- -
-

RINCIPLES OF .
ROGRAMDESIGN

A P.1.C. Studies in Data Processing
© No. 12

PRINCIPLES
OF
PROGRAM DESIGN

M. A. JACKSON

ACADEMIC PRESS
LONDON NEW YORK SAN FRANCISCO

A Subsidiary of Harcourt Brace Jovanovich, Publishers,

ACADEMIC PRESS INC. (LONDON) LTD.
24/28 Oval Road
London NW1

United States Edition published by
ACADEMIC PRESS INC.
111 Fifth Avenue
New York, New York 10003

N7 /2D

m\ z:‘:’;', j /\ -
Copyright @ 1975 by

ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved
No part of this book may be reproduced in any form by photostat, microfilm, or any other
means, without written permission from the publishers

Library of Congress Catalog Card Number: 75 15033
ISBN: 012 379050 6

Printed in Great Britain by Page Bros (Norwich) Ltd, Norwich

PREFACE

1.

This book is about programming. In particular, it is about programming for
data processing applications. The main theme of the book is that programs
can, and should, always be simple, even if the tasks they perform are complex.
The main subject matter is a design technique which allows this simplicity
to be achieved.

Traditionally, programming is distinct from system design. The system
designer, usually called “systems analyst”, decides what files and programs
are needed in the system, and specifies these for the programmer; the pro-
grammer then writes his programs according to the designer’s specifications.
This traditional division of labour is absurd : it has had several damaging effects .
on our understanding of computer systems and on the way we build them.

First, it has helped to perpetuate the primitive idea, derived from the
earliest batch-processing systems, that there is a hard boundary between the
tasks of system design and program design. We expect to apply different
techniques and different design criteria, and to use different tools, when the
elements of our design are programs and files from those we apply and use
when the elements are subroutines, machine instructions and core storage.
The distinction is beginning to break down now; we recognize that JCL is a
programming language (of a bizarre and unsatisfactory kind), and that the
word “program” loses much of its meaning in the context of an on-line
transaction processing system. The design technique discussed in this book,
especially the aspects considered in Chapters 7 to 11, undermines the distinc-
tion between programs and systems in the context of batch processing also.

Second, it has obscured the nature of the systems analyst’s task. He is
expected to do two very different jobs: he must analyse the application
needs to determine what the system ought to do if it is to serve the user well;
at the same time he must design the higher levels of that system, configuring
programs and files so that the work can be carried out efficiently on the
computer. The first job is concerned with the techniques of inventory control,
sales forecasting, production planning—whatever the particular application
may be—and demands knowledge of the relevant parts of business manage-
ment. The second job is concerned with computer system design, and
demands knowledge of computer science. An unusually versatile person is

v

vi PREFACE

needed to do both of these jobs successfully. What tends to happen in practice
is that the analyst concentrates on the job he likes better. Too often the
needs of the user are inadequately considered ; the tedious business of under-
standing the application and planning an ergonomically sound system is
hurried through so that the pleasures of flowcharting and of laying out file
and record formats can begin. Too often the resulting system specification
consists of a perfunctory description of what the system will do, with a
a detailed and loving account of how it will do it.

The third effect, the effect on the programmers, concerns us most directly.
In many installations there is'no career path in applications programming;
the job is bounded above by the design work already done by the analyst,
while the lower bound is being continually pushed upwards by the intro-
duction of high-level languages, report generators and data-base software.
Programmers who are technically ambitious escape into systems pro-
gramming, where they can become learned in the intricacies of the manu-
facturer’s software ; programmers who are ambitious for money or position
become systems analysts. Those who remain in applications programming
often take refuge in an understandable, but disastrous, inclination towards
complexity and ingenuity in theit work. Forbidden to design anything
larger than a program, they respond by making that program intricate
enough to challenge their professional skill. :

2.

" It is already widely recognized that intricacy and complexity are program-
ming vices; the virtues are clarity and simplicity. As we build ever larger and
more powerful systems it becomes ever more important that those systems,
and the components of which they are made, should be transparently simple
and self-evidently correct. As Professor Dijkstra points out (Structured
Programming, Academic Press, 1972):

“If the chance of correctness of an individual component equals p, the

chance of correctness of a whole program, composed of N such com-

ponents, is something like
P =p".

