alfredo C. Gomez

Contents

Preface

1.

Getting Started in BASIC

Statement numbers ¢ The BASIC character set + Constants
Variables « Expressions ¢ [nput-output statements + Strings
The REM statement ¢« END and STOP statements

Some important BASIC commands +« Debugging a BASIC program
Validating input < Elementary editing + Questions and answers
Exercises

Performing Calculations

The LET statement + Arithmetic operations ¢ The priority of
mathematical operations « More complex arithmetic statements
Exercises

Getting Information In and Out

READ and DATA statements « The INPUT statement « Using
READ-DATA and INPUT in the same program + Conversational
programs e« The PRINT statement + Printing alphanumeric labels
Printing values + Output spacing + Variables separated by commas
Variables separated by semicolons + Semicolons and commas at the
end of a PRINT statement « Spacing of long literals

The use of the TAB(X) function <« Performing calculations with the
PRINT statement + Mixing all forms + Handling large and small
numbers + Questions and answers « Exercises

The Programming Process: Flowcharts and
Structured Programming

The programming process + Some guidelines for beginners
Flowcharts + Flowchart symbols ¢ Flowcharting a procedure

vii

13

20

42

The Basics of BASIC

Some typical flowchart solutions + Repeating calculations
The use of the decision symbol + More advanced flowcharts
Other flowcharting techniques - Structured programming
Control structures » Questions and answers + Exercises

Transfer of Control 60

The GOTO statement + An infinite loop - The IF-THEN statement
The relational operators + Flowcharting the IF-THEN statement

The priority of the different operations + Replacing the word THEN
with an actual statement - Compound IF statements

The IF-THEN-ELSE statement - Counters + Standard counter
Accumulator counter + Multiplicative counters ¢« The ON GOTO
statement + Exercises

Deciding and Repeating 84

Automatic looping + Flowcharting the FOR-NEXT loop
Indenting for program clarity + The FOR-NEXT loop
Transferring into and out of FOR-NEXT loops

Nested loops « Rules for nested loops

Plotting a bar graph « Questions and answers

Exercises

Subscripted Variables 98

Why subscripted variables? « Subscript rules + The DIM
statement + An array search ¢ Sorting with subscripted variables
A depreciation example < A statistics example

Frequency distribution program « Two-dimensional array

The DIM statement for two-dimensional arrays + Two-
dimensional array problem « A second example of two-dimensional
arrays ¢ Another example of two-dimensional arrays + Three-
dimensional arrays + A three-dimensional array

problem ¢ Questions and answers <« Exercises

Subprograms, Subroutines, and Structured
Programming 128

Trigonometric functions + LOG(X) + EXP(X) * SQR(X)
INT(X) + The SGN(X) function ¢ The ABS(X) function
The RND(X) function + Function of functions e« Subroutines

10.

11.

ToFZ

Contents

The GOSUB statement - The RETURN statement + A payroll
example + Multiple returns « Control structures The three
types of control structures + The WHILE loop structure
Comparing structured and nonstructured programming techniques
User-defined functions « Plotting a graph using the DEF statement
Questions and answers +« Exercises

Handling String Variables

A string variable example « A computer-aided instruction (CAI)
example + A computer-generated letter * A grading program
PRINT USING -+ Comparison of string variables

Operations with string variables * Questions and answers
Exercises

Matrices

The MAT READ statement « The MAT PRINT statement
Matrices of zeros and ones + The MAT INPUT statement

A MAT INPUT programming example e+ Using the

MAT INPUT statement for more than two matrices Addition
and subtraction of matrices + Matrix addition and subtraction
example + Adding four matrices ¢ Matrix multiplication « The
process of matrix multiplication + A matrix multiplication program
Matrix sales program + Exercises

An Introduction to File Handling

Direct and sequential files ¢ Creating a virtual file -« Printing a
virtual file + Another example of virtual file creation « Updating
afile + Interrogating a file ¢ File handling with microcomputers
Apple files + A random access using the Apple computer

TRS-80 and IBM Personal Computer files + File handling on the
IBM Personal Computer and the Radio Shack TRS-80 computers
Exercises

Overview of Computers and Data Processing
A Summary of BASIC Programming
BASIC-PLUS Language Summary
BASIC-PLUS Summary of Statements

164

190

208

232
238
247
254

Xii | The Basics of BASIC

E: Applesoft II: Extended, Floating-point BASIC 263
F: Radio Shack TRS-80 Level II BASIC Summary 269
G: Disk Operation with the Radio Shack TRS-80 282
H: Microsoft BASIC 285

Index 301

—————————

Getting
Started in
BASIC

The earlier computer programming languages are somewhat difficult to learn and apply.
As the use of computers became more widespread, it was decided that a new simple
language was needed. This formed the basis for BASIC, an acronym for Beginner’s
All-Purpose Symbolic Instruction Code. BASIC’s very simple grammatical rules, wide
availability, and the fact that it can be learned in a short period of time have made it a very
popular programming language.

