4TH EDITION

E|||ot B Koﬂman

W|th Bruce o

R
To our families, with much appreciation for their love and support—
Caryn, Richard, Deborah, and Robin Koffman

Norma Jean, Benjamin, and Katherine Maxim

Lynne Doran Cote, Sponsoring Editor

Jim Rigney, Senior Production Supervisor

Nancy Benjamin, Outside Production Coordinator
Joyce C. Weston, Text Designer

Joseph Vetere, Technical Art Consultant
Tech-Graphics, Illustrations

Trish Gordon, Manufacturing Manager

Sharon Elwell-Smizter Design, Cover Design

Peter M. Blaiwas, Cover Art Director

Library of Congress Cataloging-in-Publication Data

Koffman, Elliot B.

Turbo Pascal / Elliot B. Koffman with Bruce R. Maxim. —4th ed.

p- cm.

Abridged edition of author’s earlier 4th ed. with same title.

Includes index.

ISBN 0-201-53920-9

1. Pascal (Computer program language) 2. Turbo Pascal (Computer file)
I. Maxim, Bruce R. II. Title.
QA76.73.P2K635 1993

005.26'2--dc20 92-38717
CIP

Turbo Pascal is a registered trademark of Borland International, Inc.

All screen dumps are reprinted with permission. Copyright © 1993, 1991, 1988, 1987
Borland International, Inc.

Copyright © 1993, 1991, 1989, 1986 by Addison-Wesley Publishing Company, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the

publisher. Printed in the United States of America.

123456789 10 HA 979695949392

Preface

This is a textbook for a first course in problem solving and program design
using the Pascal language and the Turbo Pascal Integrated Development
Environment. It assumes no prior knowledge of computers or programming.
High school algebra is sufficient mathematics background for most of the ma-
terial in this book. A limited knowledge of discrete mathematics, however, is
desirable for certain sections.

Our goal in revising this book has been to update the content and organi-
zation in accordance with the most recent computer science curricula recom-
mendations. The last edition closely followed the recommendations of the ACM
Computing Curricula Task Force for CS1[1] and CS2[2]. Many of the changes
in this edition have been influenced by the recent report of the ACM/IEEE-CS
Joint Curriculum Task Force[3].

This new edition provides more emphasis on problem solving, software
engineering, abstraction, and computing theory. We also consolidated all infor-
mation on decision statements into Chapter 4, and all information on loops into
Chapter 5. To accomplish these changes, the first twelve chapters have been
heavily revised.

Turbo Pascal Versions

Although the text uses screens from the latest version of Turbo Pascal (version
7.0), it can also be used with any earlier version of Turbo Pascal that supports
units (versions 5.0 and later). The user screens will be different for earlier
versions, but students should have no difficulty adapting the material in the
text to an earlier environment. You will need Turbo Pascal 5.5 or later to utilize
the chapter on object-oriented programming (Chapter 18), which appears in
the expanded version of the book (see the discussion on Coverage of Advanced
Topics).

The book can be used with either the MS-DOS or Microsoft Windows

1. Recommended Curriculum for CS1, Koffman, E., Miller, P,, and Wardle, C., Communications
of the ACM 27, 10 (Oct. 1984), 998—-1001.

2. Recommended Curriculum for CS2, Koffman, E., Stemple, D., and Wardle, C., Communications
of the ACM 28, 8 (Aug. 1985), 815-818.

3. Computing Curricula 1991, Report of the ACM/IEEE-CS Joint Curriculum Task Force, Tucker,
A.B. (editor), 1991, ACM Press and IEEE Computer Society Press.

v

Preface

Vi

Preface

operating system. If you are using Turbo Pascal for Windows, you must insert
the statement

uses WinCrt;

right after the program statement.

Problem Solving

The connection between good problem-solving skills and effective software
development is established early in Chapter 1 with a new section that discusses
the art and science of problem solving. Chapter 1 also introduces a methodology
for software development based on the systems approach to problem solving
consisting of five phases: specify the problem, analyze the problem, design the
solution, implement the solution, test and verify the solution. The software
development method is used in Chapter 2 to solve the first case study and is
applied consistently to all the case studies in the text.

