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Preface

. The numerical interpretation ... is however necessary. ... So long
as it 18 not obtained, the solutions may be said to remain incomplete and
useless, and the truth which it is proposed to discover is no less hidden
in the formulae of analysis than it was in the physical problem itself.

~Joseph Fourier, The Analytic Theory of Heat

This book covers most of the standard topics in multivariate calculus, and a
substantial part of a standard first course in linear algebra. The teacher may
find the organization rather less standard.

There are three guiding principles which led to our organizing the material
as we did. One is that at this level linear algebra should be more a convenient
setting and language for multivariate calculus than a subject in its own right.
We begin most chapters with a treatment of a topic in linear algebra and then
show how the methods apply to corresponding nonlinear problems. In each
chapter, enough linear algebra is developed to provide the tools we need in
teaching multivariate calculus (in fact, somewhat more: the spectral theorem
for symmetric matrices is proved in Section 3.7). We discuss abstract vector
spaces in Section 2.6, but the emphasis is on R™, as we believe that most
students find it easiest to move from the concrete to the abstract.

Another guiding principle is that one should emphasize computationally ef-
fective algorithms, and prove theorems by showing that those algorithms really
work: to marry theory and applications by using practical algorithms as the-
oretical tools. We feel this better reflects the way this mathematics is used
today, in both applied and in pure mathematics. Moreover, it can be done with
no loss of rigor.

For linear equations, row reduction (the practical algorithm) is the central
tool from which everything else follows, and we use row reduction to prove all
the standard results about dimension and rank. For nonlinear equations, the
cornerstone is Newton’s method, the best and most widely used method for
solving nonlinear equations. We use Newton’s method both as a computational
tool and as the basis for proving the inverse and implicit function theorem,
rather than basing those proofs on Picard iteration, which converges too slowly
to be of practical interest.




Jean Dieudonné, for many
years a leader of Bourbaki, is the
very personification of rigor in
mathematics. In his book In-
finitesimal Calculus, he put the
harder proofs in small type, say-
ing “ ... a beginner will do well
to accept plausible results without
taxing his mind with subtle proofs

”

Following this philosophy, we
have put many of the more diffi-
cult proofs in the appendix, and
feel that for a first course, these
proofs should be omitted. Stu-
dents should learn how to drive be-
fore they learn how to take the car
apart.
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In keeping with our emphasis on computations, we include a section on
numerical methods of integration, and we encourage the use of computers to
both to reduce tedious calculations (row reduction in particular) and as an
aid in visualizing curves and surfaces. We have also included a section on
probability and integrals, as this seems to us too important a use of integration
to be ignored.

A third principle is that differential forms are the right way to approach the
various forms of Stokes’s theorem. We say this with some trepidation, espe-
cially after some of our most distinguished colleagues told us they had never
really understood what differential forms were about. We believe that differ-
ential forms can be taught to freshmen and sophomores, if forms are presented
geometrically, as integrands that take an oriented piece of a curve, surface, or
manifold, and return a number. We are aware that students taking courses
in other fields need to master the language of vector calculus, and we devote
three sections of Chapter 6 to integrating the standard vector calculus into the
language of forms.

The great conceptual simplifications gained by doing electromagnetism in
the language of forms is a central motivation for using forms, and we will apply
the language of forms to electromagnetism in a subsequent volume.

Although most long proofs have been put in Appendix A, we made an excep-
tion for the material in Section 1.6. These theorems in topology are often not
taught, but we feel we would be doing the beginning student a disservice not
to include them, particularly the mean value theorem and the theorems con-
cerning convergent subsequences in compact sets and the existence of minima,
and maxima of functions. In our experience, students do not find this material
particularly hard, and systematically avoiding it leaves them with an uneasy
feeling that the foundations of the subject are shaky.

Different ways to use the book

This book can be used either as a textbook in multivariate calculus or as an
accessible textbook for a course in analysis.

We see calculus as analogous to learning how to drive, while analysis is
analogous to learning how and why a car works. To use this book to “learn
how to drive,” the proofs in Appendix A should be omitted. To use it to “learn
how a car works,” the emphasis should be on those proofs. For most students,
this will be best attempted when they already have some familiarity with the
material in the main text.

Students who have studied first year calculus only
(1) For a one-semester course taken by students have studied neither linear

algebra nor multivariate calculus, we suggest covering only the first four chap-
ters, omitting the sections marked “optional,” which, in the analogy of learning
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to drive rather than learning how a car is built, correspond rather to learning
how to drive on ice. (These sections include the part of Section 2.8 concerning
a stronger version of the Kantorovitch theorem, and Section 4.4 on measure
0). Other topics that can be omitted in a first course include the proof of the
fundamental theorem of algebra in Section 1.6, the discussion of criteria for
differentiability in Section 1.9, Section 3.2 on manifolds, and Section 3.8 on
the geometry of curves and surfaces. (In our experience, beginning students
do have trouble with the proof of the fundamental theorem of algebra, while

manifolds do not pose much of a problem.)

(2) The entire book could also be used for a full year’s course. This could be
done at different levels of difficulty, depending on the students’ sophistication
and the pace of the class. Some students may need to review the material
in Sections 0.3 and 0.5; others may be able to include some of the proofs in
the appendix, such as those of the central limit theorem and the Kantorovitch
theorem.

(3) With a year at one’s disposal (and excluding the proofs in the appendix),
one could also cover more than the present material, and a second volume is

planned, covering

applications of differential forms;

abstract vector spaces, inner product spaces, and Fourier series;
electromagnetism;

differential equations;

eigenvalues, eigenvectors, and differential equations.