BASIC is a general purpose language equally suitable for numerical and non-
numerical applications in business and science. Most computer manufacturers provide
BASIC for their machines and systems. In the microcomputer field BASIC is almost
universally used. This widespread use has- almost made it required knowledge for
anyone in the computational fields in business or science.

Statement Numbers

A program in BASIC consists of a series of statements. These statements, which can be
one line or more in length, are individual instructions. Each statement in the program
must start with a statement number. These numbers have two purposes:

1. The computer uses them to assign a memory location for the statement.
2. The numbers tell the computer the sequence of the program statements, which are
executed in numerical order.

A short program that illustrates the statement numbers is shown below:

10 REM A BASIC PROGRAM TO ADD TWO NUMBERS
20 READ A+B
30 LET C=A+B

40 PRINT C
50 DATA 2.3
60 END

2 | The Basics of BASIC

Note that in this program each individual statement is numbered, and the numbers go
from low to high. In most versions of BASIC the statement numbers can go from 1 to
99999. Note that in the example the first line was numbered 10, the second one was
numbered 20, the third one 30, etc. They were not numbered 1, 2, 3, 4, 5 because quite
often programmers change their minds and decide to insert new statements in between
the ones that have already been written. Line numbering by one does not allow changes
or additions to the program. It is strongly recommended that the lines be numbered to
allow spaces in between so that additions can be included. For example, if the statement
numbers were 10, 20, 30, 40, and 50, then an additional statement number could be
added between existing lines. As an example, 45 would be executed right after 40 and
just before 50. Statement numbers must be unsigned integer constants.

As the program gets more complex, programmers like to increment by 100. It is
common to see programs in which the lines are numbered 100, 200, 300, 400, 500, etc.
In this manner the programmer can make substantial changes between lines.

The BASIC Character Set

The characters permissible in BASIC are grouped into three types:

1. Numeric. The numeric characters are 0, 1, 2, 3,4, 5,6, 7, 8, and 9.

2. Alphabetic. The alphabetic characters are A, B,C, D, E,F,G, H,LJ,K,L,M, N,
O,P,Q,R,S, T,U,V,W, X, Y, and Z.

3. Special characters. The special characters are . , ;“ + —*/ = ()> < 1 §, and the
blank character, which is equivalent to a space on the keyboard. Some versions of
BASIC use other special characters.

Constants

A constant is a value that does not change; its numerical value is fixed and stated
explicitly. Constants appear in many computations. Plus or minus signs as well as
decimal points may be used in conjunction with constants.

Some examples of valid constants are

250 —-8.56
78549 +0.44
~25

Imbedded blanks between the first and last digit do not affect the value of the constant; as
an example,

832 = 8 32= 38 3 2

Getting Started in BASIC | 3

Some examples of invalid constants are

Reason
$50.68 $ is not permitted
65,860 No commas are allowed
689.69 Only one decimal point is allowed

123-46-6492 - is invalid

Variables

Variables, unlike constants, may assume different values. In almost every BASIC
program variable names need to be used since the values associated with a name can be
different every time new data is made available.

In the simplest form of BASIC, the naming of variables is very restricted. The most
elementary form of BASIC only allows a single letter or a letter followed by a digit. A
maximum of two characters is allowed, and no special characters are permitted. Some
examples of legal variable names are

A B X Y
B3 Z8 M4 P6

Some examples of unacceptable variable names are

Reason
BSS Only a single digit is allowed
$X No special characters are allowed
A - No special characters are allowed
5B The letter must precede the digit

FORCE Only a single alphabetic is allowed

With these rules only 286 possible distinct variable names can be obtained since
there are 26 single letters plus 10 X 26 combinations of letters followed by the numbers O
through 9.

Most BASIC compilers allow variables to have many more characters than de-
scribed previously. In fact it is common to find that variable names can be as long as 29
characters. In this manner variable names can be more descriptive of what they repre-
sent. It is suggested that the student check the manual of the system being used in order to
determine the rules for naming variables.

4 | The Basics of BASIC

Expressions

An expression is a combination of constants and variables linked by arithmetic operation
symbols. Expressions are used to perform arithmetic operations. Parentheses may be
included to perform certain groups of operations as an entity. The allowed symbols are

+ Addition

Subtraction

Multiplication

Exponentiation or raising to a power (x* in some systems)
Division

Left parentheses

Right parentheses

A N S I |

Some examples of valid expressions are

Operation BASIC

ab A*B

% A*B/C

a+ bc A+B%C

%—Z (A+B)/(C+D)
(a + b)? (A+B) 12

When parentheses are not present, operations are performed according to the following
priority:

1. Exponentiations
2. Multiplications and divisions from left to right
3. Additions and subtractions from left to right

Parentheses are cleared first, then operations with the higher precedent are performed

before operations with lower precedent. If the operations have equal priority, they are
executed from left to right.

Input-Output Statements

Before operations can be performed, the input data to be processed must be read into the
computer; this is done by means of input statements such as READ and INPUT. Data can
also be entered by an assignment statement such as LET.

