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PREFACE TO THE SECOND EDITION

THE death of Professor Carslaw in 1954 has left me with the task of
preparing a new edition of this book. In doing this, I have attempted,
while preserving so far as possible the form and spirit of Carslaw’s
mathematics, to provide as complete an account as possible of the
exact solutions and soluble problems of the subject. To this end, a great
many new results have been added and some parts of the discussion
have been greatly expanded, for example, those on heat generation,
surface heating, melting and freezing, geophysical applications, aniso-
tropic media, moving media, and substances with variable thermal
properties.

A number of new tables and text-figures giving numerical informa-
tion on fundamental problems has been added. The number of refer-
ences has now grown to over seven hundred ; it is quite impossible to
refer to all works on the subject, and the papers listed are largely con-
fined to those which I have been able to consult, but I have attempted to
give an adequate coverage of all branches of the subject.

Two short survey chapters have been added. The first of these gives
an introduction to the integral transform notation and its relationship
to the classical Fourier methods. The second gives an account of the
numerical methods which have assumed great importance in the last
decade and their relationship to the body of exact solutions given
earlier in the text.

It is a pleasure to acknowledge the assistance of my wife and Mrs. A.
Davidson in the preparation of the manuscript and the numerical
calculations, and that of the staff of the Clarendon Press in the pro-

duction of the book.
J.C. J.



PREFACE TO THE FIRST EDITION

Carsvraw’s Introduction to the Theory of Fourier’s Series and Integra.s
and the Mathematical Theory of the Conduction of Heat was published at
the end of 1906. In 1920 and 1921 the work was completely revised and
rewritten in two volumes, the second of which, entitled Introduction to
the Mathematical Theory of the Conduction of Heat in Solids, appeared in
1921. It became out of print in 1940.

In the last twenty-five years so many developments have been made,
both in the theory and applications of the subject, that a new book
embodying these advances seemed called for rather than a new and
revised edition of the old one. This work, based on the earlier one and
intended to supersede it, brings the discussion of the theory and applica-
tions up to date. In particular it contains a full treatment of the
Laplace transformation method of dealing with problems in the Con-
duction of Heat. This takes the place of the method by contour integrals
given in Chapters X and XI of the 1921 book. The Laplace trans-
formation method, though similar in principle to that by contour
integration, is much simpler, more direct and powerful.

In planning this book we have tried to make it as useful as possible
to engineers and physicists without altering its character as a mathe-
matical work. Explicit solutions of many problems of practiecal interest
are included and much numerical information in the form of tables and
text-figures is given. The discussion of the theory of systems used in
experimental work has been greatly extended. and other subjects of
practical importance are briefly noticed, such as the theory of automatic
temperature control, which have hitherto not appeared in mathematical
textbooks.

The earlier book, except in its final chapters, could be looked on as a
treatise on the Fourier mathematics, developing the subject along the
classical lines. The new book in Chapters I-X follows the same design.
In these chapters it covers and often reproduces verbatim most of what
1s contained in Chapters I-IX of the old one, while giving fuller attention
to the needs of the engincer and physicist.

In Chapters XII-XV the Laplace transformation method is introduced
and applied in the main to more difficult problems. The reader, after the
general discussion in Chapter X1I, will see that its use would have simpli-
fied much of the preceding chapters, and he will probably, in the solution
of problems as they arise, become accustomed to use it for himself.



viii PREFACE TO THE FIRST EDITION

A large number of interesting results has been given in small prin t,
many without proof. These may be taken as examples for solution.
Over four hundred selected references to the mathematical and
physical aspects of the various topics discussed here have been given
as footnotes in the text. It is hoped that these will prove an adequate
introduction to the literature of the subject. This has grown so much in
recent years that it seemed impossible to give a complete bibliography.
Almost all the numerical material in the tables and text-figures has
been calculated specially for this book. We are greatly indebted to
Miss M. E. Clarke for her assistance in this computation and in many
other ways.
H.S.C
J. C.J.
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GENERAL THEORY

1.1, Introductory

WHEeN different parts of a body are at different temperatures heat
flows from the hotter parts to the cooler. There are three distinct
methods by which this transference of heat takes place: (i) Conduction,
in which the heat passes through the substance of the body itself,
(ii) Convection, in which heat is transferred by relative motion of
portions of the heated body, and (iii) Radiation, in which heat is trans-
ferred direct between distant portions of the body by electromagnetic
radiation.