Chapter 3 continues the emphasis on problem solving by discussing top-
down design, divide-and-conquer, solution by analogy, and generalizing a so-
lution. An important section of this chapter demonstrates how a Pascal program
can be derived by editing the documentation that results from systematically
following the software development method.

Software Engineering

Many aspects of software engineering are covered in the book. Program style
issues are discussed throughout in special displays. The concept of a program
as a sequence of control structures is introduced early in Chapter 3. There are
sections in several chapters that discuss algorithm tracing, using the Turbo
Pascal debugger, and testing.

Chapter 9 is a new chapter on software engineering. This chapter discusses
the system/software life cycle (SLC), prototyping, and programming teams.
There is in-depth coverage of all phases of the SLC, including more discussion
of informal techniques for program testing (e.g., glass-box versus black-box
testing, integration testing, structured walkthroughs) and formal methods for
program verification, including a discussion of loop invariants. This chapter
also reviews procedural abstraction and introduces data abstraction. In this
chapter, we introduce Turbo Pascal units and use unit Crt to create window-
like interfaces. We also show how to write your own units to implement proce-
dure libraries and abstract data types. Chapter 9 concludes with a discussion of
professional ethics.

Procedural Abstraction

Although there is no universal agreement on when to introduce procedures
and procedure parameters, most educators agree on the following points: pro-
cedures should be introduced as early as feasible, procedures should never
process global data (side-effects), and the mastery of procedure parameters is

challenging. The approach taken in the text is to discuss the importance of
program modularization and reusability in Chapter 3 by introducing structure
charts, procedures without parameters, and the standard functions of Pascal.
Sections 3.5 and 3.6 motivate the use of procedures as program-building blocks
by showing some applications of procedures without parameters (e.g., displaying
long lists of user instructions, drawing diagrams). Section 3.7 discusses the need
for parameters and the limitations of procedures without parameters, thereby
providing a foundation for the later study of parameters. Section 3.8 shows
how to use Pascal’s predefined functions.

Chapter 6 completes the study of procedures and functions, covering all
aspects of parameter lists. The chapter begins by discussing procedures with
only value parameters, then user-defined functions with value parameters, and,
finally, procedures with both value and variable parameters. An optional section
at the end of the chapter introduces recursive functions.

Some instructors prefer to cover procedures with and without parameters
together. You can easily rearrange the sequence of topic coverage to do this. If
you want to wait until Chapter 6 to cover procedures with and without param-
eters, you can defer sections 3.5-3.7 until then. Conversely, if you want to cover
procedure parameters earlier, you can cover section 6.1 (value parameters) right
after Chapter 3. You can cover sections 6.2—6.4 (user-defined functions, variable
parameters, syntax of parameter lists) after completing the first two sections of
Chapter 4 (Boolean expressions and the if statement).

Data Abstraction

The software engineering chapter (Chapter 9) introduces data abstraction, pro-
viding the first example of an abstract data type (ADT). We introduce enu-
merated data types and show how to encapsulate a data type and its operators
as a Turbo Pascal unit. Data abstraction and ADTs are used throughout the
remainder of the text. The ADTs appearing in Chapters 11 and 12 have been
extensively revised and improved.

In the expanded version of the text, Chapter 18 discusses object-oriented
programming. We compare and contrast the use of ADTs and objects and
discuss the important concepts of inheritance and polymorphism, which are
central to the object-oriented paradigm.

Consolidation of Decision and Loop Statements

Comments from many previous users of the textbook indicated that the majority
of instructors prefer to discuss both Pascal control structures for selection (if
and case) at the same time. For this reason, Chapter 4 has been revised to
cover the Boolean data type and the if and case control structures. Similarly,
all three control structures for repetition (while, for, and repeat) are covered
together in Chapter 5.

The coverage of files has also been consolidated. The essentials of file usage
are discussed in Chapter 2, so that student programs can read data files pre-

Preface

viii

Preface

pared by the instructor. Chapter 8 provides complete coverage of text files, and
Chapter 15 of the expanded version covers binary files.

Interviews with Computer Scientists

A new feature of this edition is a collection of interviews with several notable
computer scientists (e.g., Peter Denning, Patrick Winston, Adele Goldberg,
Philippe Kahn, C. J. Date, and others), which are placed throughout the text.
These interviews alert beginning students to the breadth of the subject area,
providing them with a description of issues of concern in several fields of
computer science (e.g., artificial intelligence, operating systems, databases, user
interfaces) and some idea of the background preparation needed for success in
these fields.