Getting Started in BASIC | 5

After the input data has been entered into the computer and the operations per-
formed, the output results have to be printed onto an output device such as a printer or
cathode-ray tube (CRT). This is done by means of the PRINT statement. An example of
a complete BASIC program with READ, DATA, LET, and PRINT statements is shown
in Figure 1.1. A more detailed analysis of input-output statements will be given in
Chapter 3. However, the reader should follow the program shown in Figure 1.1. In
statement 10 of this program, two variables are read, A and B. The variables are read
from DATA statement 40, which contains the values of A and B, which in this case are 2
and 3. When the READ statement is used in order to input data, the DATA must also be
included in the program, and the DATA statement must contain the values of the
variables that are being read. After statement 10 is executed, the value of A becomes
equal to 2 and the value of B becomes equal to 3. In statement 20 the value of a third
variable C is calculated as a sum of A and B. At this point, A, B, and C are defined and
available for future processing. In statement 30 the values of A, B, and C are printed on
the output device. Note that the output appears under the program listing and contains the
values of A, B, and C.

In the next example, two variables are read by statement 10, A and B, which
become 10 and 2, respectively. In statement 20 a third variable C is calculated as equal to
A divided by B. In statment 30, variable D is calculated as equal to A times B. In
statement 40 the program asks for the value of C and D to be printed. The computer
responds and prints the value of C and D following the listing.

Strings

In BASIC programs the data is not always numerical in nature. Often the programmer
needs to read a series of alphabetic and special characters representing names, addresses,
social security numbers, etc. These are called character strings and are used to produce
output reports, to generate labels and headings, or to print messages reflecting a
particular set of conditions.

10 READ A.B

20 LET C = A+B
3@ PRINT A:B,C
48 DATA 2.3

58 END

1@ READ A, B

20 LET C = A/B
30 LET D = A+B
49 PRINT C.D
Se DATA 18,2
60 END

5 28 Figure 1.1

6 | The Basics of BASIC

Character strings or alphanumeric data are defined by a series of letters, numbers,
and special characters in a string. Some examples of character strings are

“JOHN SMITH”
“7440 NW 15TH ST”
“123-48-7744”
“JACK”

“PAYROLL REPORT”

In most cases character strings are enclosed in quotes. The maximum number of
characters allowed in a string varies from system to system, but typically is 256
characters.

In most systems when variable names are used to denote strings rather than
numbers, the dollar sign ($) is placed after the variable name. As an example, A$, BS,
C5$, Z9$ are valid character string variable names.

The REM Statement

The REM statement contains descriptive comments or remarks used to aid the program-
mer in identifying or documenting the purpose of each section of the program. REM
statements are ignored by the compiler or interpreter during translation and only become
part of the program listing.

The programmer should use the REM statement wisely, starting sections of the
program that need to be clarified with concise descriptions or titles. Excessive use of
REM statements can be damaging, since then it becomes difficult to separate the REM
statements from the real program. REM statements can clutter the program and make it
difficult for the programmer to read. This difficulty can be overcome by setting off
comments with asterisks.

All programs should start with REM statements indicating the name of the prog-
ram, defining some of the variable names in a more descriptive manner, indicating the
name of the programmer and the date the program was written, as well as other
appropriate information. Keep in mind that REM statements only appear in the program
listing and have nothing to do with the output of the program. A good rule of thumb in the
use of REM statements is to use them whenever a new part of the program begins. Some
examples of valid REM statements are

10 REM PROBLEM 1
10 REM *%% JOHN SMITH PB 1 PROGRAMMING 101%%%
10 REM *%% STATEMENTS 300-400 COMPUTE DEPRECIATION #*#*=#

END and STOP Statements

Most BASIC programs must end with an END statement. The END statement is the last
BASIC statement in any program and should always be the highest numbered statement.

Getting Started in BASIC | 7

If any other statements are typed beyond the END statement, they may be ignored by the
compiler. Some versions of BASIC do not require an END statement.

The STOP statement indicates where in the program the programmer wants to stop
processing. There may be more than one STOP statement in any one BASIC program.
The STOP statement can be considered as transferring control to the END statement.

The general forms of the END and STOP statements are

statement number END
statement number STOP

Figure 1.2 shows several short BASIC programs that illustrate the use of the REM, LET,

READ, DATA, and PRINT statements. The reader should analyze the examples
carefully.

Some Important BASIC Commands

BASIC commands are not the same as statements. Statements have a statement number
and are written within a program, whereas commands are not accompanied by a number

ILIST

1@ REM PERFORMS ARITHMETIC CALCULATION
@ READ A,B,C
32 D= (R +E / (C+D

4@ PRINT A,B,D

2 DATA 2,5.6,3

6@ END

1RUN

z 5 1. 16666667
16 FEM RERDS TWO STRING VYARIRBLES

28 READ A%. B$, C. D1

30 M = CHDL

43 PRINT AS$,BS$. C. N

S8 DATA JOHN, SMITH, 38.5. 2

60 END

JOHN SMITH 38 201. 4
LISsT

1@ REM PERFORMS ARITHMETIC CALCULATION
2@ READ A,E,C

@D =(R+E) / (R+0D)

4@ PRINT A, E,D

52 DATA 4,2,1

6@ END

1

IRUN X
4 2 1.2 Figure 1.2