In liquids and gases convection and radiation are of paramount im-
portance, but in solids convection is altogether absent and radiation
usually negligible. In this book we shall consider conduction cof heat
only, and usually speak of the body as solid, though in certain circum-
stances the results will be valid for liquids or gases.

In this chapter the general theory of conduction of heat is developed;
the subsequent chapters are devoted to special problems and methods.

1.2, Conductivity

The Mathematical Theory of the Conduction of Heat may be said to
be founded upon a hypothesis suggested by the following experiment:

A plate of some solid is given, bounded by two parallel planes of such
an extent that, so far as points well in the centre of the planes are con-
cerned, these bounding surfaces may be supposed infinite. The two
planes are kept at different temperatures, the difference not being so
great as to cause any sensible change in the properties of the solid. For
example, the upper surface may be kept at the temperature of melting
ice by a supply of pounded ice packed upon it, and the lower at a fixed
temperature by having a stream of warm water continually flowing
over it. When these conditions have endured for a sufficient time the
temperature of the different points of the solid settles down towards
its steady value, and at points well removed from the ends the tempera-
ture will remain the same along planes parallel to the surfaces of the
plate.

Consider the part of the solid bounded by an imaginary cylinder of
cross-section § whose axis is normal to the surface of the plate. This

6051 B



2 GENERAL THECORY [Chap. I

cylinder is supposed so far in the centre of the plate that no flow of
heat takes place across its generating lines. Let the temperature of the
lower surface be »,° Cand of the upper v;°C (v, > ¢,), and let the thickness
of the plate be d centimetres. The results of experiments upon different
solids suggest that, when the steady state of temperature has been
reached, the quantity @ of heat which flows up through the plate in
¢ seconds over the surface § is equal to

K(UO;UI)SC, (1)
where K is a constant, called the Thermal Conductivity of the substance,
depending upon the material of which it is made. In other words, the
flow of heat between these two surfaces is proportional to the difference
of temperature of the surfaces.

This result must not be regarded as proved by these experiments.
They suggest the law rather than verify it. The more exact verification
is to be found in the agreement of experiment with calculations obtained
from the mathematical theory based on the assumption of the truth of
this law.

The reciprocal of the thermal conductivity of a substance is called
its Thermal Resistivity.

Strictly speaking, the conductivity K is not constant for the same
substance, but depends upon the temperature. However, when the
range of temperature is limited, this change in K may be neglected, and
in the ordinary mathematical theory it is assumed that the conductivity
does not vary with the temperature. A nearer approximation to the
actual state may be obtained by making A a linear function of the
temperature v, e.g. K —K,(1+v),
where § is small, and, in fact, is negative for most substances.

From (1), the thermal conductivity is given by

Qd

= (

(Vo) St

o
—

and from this its dimensions and the nature of the units in which it is
expressed follow.

The system of units most frequently chosen in physical work uses the
c.g.s. units of length, mass, and time, measures temperature in °C,
and takes as the unit quantity of heat the calorie, which is the quantity
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of heat required to raise the temperature of 1 gm of watert by 1° C. In
this system, values of A are expressed in cal (sec) (cm?) (° C;/em). This
system will be used throughout this book when numerical values are
given: values of the thermal properties of a few typical substances] are
givenin Appendix VI to give an idea of the orders of magnitude involved.

The other important system of units, which is the one commonly
employed by engineers and used in works on heat transfer, takes the
foot, pound, hour, and °F as units, and defines the unit quantity of heat
as the British Thermal Unit (Btu.), which is the quantity of heat required
to raise the temperature of 1 1b of water at its maximum density (39° F)
by 1° F. The connexion between the two units is

1 Btu. = 252-0 cal.

In this system, numerical values of the conductivity are given in
Btu./(hr)(ft.2)(° F/ft.): to express these in terms of cal/(sec) (em?)(° C/em)
multiply by 0-00413,

The dimensions of K in these systems in which the unit of heat is that
which causes unit rise in temperature in unit mass of water may be seen

from (2) to be [K] = [M][L[T-Y), (3)

since those of Q/(v,—wv,) are just those of mass.