Increased Coverage of Theoretical Concepts

As recommended by the curriculum committee report, there is increased cov-
erage of theoretical topics. Chapter 7 introduces numerical computation and
iterative approximations, including Newton’s method. Chapter 9 provides a
discussion of program verification, focusing on assertions and loop invariants.
Chapter 10 introduces searching and sorting an array, followed by a discussion
of algorithm analysis and big-O notation.

Pedagogical Features

We employ several pedagogical features to enhance the usefulness of this book
as a teaching tool. Some of these features are discussed below.

End-of-Section Exercises: Most sections end with a number of self-check ex-
ercises. These include exercises that require analysis of program fragments as
well as short programming exercises. Answers to odd-numbered self-check
exercises appear at the back of the book; answers to the rest of the exercises
are provided in the instructor’s manual.

End-of-Chapter Exercises: Each chapter ends with a set of quick-check exercises
with answers. There are also chapter review exercises whose solutions appear
in the instructor’s manual.

End-of-Chapter Projects: Approximately one-third of the programming pro-
jects are new to this edition. Most chapters have one or two special programming
project pairs where the second project in the pair requires a modification to the
solution of the first project in the pair. The program disk (described below)
contains a solution to the first project in each pair, which students can modify
to solve the follow-up project. All project solutions appear in the instructor’s
manual.

Examples and Case Studies: The book contains a large number and variety of

programming examples. Whenever possible, examples contain complete pro-
grams or procedures rather than incomplete program fragments. Each chapter

contains one or more substantial case studies that are solved following the
software development method. This edition contains several new case studies.

Syntax Display Boxes: The syntax displays describe the syntax and semantics
of each new Pascal feature and provide examples. There are also several syntax
diagrams in the body of the text; Appendix C contains a complete collection of
syntax diagrams.

Program Style Displays: The program style displays discuss issues of good
programming style.

Error Discussions and Chapter Review: Each chapter ends with a section that
discusses common programming errors. A chapter review includes a table of
new Pascal constructs.

Program Disk

There is a program disk that contains all of the programs, procedures, functions,
and ADTs introduced in the book. For case studies, all procedures and functions
are incorporated in a single program file. There are also solutions to selected
programming projects on the disk. These solutions serve as the starting point
for follow-up on projects. Programs on the disk can be loaded into the Turbo
Pascal environment. The icon

Directory: CHAP2
File: METRIC.PAS

appears alongside each program module or project indicating the name of
the disk directory (e.g., CHAP2) and file (e.g., METRIC.PAS) containing the

program.

Laboratory Manual

A new feature of this edition is a laboratory manual, including a program disk.
This manual provides support for a programming laboratory based on the
book. A number of laboratory exercises test a student’s understanding of new

concepts and provide additional practice in their application.

Coverage of Advanced Topics

The material in Chapters 1 through 12 will normally be covered in the first
semester of a course in programming methods. The expanded version of the

ix
Preface

X

Preface

book contains six additional chapters, which cover advanced topics normally
studied in the second semester. The expanded version may be used as a refer-
ence for students continuing their study of computer science, and, in some
cases, may be used as the text for a second-semester course. There is certainly
sufficient material for a two-quarter sequence. Advanced topics covered include:

recursion (Chapter 13)

sets and strings (Chapter 14)

binary files (Chapter 15)

pointers and linked lists (Chapter 16)
stacks, queues, and trees (Chapter 17)
object-oriented programming (Chapter 18)

Faculty should order the expanded version of the book if they feel they
will be covering more than the basic content in their first course, or if they plan
to use the book for more than one quarter or semester. Also, if a relatively large
percentage of students in the first course continue their study of computer
science, it would be desirable to order the expanded version to provide students
with an alternate reference to these topics.

Appendixes, Supplements, and Ordering Information

Separate appendixes cover the Turbo Pascal environment, language elements,
compiler directives, syntax diagrams, and the ASCII code.

An instructor’s manual is available for this edition. Other supplements
include transparency masters and a lab manual. Use the reference numbers
below to order these supplements from your Addison-Wesley sales representa-
tive.