As N will be very large, p should be very, very close to 1 if we desire P to

differ significantly from zero!”

The purpose of this book is to present a coherent method and procedure
for designing systems, programs and components which are transparently
simple and self-evidently correct. The main emphasis is on structure—on
the dissection of a problem into parts and the arrangement of those parts

to form a solution.
The examples used throughout the book are necessarily small and simple;

PREFACE Vil

a large and complex problem would demand too much of the available
space merely to define the problem and to show the program text of the
solution. The examples are therefore used to illustrate the principles of
. design, and the solutions given are intended to be generally valid. Little or no
attention is paid to finding solutions which make best use of special facilities
of a particular operating system or programming language. Above all,
optimization is avoided. We follow two rules in the matter of optimization:

Rule 1. Don’t do it. ’

Rule 2 (for experts only). Don’t,do it yet—that is, not until you have a

perfectly clear and unoptimized solution.

Most programmers do too much optimization, and virtually all do it too
early. This book tries to act as an antidote. Of course, there are systems which
must be highly optimized if they are to be economically useful, and Chapter
12 discusses some relevant techniques. But two points should always be
remembered: first, optimization makes a system less reliable and harder to
maintain, and therefore more expensive to build and operate; second,
because optimization obscures structure it is difficult to improve the efficiency
of a system which is already partly optimized.

3.

Although most of the example problems are drawn from a batch data
processing environment, the design principles are applicable also to on-line
systems and to scientific programming. Solutions to the problems are given
mainly in schematic logic, a kind of abstract programming language which
can be readily translated into any of the procedural languages in common
use.

Where coding is shown, it is mostly COBOL. COBOL is still the most
widely used language for data processing, and it is relatively easy for non-
users to read and understand. Further, it is a very simple language, and we
have restricted ourselves to an even simpler subset which is described in the
appendix. So the coded solutions do not depend at all on the power of
COBOL: they can be easily transcribed into ALGOL, FORTRAN, PL/I or
any assembler language. They are not intended to show COBOL at its best.
still less to exemplify a recommended usage ; they merely show that the designs
resulting from the technique can be coded without difficulty.

4, p

When you read this book, you should try hard to solve each problem for
yourself before reading the solution given. Most of the problems, especially
in the earlier parts, can be solved in an hour or two, and sometimes in a few
minutes; some of the later problems will take longer. If you have your own
solution to compare with the solution given in the book you will get more

vili PREFACE

value and pleasure from what you read. Where the solutions agree, you can
proceed in a warm glow of mutual approbation between writer and reader;
where they disagree, you can read on in a more alert and critical frame of
mind.

Exercises and questions for discussion are given at the end of almost
every chapter. Each exercise is graded (a), (b), or (c). The exercises graded
(a) are easy, and usually cali for minor modification to a program already
discussed or for practice in the use of a notation. Those graded (b) are harder,
and present a non-trivial design task. Those graded (c) are harder still, and
usually call for the design of a difficult program.

The questions for discussion may be of value to teachers who care to use
this book, and may also give food for thought to the individual readér. Some
of the questions raise topics and difficulties which are discussed later in the
book.

ACKNOWLEDGEMENTS

Many of the sources of ideas for this book are already in the public dornai'n:
informed readers will recognize these, perhaps better than I can recognize
them myself. I would like here to mention two sources which might otherwise
go unacknowledged. First is Barry Dwyer, a colleague with whom I vs./orlg_ed
closely for several years. He provided many insights and many imaginative
solutions to difficult problems, and he gave me, constantly, the benefit of his
strong intellectual conscience. Second are all the people whg have come to my
program design courses. Their questions, criticisms and ideas have been a
stimulus and an aid to refining and developing the design technique presented
in this book. I never cease to be amazed that there is always something new
to say about even the simplest programming problem.

- .

CONTENTS

Preface

Acknowledgements

I.

10.