If it is desired to measure quantity of heat by the work necessary to
produce it, the unit would be the erg or joule. The number of joules in a
calorie, J, is known as the mechanical equivalent of heat. For the 15°
calorie defined above J = 4-184,

In the fundamental experiment from which our definition of the
conductivity is derived, the solid is supposed to be homogeneous and
of such a material that, when a point within it is heated, the heat spreads
out equally well in all directions. Such a solid is said to be isotropic, as
opposed to crystalline and anisotropic solids, in which certain direc-
tions are more favourable for the conduction of heat than others. There
are also heterogeneous solids, in which the conditions of conduction
vary from point to point as well as in direction at each point.

t Experiments show that the quantity of heat required to raise the temperature of
1 gm of water by 1° C is not quite the seme at different temperatures, and in an exact
definition of the calorie the temperature of the water needs to be specified. Tsually,
this specified temperature is taken to be 15° C so that the ‘15° calorie’ is the quantity of
heat needed to raise 1 gm of water from 14-5° C to 15-5° C.

{ For more extensive information see the International Critical Tables (MeGraw-Hill,
1929), Vol. V, or, for rocks and minerals, Birch, Schairer, and Spicer, Handbook of
Physical Constants, Geol. Soc. of America, Special papers, Number 36 (1942).
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1.3. The flux of heat across any surface

The rate at which heat is transferred across any surface S at a point P,
per unit area per unit time, is called the flux of heatt at that point across
that surface, and we shall denote it by f.

Frc. 1

First we show that the flux across a plane through a point P varies
continuously with the position of the point P if the direction of the
normal to the plane remains constant. Suppose an infinitesimal area w
enclosing P is taken in the plane, and a cylinder is formed on this area
as base with generators equal and parallel to a line PP’ whose length e
is an infinitesimal of lower order than the linear dimensions of w (Fig. 1).

Let f; v and f, w be the rates of flow per unit time across the plane
surfaces of the cylinder through P and P’. The flow across the curved
surface is negligible compared with these. The rate of flow of heat into
the cylinder is thus w(f;—f;). Also if v is the average temperature in
the cylinder, o the distance between its plane faces, and p and ¢ the
average density and specific heat of its material, the rate at which the

cylinder gains heat is

cv
pch' —
ot

Equating these two expressions we have

ov
fi—fo = pco—,

ct
and as ¢ — 0 the expression on the right tends to zero and so f; — f,.
It is important to notice that this argument does not require the
thermal properties of the medium to be continuous, only that they be
finite. Thus it enables us to assert in § 1.9 that the flux is continuous at
the surface of separation of two media.
Next we show that, if the values of f are given for three mutually

1 Numerical values are usually given in cal/(cm?)(sec) or in Btu./(ft.%)(hr). The con-
nexion between the two is 1 cal/(cm?)(sec) = 13,270 Btu./(ft.2)(hr}.
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perpendicular planes meeting at a point, its value for any other plane
through the point may be written down,

Consider the elementary tetrahedron PABC, Fig. 2, whose three
faces PBC, PCA, PAB are parallel to the coordinate planes, while the
perpendicular from the point P to the face 4 BC has direction cosines
(A, 1, v) and is of length p. Let the area of 4 BC' be A; then the areas
of PBC, PCUA, and PA B are respectively A\, pA, vA.

z

c

A
Fic. 2

If we denote the rates of flow of heat per unit time per unit area over
the elementary areas PBC, PCA, PAB, and ABC by f,, Sy [ and f,
the rate at which heat is gained by the tetrahedron is given by

(ot af, 4 1= A

However, if p and ¢ are the density and specific heat of the solid, and v
the average temperature over the tetrahedron, this rate of gain of heat

is equal to 2
YAppc .
3PP it

It follows that  Af,fuf, 4 vfs—f — %ppc—(f—;i. (1)
O

Now as p tends to zero, the right-hand side of (1) tends to zero, and
Jus [y [ and f become respectively the fluxes at the point P across
planes parallel to the coordinate planes and across a plane through P
which has A, u, v for the direction cosines of its normal. Thus we have

Jf= ’\fz'{_:“fy_}‘vfz- (2)
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If the three fluxes f,, f,, f. at a point P across planes parallel to the
coordinate planes are known, the flux across any other plane through
P can be determined from (2).