Lab Manual with 3%" Disk: 0-201-51583-0

Instructor’s Manual: 0-201-55812-2

Transparency Masters: 0-201-55813-0

Program Disk (if purchased separately): 0-201-55814-9

There are several ordering options available:

Text (Chapters 1-12): 0-201-53920-9

Text (Chapters 1-12) with 32" Program Disk: 0-201-54212-9
Expanded Text (Chapters 1-18): 0-201-55811-4

Expanded Text (Chapters 1-18) with 3'%" Program Disk: 0-201-52442-2

Acknowledgments

The principal reviewers were most essential in suggesting improvements and
finding errors. They include: Pierre Balthazard, University of Arizona; Taylor
Binkley, Georgia State University; Deborah Byrum, Texas A & M University;
Robert Christiansen, University of Iowa; Edwin Ellis, Mississippi State Univer-
sity; John Goda, Georgia Institute of Technology, Anil Mehra, Colorado State
University; Anne W. Oney, De Anza College; Keith Pierce, University of Min-

nesota; James C. Pleasant, East Tennessee State University; Michael C. Stinson,
Central Michigan University; and Robert Strader, Stephen F. Austin State Uni-
versity. Besides reviewing the text, Professor Pleasant helped with the section
on software verification.

We are also grateful to the many teachers who participated in telephone
interviews or completed course surveys for Addison-Wesley’s market research
department. The information this research provided helped to shape the book’s
organization and pedagogy. They include: Thomas Ahlborn, West Chester Uni-
versity; Dean R. Andrews, Texas State Technical College; Daniel J. Barrett,
University of Massachusetts; John M. Barton, Freed-Hardeman University;
George A. Benjamin, Muhlenberg College; Taylor Binkley, Georgia State Uni-
versity; Susan Bonzi, Syracuse University; Bill Boyd, Rhodes College; Linda D.
Brinkerhoff, Erie Community College; John F. Buck, Indiana University; Allen
R. Burns, Rutgers University; Mae M. Carpenter, Georgia College; Kan V.
Chandras, Fort Valley State College; Darrah Chavey, Beloit College; Thomas
G. Clarke, North Carolina A & T State University; Edwin Ellis, Mississippi State
University; Michael Erickson, Wichita State University; Susan Gauch, North-
eastern University; Jarrell C. Grout, Stephen F. Austin State University; Stan
Gurak, University of San Diego; Arthur Jackman, Dean Junior College; Ron
Johnson, Evangel College; Mike Liljegren, Illinois College; Slawomir J. Marcin-
kowski, Syracuse University; Tom McQueary, Tarrant County Junior College;
William Moy, University of Wisconsin; Michael G. Murphy, University of Hous-
ton; David A. Nelson, Muhlenberg College; James Nolen, Baylor University;
James L. Noyes, Wittenberg University; Sue Pilgreen, McNeese State University;
Cyndi Rader, Wright State University; Ed Rang, University of Wisconsin; Brian
Ridgely, Alma College; Patricia Shelton, North Carolina A & T State University;
Robert G. Strader, Stephen F. Austin State University; Vicci Varner, University
of Texas; Leila L. Wallace, Geneva College; and Stephen Weiss, University of
North Carolina.

The personnel at Addison-Wesley responsible for the production of this
book worked diligently to meet a very demanding schedule. Our editor, Lynne
Doran Cote, was closely involved in all phases of this project. Ably assisted by
Andrea Danese, Lynne did an excellent job of coordinating the writing and
reviewing process and trying to keep us on a very tight schedule. Jim Rigney
supervised the production of the book, while Nancy Benjamin coordinated the
conversion of the manuscript to a finished book. We are grateful to all of them

for their fine work.

Philadelphia, PA E.B.K.
Dearborn, MI B.R.M.