Introduction
Problem 1—Multiplication Table
Problem 2—Printing Invoices

. Structures and Components

Basic Design Techniques

Problem 3—Cantor’s Enumeration of Rationals
Problem 4—Counting Batches

Problem 5—Stores Movements Summary

Muitiple Data Structures

Problem 6—Customer Payments

Problem 7-—The Magic Mailing Company
Problem 8—Source Statement Library

. Errors and Invalidity

. Backtracking

Problem 9—A Daisy Chain

Problem 10—Delimited Strings
Problem 11—Good and Bad Branches
Problem 12—Serial Look-up

. Structure Clashes

Problem 13—Telegrams Analysis
Problem 14—System Log

. Program Inversion

Problem 15——Generating Test Data

Complex Inversions
Problem 16—Sort Exit

Multi- threading

Page

viii

15

43
43

59

67
69
70
82

95

111
117
130
135
140
151
155
160

169
183

193
206

221

CONTENTS

Xl .
11. Systems and Programs 237
Problem 17- Loans System 238

12. Optimization 251
Problem 18- Bubble Sort 252

13. Retrospect 279
Appendix- -COBOL Language 285
298

Reading List

1. INTRODUCTION

1.1

The beginning of wisdom for a programmer is to recognize the difference
between getting his program to work and getting it right. A program which
does not work is undoubtedly wrong: but a program which does work is not
necessarily right. It may still be wrong because it is hard to understand:
or because it is hard to maintain as the problem requirements change;
or because its structure is different from the structure of the problem; or

because we cannot be sure that it does indeed work.

This book is about how to design structured programs so that they will
be free from these faults. The basic ideas of structured programming have
become widely accepted. We may summarize them briefly as follows:

Problems should be decomposed into hierarchical structures of parts,
with an accompanying dissection of the programs into corresponding

structures and parts.
At each level of decomposition we should limit ourselves to the use of
three structural forms: concatenation (sequential flow), repetition
(DO WHILE or REPEAT UNTIL) and selection (IF THEN ELSE or
CASE).
The GO TO statement should be avoided completely or so far as
possible.

There is a brilliant description of these basic ideas, and of much more, in

Professor E. W. Dijkstra’s Notes on Structured Programming.
An uncomfortable analogy can be drawn between today’s wide acceptance

of these ideas and the acceptance by an earlier generation of programimers of
the ideas of Modular Programming. The basic ideas of Modular Program-

ming were these:

Each program should be dissected into modules which can be separately
compiled.

5505501

2 ' PRINCIPLES OF PROGRAM DESIGN

Modules should be as small and simple as possible within the limits
dictated by the efficient use of the programming and operating systems.

Modules should be separately tested before integration into the pro-
grams which use them. :

Modular Programming was not always successful in practice, for various
reasons. Some compilers imposed very large overhead costs in space and time
on separately compiled modules; the smallest practicable size for a module
was therefore very large, and the technique useless for any but the largest
problems. Some users found great difficulty in integrating modules into
workable programs; during “‘integration testing” many interfaces between
modules had to be respecified and many modules rewritten, at a cost greater
than the savings achieved in originally constructing the modules. Certain
promised benefits were obtained only rarely: few users managed to create a
library of general-purpose modules and so reduce the amount of new code
to be written for each successive project; many users found that program
maintenance became harder, not easier, because many modules had to be
amended and recompiled where previously only one monolithic program was
affected. Almost all users became conscious that they had a major new problem
in program design: what was the best way to dissect a program into modules?
—or, more succinctly, what is a module?

This last problem was crucial. But there were no good answers to the
questions. Some answers were useful for a limited range of simple problems:
*“the program should have a main-line control module with subordinate
modules to process transactions”. But for the most part the answers per-
muted a standard range of buzz-words—‘‘logical entity”, *‘functional
integrity”, ‘‘generalized logical function” and many others—and no-one
was any wiser for them. Programmers who had previously written good
monolithic programs now wrote good modular programs; programmers
who had previously written bad monolithic programs now wrote bad

modular programs.

1.2

We face a similar difficulty in Structured Programming. It is not enough to
decide that a program should be built of DO WHILE and IF THEN ELSE
constructs: the crucial problem is to decide what particular DO WHILE
and IF THEN ELSE constructs are needed for this particular program, and
how they should be fitted together. If the structure is wrongly designed we
will not be saved by the fact that each individual part is well formed.