At every point P of the solid a vector f is defined whose components
are f,, f,, f.- Its magnitude is

fm = \/(f3:+f%+f§)’ (3)
and it lies along the line whose direction cosines are
Jolfw Sulfws felfur ()

This vector may be called the fluz vector at the point P. The flux of
heat at P across a plane whose normal lies in the direction (4) is just £,
while the flux at P across a plane whose normal makes an angle ¢ with
this direction is f,, cos 6.

1.4. Isothermal surfaces
Consider a solid with a distribution of temperature at time ¢ given by

v = f(x,¥y,2,t).

We may suppose a surface described in this solid, such that at every
point upon it the temperature at this instant is the same, say 7. Such
a surface is called the isothcrmal surface for the temperature 17, and
it may be looked upon as separating the parts of the body which are
hotter than V from the parts which are cooler than V. We may imagine
the isothermals drawn for this instant for different degrees and fractions
of a degree. These surfaces may be formed in any way, but no two
isothermals can cut each other, since no part of the body can have two
temperatures at the same time. The solid is thus pictured as divided
up into thin shells by its isothermals.

1.5. Conduction of heat in an isotropic solid

In future, unless expressly stated, we shall consider only isotropic
media, that is media whose structure and properties in the neighbour-
hood of any point are the same relative to all directions through the
point. Because of this symmetry, the flux vector at a point must be
along the normal to the isothermal surface through the point, and
in the direction of falling temperature.

The relation between the rate of change of temperature along the
normal to an isothermal and the flux vector in that direction may
be deduced from the fundamental experiment described in§ 1.2. In that
case the isothermals are planes parallel to the faces of the slab. Suppose
the isothermals for temperatures v and v-+-8v are distant 8x apart.
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Then by 1.2 (1) the rate of flow of heat, per unit time per unit area, in
the direction of x increasing is

v
—K .
ox
Thus in the limit as éx — 0 we have
L Cv
f.=—K e (1

We extend this to any isothermal surface and take as our fundamental
hypothesis for the Mathematical Theory of Conduction of Heat that the
rate at which heat crosses from the inside to the outside of an isothermal
surface per unit area per unit time at a point is equal to

v
K=,
on

where K is the thermal conductivity of the substance, and 0/én denotes
differentiation along the ouwtward-drawn normal to the surface.

We now proceed to find the flux at a point P across any surface,
not necessarily isothermal. Let the tangent plane at P to the isothermal
through P be taken as the XY -plane, so that the fluxes across planes
through P parallel to the coordinate planes are

ov
g et O P— ——-K.—.
fo=fi=0, f=—K

Then if the normal at P to the given surface has direction cosines
(A, i, v) relative to these axes, the flux across it is, by 1.3 (2),
IR
oz ok’
where ¢/0h denotes differentiation in the direction (A, g, v), since

ov ov v v v ov
— = A= —+ty—, and — =_—-=
ey e ix oy
Thus the flux of heat at a point across any surface is
ov
—KZ, g
oh (2)

where ¢/0h denotes differentiation in the direction of the outward normal.
In particular, the fluxes across three planes parallel to the axes of
coordinates are
, Ov

oy ov
= —K =, = K °, =
f. = =K g (3)
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Using the vector f introduced in § 1.3, the results of this section may
be expressed by the formula

f= —Kgrade. (4)

1.6. The differential equation of conduction of heat in an isotropic
solid

We first consider the case of a solid through which heat is flowing,
but within which no heat is generated. The temperature » at the point
P (2,9, 2) will be a continuous function of @, y, z, and t, and, as shown in
§ 1.3, the same is true of the flux.