Xi

Preface

Contents

1. Introduction to Computers and
Programming 1

1.1 Electronic Computers Then and
Now 2

1.2 Components of a Computer 7

1.3 Problem Solving and
Programming 12

1.4 The Software Development
Method 14

1.5 Programming Languages 15

1.6 Processing a High-Level Language
Program 17

1.7 Using the Turbo Pascal Integrated
Environment 19
Chapter Review 27

Interview: David A. Patterson 29

2. Problem Solving and
Pascal 27

2.1 Applying the Software
Development Method 32
Case Study: Converting Units of
Measurement 33

2.2 An Overview of Pascal 35

2.3 Declarations in Pascal Programs 39

2.4 Executable Statements 42

2.5 The General Form of Pascal
Programs 50

2.6 Data Types and Expressions 54
Case Study: Finding the Value of a
Coin Collection 57

2.7 Formatting and Viewing Program
Output 67

2.8 Printing Program Output 72

2.9 Interactive Mode, Batch Mode, and
Data Files 73

2.10 Common Programming Errors 77
Chapter Review 80

Interview: Philippe Kahn 85

3. Top-Down Design with
Procedures and Functions 87

3.1 Top-Down Design and Program
Development 88
Case Study: Finding the Area and
Circumference of a Circle 91

3.2 Extending a Problem Solution 94
Case Study: Finding the Most Pizza for
Your Money 94

3.3 Structured Programming and
Control Structures 97

3.4 Structure Charts 100
Case Study: Drawing Simple
Diagrams 100

3.5 Procedures 102

3.6 Displaying User Instructions 109

8.7 Procedures as Program Building
Blocks 110

3.8 Functions and Reusability 112

3.9 Common Programming Errors 120
Chapter Review 121

Interview: Peter J. Denning 125

4. Selection Structures: if and
case Statements 129

4.1 Boolean Expressions 130

4.2 The if Statement 137

4.3 Syntax Diagrams 141

4.4 if Statements with Compound
Statements 143

xiii

Xiv

Contents

4.5 Decision Steps in Algorithms 146
Case Study: Payroll Problem 147
Case Study: Finding the First
Letter 151

4.6 Tracing an Algorithm 155

4.7 More Problem-Solving
Strategies 157
Case Study: Computing Overtime
Pay 158
Case Study: Computing Insurance
Dividends 160

4.8 Nested if Statements and Multiple-
Alternative Decisions 163

4.9 The case Statement 173

4.10 Common Programming
Errors 178
Chapter Review 179

Interview: Adele Goldberg 185

5. Repetition: while, for, and
repeat Statements 187

5.1 Repetition in Programs: The while
Statement 183

5.2 Accumulating a Sum or a
Product 192

5.3 Counting Loops and Conditional
Loops 196

5.4 Loop Design 199

5.5 The for Statement 207

5.6 The repeat Statement 214

5.7 Nested Loops 218

5.8 Debugging and Testing
Programs 222

5.9 Common Programming Errors 230
Chapter Review 231

Interview: John K. Ousterhout 237

6. Modular Programming 239

6.1 Introduction to Parameter Lists 240

6.2 Functions: Modules That Return a
Single Result 246

6.3 Value Parameters and Variable
Parameters 255

6.4

6.5

6.6
6.7
6.8
6.9

6.10

Case Study: Sorting Three

Numbers 263

Syntax Rules for Parameter

Lists 271

Stepwise Design with Functions and
Procedures 272

Case Study: General Sum-and-Average
Problem 273

Nested Procedures 281

Scope of Identifiers 283

Problem Solving Illustrated 290
Case Study: Balancing a

Checkbook 290

Debugging and Testing 2 Program
System 300

Recursive Functions

(Optional) 304

Common Programming

Errors 306

Chapter Review 307

7. Simple Data Types 313

7.1
7.2

7.3
7.4

7.5

7.6
7.7

7.8
7.9

7.10

7.11

Constants 314

Numeric Data Types: Real and
Integer 316

The Boolean Data Type 323
Set Values in Boolean
Expressions 326

Character Variables and
Functions 327

Subrange Types 333

Type Compeatibility and Assignment
Compatibility 336
Enumerated Types 338
Iterative Approximations
(Optional) 348

Case Study: Approximating the
Value of ¢ 348

Case Study: Newton’s Method for
Finding Roots 350

Using the Debugger Evaluate and
Modity Dialog Box 355
Common Programming

Errors 356

Chapter Review 357

Interview: James D. Foley 364

8. Input/Output and Text
Files 367

8.1 Reading a Line of Characters 368
8.2 Review of Batch Processing 373
8.3 Text Files 374
8.4 Using Text Files 386
Case Study: Preparing a Payroll
File 386
8.5 Putting It All Together 390
Case Study: Preparing Semester Grade
Reports 391
8.6 Debugging with Files 402
8.7 Common Programming Errors
Chapter Review 403