As an illustration, consider the following trivial problem.

Ch. 1} INTRODUCTION 3

PROBLEM 1—MULTIPLICATION TABLE
A multiplication table is to be generated and printed. The required output is:

1

2 4

3 6 9

4 8 12 16
5 10 15 20 25

10 20 30 40 50 60 70 80 90 160

The table is to be printed on a line printer, using the statement DISPLAY
PRINT-LINE to print each line as it is generated.

Here is a very badly designed program to solve this problem.

DATA DIVISION
WORKING-STORAGE SECTION
77 LINE-NO PIC 99.
77 COL-NO PIC 99.
01 PRINT-LINE.
02 NUM OCCURS 10 PIC ZZZ9.
PROCEDURE DIVISION.
PSTART. :
MOVE SPACES TO PRINT-LINE.
MOVE 1 TO LINE-NO.
MOVE 1 TO NUM (1).
PERFORM PLINE UNTIL LINE-NO = 10.
DISPLAY PRINT-LINE.
STOP RUN
PLINE.
ADD 1 TO LINE-NO.
MOVE 0 TO COL-NO.
"DISPLAY PRINT-LINE.
PERFORM PNUM UNTIL LINE-NO = COL-NO.
PNUM.
ADD 1 TO COL-NO.
MULTIPLY LINE-NO BY COL-NO GIVING NUM (COL-NO).

4 PRINCIPLES OF PROGRAM DESIGN

The program was designed by drawing a flowchart, and coded from the
flowchart. It works correctly, producing the required output. The coding
itself is well-formed: the PERFORM statements are correctly coded repeti-
tions and the rest of the logic is sequential flow with no GO TO statements.
And yet the structure is hideously wrong.

Consider what changes we would need to make to the program if the
problem were changed in any of the following ways:

print the upper-right triangular half of the table instead of the lower-left
triangular half; that is, print:

1 2 3 4 5 6 7 8 9 10
4 6 8 10 12 14 16 18 20
9 12 15 18 21 24 27 30

81 90
100

print the lower-left triangularn half of the table, but upside down; that is,
with the multiples of 10 on the first line and 1 on the last line.

print the right-hand continuation of the complete table; that is, print

112 13 14 15 17 18 19 20
22 24 26 oo o.M

110 120 130 140 150 e .. 190 200

All of these changes are awkward—or as awkward as changes can be when
the problem is so trivial and the program so small. The first change affects
only the choice within each line of which numbers are to be printed and which
omitted; instead of beginning at NUM (1) and continuing to print up to and
including NUM (LINE-NQO), we want to begin with NUM (LINE-NO)
and continue up to an including NUM (10). We ought to be able to make a
localized change to the program—perhaps to the second and fourth state-
ments of PLINE—but we cannot. The changes needed in the program amount
almost to a complete rewriting. We are defeated similarly by the second and
third changes.

Ch. 1] INTRODUCTION 5

The essence of the difficulty is this. We wanted to make simple and localized
changes to the specification: to alter the choice of numbers to be printed
within each line; to alter the order of printing the lines; to alter the choice
and values of numbers to be printed in each line. We therefore looked to make
similarly localized changes to the program: where is the component which
determines the choice of numbers to be printed? where is the component
which determines the order of the lines? where is the component which
determines the values of the numbers? And the answers were not so simple
as we hoped. PLINE appears superficially to be the component which pro-
cesses each line. In fact, however, PLINE prints line N and generates line
N-1 when it is executed for the Nth time. So PLINE is executed only 9
times, and the first line is generated by PSTART and the 10th line is printed
by PSTART. Furthermore, the printable values in each line persist in the
next line, unless they are overwritten; PRINT-LINE is cleared only once, at
the beginning of PSTART. So in considering what is to be printed in each
line we have to bear in mind what was in the previous line.