Consider an element of volume of the solid at the point P, namely,
the rectangular paralielepiped with this point as centre, its edges being
parallel to the coordinate axes and of lengths 2dx, 2dy, and 2dz. Let
ABCD and A'B'C'D’" be the faces in the planes x—dz and z-tdx,
respectively, then the rate at which heat flows into the parallelepiped
over the face 4 BOD will ultimately be given by

4 (fz — % dx) dydz,

where f, is the flux at P over a parallel plane. Similarly, the rate at
which heat flows out over the face 4’ B'C’'D" is given by

4(fx n .;ix dx) dydz.

Thus the rate of gain of heat from flow across these two faces is equal to

e
— 8 dxdydz Py

There are similar expressions for the rates of gain from flow across the
other pairs of faces, and, adding these, the total rate of gain of heat of
the parallelepiped from flow across its faces is found to be

of, oy o -
Y~ Y X Yy Jz radYydz = —8 d 2y
(ax 2l az) dedyds = 8 dadyd: div 1, (1)

where f is the vector defined in 1.3 (4).
This rate of gain of heat is also given by

ov
8pc 3 dedydz, (2)
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where p is the density and ¢ the specific heatt (at temperature v) of the
solid. Equating (1) and (2) gives]
oo | (of,  of,  of-
hid dT LYY YR — ), 3
p08t+(6x+8y+5z ®)
This equation holds at any point of the solid, provided no heat is
supplied at the point; the solid need not be homogeneous or isotropic. It
corresponds to the equation of continuity in hydrodynamics.
For a homogeneous isotropic solid whose thermal conductivity is
independent of the temperature, f,, f,, and f, are given by 1.5 (3), and

(3) becomes o% v & lov 0 (4)
ot o % kot
K
where =" ®)
pC

The constant « was called by Kelvin the Diffusivity§ of the substance,
and by Clerk Maxwell its Thermometric Conductivity.|

(4) is the equation commonly known as the equation of conduction of
heat. In the case of steady temperature in which v does not vary with
the time, it becomes Laplace’s equation
v v
ox2 " ey B

t The specific heat ¢ of a substance at temperature v is defined as §Q /8v where 8Q is the
quantity of heat necessary to raise the temperature of unit mass of the substance
through the smell temperature range from v to v-4-8v. It depends on both the tempera-
ture and the assumed mode of heating, which is taken here to be at constant strain.
In the units employed in this book it is expressed in (cal)/(gm)(°C), and the specific
heat of water at 15°C is 1 (cal)/(gm)(° C). It should be noticed that there is & consider-
able variety of usage in this matter. Some writers regard the above definition as that of
heat capacity, or hest capacity per unit mass, of the substance, and define the specific
heat of a substance as the ratio of its heat capacity per unit mass to that of water.

For solids, the effect of the method of heating on the specific heat is usually negligible
and ¢ may be replaced by ¢y, the specific heat at constant pressure. The question is
discussed in IIT at the end of this section.

1 In transparent, as well as in fibrous or other materials with large pore spaces, trans-
port of heat by radiation may be of importance, resulting in the appearance of an
additional term in (3). Cf. van der Held, Appl. Sci. Res. A, 3(1953) 237-49; A, 4 (1954)
77-99.

§ Some values for the diffusivities of various substances are given in Appendix V1.
To find the dimensions of diffusivity we note that, writ ing[@] and [+] for those of quantity
of heat and temperature, respectively, (K] = [QL 1T 1][v], [e] = (@AM 1][v ),
[p] = [M][L7?], so that [«] = [L2[T1]. Tt follows that if the units of length and time
are the foot and the hour, as in many engineering tables, the value of x for these units
will have to be multiplied by (30-48)2,3600 = 0-258 to reduce it to the c.g.s. system.

[i Because it measures the change of temperature which would be produced in unit
volume of the substance by the quantity of heat which fiows in unit time through unit
area of a layer of the substance of unit thickness with unit difference of temperature
between its faces.

V2p = (6)
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If heat is produced in the solid, so that at the point P (z, y, 2) heat is
supplied at the rate A(x, y, 7, 1) per unit time per unit volume, a term
84 dadydz has to be added to (1), and, for the case in which A is a con-
stant, (4) is replaced by

o Lov Az, y,2,1) -
\% e G ()

For the case of steady flow, in which dv/ét = 0, equation (7) reduces to
Poisson’s equation.