402

Interview: Watts S. Humphrey 409

9. Software Engineering 411

9.1 The Software Challenge 412

9.2 The System/Software Life
Cycle 413
Case Study: Telephone Directory
Program 415

9.3 Procedural Abstraction
Revisited 418

9.4 Turbo Pascal Units 419

9.5 User Interfaces and Windows

9.6 Writing New Units 425

9.7 Additional Features of Units
(Optional) 431

9.8 Data Abstraction and Abstract Data
Types 435

9.9 Abstract Data Type DayADT 437

9.10 Software Testing 440

9.11 Formal Methods of Program
Verification 443

9.12 Professional Ethics and
Responsibilities 449

9.13 Debugging with Units

9.14 Common Programming
Errors 451
Chapter Review 452

421

450

Interview: Robert Sedgewick 458

10. Arrays 461 xXv

10.1
10.2

10.3

10.4

10.5
10.6

10.7

10.8

10.9

Contents

The Array Data Type 462
Selecting Array Elements for
Processing 467

Using Arrays 472

Case Study: Home Budget
Problem 473

Arrays as Operands and
Parameters 479

Reading Part of an Array 487
More Examples of Array
Processing 489

Case Study: Cryptogram Generator
Problem 491

Strings and Arrays of
Characters 495

Using Strings 504

Case Study: Printing a Form
Letter 504

Searching and Sorting an
Array 508

10.10 Analysis of Algorithms: Big-O

10.11

Notation (Optional) 514
Debugging Programs with
Arrays 516

10.12 Common Programming

11.

11.1
11.2
11.3

11.4
11.5
11.6
11.7

11.8

Errors 518
Chapter Review 519

Records 527

The Record Data Type 528
The with Statement 531
Records as Operands and
Parameters 534

Abstract Data Types Revisited 537
Hierarchical Records 544
Variant Records (Optional) 548
Case Study: Areas and Perimeters of
Different Figures 552

Debugging Programs with
Records 557

Common Programming

Errors 558

Chapter Review 559

Interview: C. J. Date 564

xvi

Contents

12. Arrays with Structured
Elements 567

12.1 Arrays of Arrays: Multidimensional

Arrays 568
12.2 Processing Multidimensional
Arrays 573

12.3 Data Abstraction Illustrated 579
Case Study: Sales Analysis
Problem 579
12.4 Parallel Arrays and Arrays of
Records 596
12.5 Processing an Array of
Records 599
Case Study: Grading an Exam 599
12.6 Debugging Programs with Arrays of
Structured Elements 613
12.7 Common Programming
Errors 615
Chapter Review 615

Interview: Patrick H. Winston 622

Appendix A Using the Turbo Pascal
Integrated Environment Ap-1

Appendix B Reserved Words, Standard
Identifiers, Operators, Units,
Functions, Procedures, and Compiler
Directives Ap-13

Appendix C Turbo Pascal Syntax
Diagrams Ap-21

Appendix D ASCII Character
Set Ap-34

Appendix E Reference Guide to Turbo
Pascal Constructs Ap-35

Answers to Selected Self-Check
Exercises Ans-1

Index 1-1

introduction t
Computers an
Programming

1.1 Electronic Computers Then and Now
1.2 Components of a Computer

1.3 Problem Solving and Programming
1.4 The Software Development Method
1.5 Programming Languages
1.6 Processing a Hi
1.7 Using the Turb

2

Introduction to
Computers and
Programming

rom the 1940s until today—a period of only 50 years—the computer’s
Fdevelopment has spurred the growth of technology into realms only
dreamed of at the turn of the century. It has also changed the way we live and
how we do business. Today we depend on computers 0 process our paychecks,
send rockets into space, build cars and machines of all types, and help us do
our shopping and banking. The computer program’s role in this technology is
essential; without a list of instructions to follow, the computer is virtually useless.
Programming languages allow us to write those programs and thus to com-
municate with computers.

You are about to begin the study of computer science using one of the
most versatile programming languages available today: the Pascal language.
This chapter introduces you to the computer and its components and to the
major categories of programming languages.