In short, the program structure does not match the problem structure.
The program should instead have been as follows:

DATA DIVISION.
WORKING-STORAGE SECTION.
77 LINE-NO PIC 99.
77 COL-NO PIC 99.
01 PRINT-LINE.
02 NUM OCCURS 10 PIC ZZZ9.
PROCEDURE DIVISION.
PTABLE.
PERFORM PLINE VARYING LINE-NO
FROM 1 BY 1 UNTIL LINE-NO > 10.
STOP RUN.
PLINE.
MOVE SPACES TO PRINT-LINE.
PERFORM PNUM VARYING COL-NO
FROM 1 BY 1 UNTIL COL-NO > LINE-NO.
DISPLAY PRINT-LINE.

PNUM.
MULTIPLY LINE-NO BY COL-NO GIVING NUM (COL-NO).

The paragraph PTABLE processes the whole table. The paragraph PLINE
processes each line. The paragraph PNUM processes each number. The table

PRINCIPLES OF PROGRAM DESIGN

READ ITEM
| READ CUS

READ DIAGNOSE

Ccus ERROR
READ
ITEM

START
INVOICE

PROCESS
ITEM- LINE

READ
ITEM

END
INVOICE

Ch. 1] INTRODUCTION 7

consists of 10 lines, and PTABLE executes PLINE 10 times. Each line
consists of LINE-NO numbers, and PLINE executes PNUM LINE-NO
times. There is a perfect correspondence between the program structure and
the structure of the problem.

1.3

Here is another illustration of the difference between right and wrong in
program structures.

PROBLEM 2—PRINTING INVOICES

A serial master file contains customer name and address records, arranged in
ascending scquence by customer number. Another serial file contains
billable item records, arranged in ascending sequence by date within invoice
number within customer number.

These two files are to be used to print invoices. There may be more than
one invoice for a customer, but some customers will have no invoices. Due
to punching errors, there may be billable item records for which no customer
record exists; these are to be listed on a diagnostic file of messages.

Shown opposite is a flowchart of a solution. We assume that at the end of
each file the associated record area is filled with artificially high values.

Here, in abbreviated and informal style, is skeleton coding for a COBOL
program corresponding to the flowchart. . . .

PROCEDURE DIVISION.
PSTART.
Read item file.
Read customer file.
PERFORM PROCESS-ITEM UNTIL end of item file.
STOP.

PROCESS-ITEM.
IF CUSNO IN ITEM-RECORD >CUSNO IN CUS-
RECORD

Read customer file

ELSE IF CUSNO IN ITEM-RECORD < CUSNO IN CUS-
RECORD

8 PRINCIPLES OF PROGRAM DESIGN

Diagnose error
Read item file
ELSE PERFORM PROCESS-MATCH.

PROCESS-MATCH.

PERFORM START-INVOICE.

PERFORM PROCESS-ITEM-LINE-AND-REC

UNTIL end of item file or new invoice.

PERFORM END-INVOICE.
PROCESS-ITEM-LINE-AND-REC.

Process item record, producing invoice line.

Read item file.

Once again, the program works and the coding is impeccable. But the structure
is utterly wrong.

Again, we can see how wrong it is by considering some likely changes to
the problem specification. This time, the changes are to be applied cumula-
tively:

Print on the diagnostic listing the customer numbers of those customers
for whom at least one invoice has been produced

Print on the diagnostic listing, and mark with an asterisk, the customer
numbers of those customers for whom no invoice has been produced

To each customer number printed by the first change append the total
amount invoiced for that customer

Instead of diagnosing each item record in error, print only the customer
number, marked with an “E”, for each number for which at least one

error item exists.

None of these changes is impossibly difficult. Anyone who has worked in
data processing has seen programs changed in this kind of way, and probably
successfully changed. But the changes are much more difficult than they
ought to be, and as we make each successive change the conviction grows
that we are storing up further difficulties for ourselves. Sometimes, after
many changes, the program becomes so hard to understand that any further
change is dangerous, and.a complete redesign is then necessary.

What makes the changes so difficult? They all call for the insertion of
coding into the program to process one customer. For the first change we
need to insert a statement “‘print customer number” at a place in the program
where it will be executed once for each customer who has at least one invoice.
For the second change we need to insert a similar statement at a place