In almost all the problems for which exact solution is possible, and in
those discussed in this book unless otherwise stated, the thermal pro-
perties K, p, ¢ are constants, independent of both position and tempera-
ture. If this is not the case, (3} still holds (with A(x,y, 2,¢) added in the
right-hand side if there is heat generation) but (7) is replaced by

ov a ov o (., 00 2 ov .
ma = a aaa) KE o

If K and A4 are functions of position only, the solution of (8) offers
no great difficulty in principle and a number of solutions are available for
discontinuous thermal properties (composite solids) and for simple laws
of variation of K with position. If the thermal properties depend on the
temperature, the situation is more complicated since the equation
becomes non-linear: few such cases have been studied in connexion with
conduction of heat since the variation of the thermal properties with
temperature is relatively slow and the information available about it is
scanty and inaccurate. Nevertheless, they are becoming increasingly
important when large ranges of temperature are involved, as in the
solidification of castings; also the same equations arise in the theory of
diffusion, where, because of the more rapid variation of diffusion
coefficients with concentration, they are of much greater importance.t
In most cases numerical methods have to be used, but a few general
results, and cases in which exact solution is possible, will be noted below,

I. The case of thermal properties varying with the temperature but independent of

position}

In this case (8) becomes

gy ~ W S0 2 Fige e
e = wvera s G G () ©
which shows the non-linearity clearly.

t Cf. M.D., Chaps. IX-XT.
} Some other methods for the one-dimensional case are given in § 2.16.
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(8) may be reduced to a simpler form? by introducing the new variable
v
1
= — | Kd, 10
o [Ka (10
0

where K, is the value of K when v = 0. This, and the lower limit of integration, are
merely introduced to give ® the dimensions of temperature and a definite value.

It follows from ({10) that}

o0 K ov c® K év ¢ K v 0 Ko

5=EE’ e_x=1§%’ oy K,oy oz K, éz2'
and (8) becomes VzG)—% 87(;) == —%,
where, in (11), 4 and k = K/pc are expressed as functions of the new variable 6.
Thus, in terms of this new variable, the form (7) of the equation of conduction
of heat is preserved, but with a diffusivity « which depends on 0. It is a fact that
in many cases the variation of k with temperature is much less important than
that of K, so that, to a reasonable approximation, it may be taken to be constant;
for example, for metals near absolute zero, both K and ¢ are approximately
proportional to the absolute temperature. In such cases, if A is independent of ¢,
equation (11) becomes of type (7) and solutions for the case of constant con-
ductivity may be taken over immediately by replacing v by ©, provided that the
boundary conditions prescribe only v or K ¢v/on: if they are of the form

(Cv/en)+hv = 0,

where h is a constant, this remark does not hold.

The case of steady flow is of particular importance since (11) becomes Poisson’s
equation if 4 is constant, or Laplace’s equation if A = 0. Thus solutions of prob-
lems of steady heat flow with conductivity any function of the temperature,
and boundary conditions consisting of prescribed temperature or flux, may be
derived immediately from the corresponding solutions for constant conductivity.

Another useful form may be obtained by introducing W, the heat content per
unit mass of the material (measured from some arbitrary zero of temperature).
In terms of this quantity, (8) becomes

(11)

ow e( 8v) 8 ( ,Ez-) , a( ,Pz') |
Pa ~@mla Ty Ryl ta K] 4 {2
or, in terms of @ defined by (10),
LW g A
K, et v GTKO’ (13)

where W isrelated to © in a known manner. The introduction of ¥ has advantages
in problems involving latent heat.

II. Heat production in the solid
Cases in which heat is produced in the solid are becoming increasingly important
in technical applications. Heat may be produced by (i) the passage of an electric

t van Dusen, Bur. Stand. J. Res. 4 (1930) 753-6; Eyres, Hartree, Ingham, Jackson,
Sarjant, and Wagstaff, Phil. Trans. Roy. Soc. A, 240 (1946) 1-38. For steady flow, the
method dates back to Kirchhoff’s Vorlesungen iiber die Theorie der Weirme (1894).

I © is thus essentially a potential whose gradient is proportional to the flux, cf.
Vernotte, Comptes Rendus, 218 (1944) 39-41.