1.1 Electronic Computers
Then and Now

It is difficult to live in today’s world without having some contact with computers.
Computers are used to provide instructional material in schools, print tran-
scripts, send out bills, reserve airline and concert tickets, play games, and help
authors write books. Several kinds of computers cooperate in dispensing cash
from an automatic teller machine; “embedded” or “hidden” computers help
control the ignition, the fuel system, and the transmission of modern automo-
biles; at the supermarket a computer device reads the bar codes on packages to
total your purchases and help manage the store’s inventory. Even microwave
ovens have special-purpose computers built into them.

Computers were not always so pervasive in our society. Just a short time
ago, computers were fairly mysterious devices that only a small percentage of
the population knew much about. Computer know-how spread when advances
i solid-state electronics led to cuts in the size and the cost of electronic computers.
In the mid-1970s, a computer with the computational power of one of today’s
personal computers would have filled a 9-by-12-foot room and cost $100,000.
Today an equivalent personal computer (Fig. 1.1) costs less than $3,000 and
sits on a desktop.

If we take the literal definition for computer as “a device for counting or
computing,” then we could consider the abacus to be the first computer. The
first electronic digital computer was designed in the late 1930s by Dr. John
Atanasoff at Iowa State University. Atanasoff designed his computer to perform
mathematical computations for graduate students.

The first large-scale, general-purpose electronic digital computer, called the
ENIAC (Electronic Numeric Integrator And Computer), was built in 1946 at
the University of Pennsylvania. Its design was funded by the U.S. Army, and it
was used to compute ballistics tables, predict the weather, and make atomic
energy calculations. The ENIAC weighed 30 tons and occupied a 30-by-50-foot

space (Fig. 1.2).

3

1.1 Electronic
Computers Then
and Now

Figure 1.1 IBM Personal Computer with Mouse

&

Figure 1.2 The ENIAC Computer (Photo Courtesy of Unisys Corporation)

4

Introduction to
Computers and
Programming

Although we are often led to believe otherwise, computers cannot reason
as we do. Basically, computers are devices that perform computations at incred-
ible speeds (more than one million operations per second) and with great
accuracy. However, to accomplish anything useful, a computer must be pro-
grammed, that is, given a sequence of explicit instructions (a program) to perform.

To program the ENIAC, engineers had to connect hundreds of wires and
arrange thousands of switches in a certain way. In 1946 Dr. John von Neumann,
of Princeton University, proposed the concept of a stored-program computer: a
program stored in computer memory rather than set by wires and switches.
Von Neumann knew programmers could easily change the contents of computer
memory, so he reasoned that the stored-program concept would greatly simplify
programming a computer. Von Neumann’s design was a success and is the basis
of the digital computer as we know it today.

Brief History of Computing

Table 1.1 lists some of the important milestones along the path from the abacus
to modern-day computers and programming languages. The entries before
1890 list some of the earlier attempts to develop mechanical computing devices.
In 1890 the first special-purpose computer that used electronic sensors was
designed; this invention eventually led to the formation of the computer-
industry giant called IBM (International Business Machines).

As we look down the table from 1939 onward, we see a variety of new
computers introduced. The computers listed before 1975 were all very large
general-purpose computers, called mainframes. The computers listed after 1975
are all smaller computers.

A number of milestones in the development of programming languages
and environments are also listed in Table 1.1, including Fortran (1957), CTSS
(1965), Pascal (1971), VisiCalc (1978), Turbo Pascal (1983), and Windows (1985).

We often use the term first generation to refer to electronic computers that
used vacuum tubes (1939-1958). The second generation began in 1958 with the
changeover to transistors. The third generation began in 1964 with the introduc-
tion of integrated circuits. The fourth generation began in 1975 with the advent
of large-scale integration.

Categories of Computers

Modern-day computers are classified according to their size and performance.
The three major categories of computers are microcomputers, minicomputers,
and mainframes.

Many of you have seen or used microcomputers, such as the IBM PG (see
Fig. 1.1). Microcomputers are also called personal computers or desktop compulers
because they are used by one person at a time and are small enough to fit on a
desk. The smallest general-purpose microcomputers are often called lapiops
because they are small enough to fit into a briefcase and are often used on one’s
lap. The largest microcomputers, called workstations (Fig. 1.3), are commonly