We favor this third approach; in particular, we feel that the last two topics
above are of central importance. Indeed, we feel that three semesters would
not be too much to devote to linear algebra, multivariate calculus, differential
forms, differential equations, and an introduction to Fourier series and partial
differential equations. This is more or less what the engineering and physics
departments expect students to learn in second year calculus, although we feel
this is unrealistic.

Students who have studied some linear algebra or multivariate
calculus

The book can also be used for students who have some exposure to either
linear algebra or multivariate calculus, but who are not ready for a course in
analysis. We used an earlier version of this text with students who had taken
a course in linear algebra, and feel they gained a great deal from seeing how
linear algebra and multivariate calculus mesh. Such students could be expected
to cover Chapters 1-6, possibly omitting some of the optional material discussed




We view Chapter 0 primarily
as a resource for students, rather
than as part of the material to be
covered in class. An exception is
Section 0.4, which might well be
covered in a class on analysis.

Mathematical notation is not
always uniform. For example, | 4|
can mean the length of a matrix
A (the meaning in this book) or
it can mean the determinant of
A. Different notations for partial
derivatives also exist. This should
not pose a problem for readers
who begin at the beginning and
end at the end, but for those who
are using only selected chapters,
it could be confusing. Notations
used in the book are listed on the
front inside cover, along with an
indication of where they are first
introduced.
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above. For a less fast-paced course, the book could also be covered in an entire
year, possibly including some proofs from the appendix.

Students ready for a course in analysis

If the book is used as a text for an analysis course, then in one semester one
could hope to cover all six chapters and some or most of the proofs in Appendix
A. This could be done at varying levels of difficulty; students might be expected
to follow the proofs, for example, or they might be expected to understand them
well enough to construct similar proofs. Several exercises in Appendix A and
in Section 0.4 are of this nature.

Numbering of theorems, examples, and equations

Theorems, lemmas, propositions, corollaries, and examples share the same num-
bering system. For example, Proposition 2.3.8 is not the eighth proposition of
Section 2.3; it is the eighth numbered item of that section, and the first num-
bered item following Example 2.3.7. We often refer back to theorems, examples,
and so on, and hope this numbering will make them easier to find.

Figures are numbered independently; Figure 3.2.3 is the third figure of Sec-
tion 3.2. All displayed equations are numbered, with the numbers given at
right; Equation 4.2.3 is the third equation of Section 4.2. When an equation
is displayed a second time, it keeps its original number, but the number is in
parentheses.

We use the symbol A to mark the end of an example or remark, and the
symbol O to mark the end of a proof.

Exercises

Exercises are given at the end of each chapter, grouped by section. They range
from very easy exercises intended to make the student familiar with vocabulary,
to quite difficult exercises. The hardest exercises are marked with a star (or, in
rare cases, two stars). On occasion, figures and equations are numbered in the
exercises. In this case, they are given the number of the exercise to which they
pertain. »

In addition, there are occasional “mini-exercises” incorporated in the text,
with answers given in footnotes. These are straightforward questions contain-
ing no tricks or subtleties, and are intended to let the student test his or her
understanding (or be reassured that he or she has understood). We hope that
even the student who finds them too easy will answer them; working with pen
and paper helps vocabulary and techniques sink in.
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Web page
Errata will be posted on the web page
http://math.cornell.edu/™ hubbard/vectorcalculus.

The three programs given in Appendix B will also be available there. We plan
to expand the web page, making the programs available on more platforms, and
adding new programs and examples of their uses.

Readers are encouraged to write the authors at jhh8Q@cornell.edu to signal
€errors, or to suggest new exercises, which will then be shared with other readers

via the web page.
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Preliminaries

0.0 INTRODUCTION

This chapter is intended as a resource, providing some background for those
who may need it. In Section 0.1 we share some guidelines that in our expe-
rience make reading mathematics easier, and discuss a few specific issues like
sum notation. Section 0.2 analyzes the rather tricky business of negating math-
ematical statements. (To a mathematician, the statement “All seven-legged
alligators are orange with blue spots” is an obviously true statement, not an
obviously meaningless one.) Section 0.3 reviews set theory notation; Section
0.4 discusses the real numbers; Section 0.5 discusses countable and uncountable
sets and Russell’s paradox; and Section 0.6 discusses complex numbers.

0.1 READING MATHEMATICS

We recommend not spending
much time on Chapter 0. In par-
ticular, if you are studying multi-
variate calculus for the first time
you should definitely skip certain
parts of Section 0.4 (Definition
0.4.4 and Proposition 0.4.6). How-
ever, Section 0.4 contains a discus-
sion of sequences and series which
you may wish to consult when we
come to Section 1.5 about conver-
gence and limits, if you find you
don’t remember the convergence
criteria for sequences and series
from first year calculus.

The most efficient logical order for a subject is usually different from the
best psychological order in which to learn it. Much mathematical writing
is based too closely on the logical order of deduction in a subject, with too
many definitions without, or before, the examples which motivate them,
and too many answers before, or without, the questions they address.—
William Thurston

Reading mathematics is different from other reading. We think the following
guidelines can make it easier. First, keep in mind that there are two parts to
understanding a theorem: understanding the statement, and understanding the
proof. The first is more important than the second.

What if you don’t understand the statement? If there’s a symbol in the
formula you don’t understand, perhaps a §, look to see whether the next line
continues, “where § is such-and-such.” In other words, read the whole sentence
before you decide you can’t understand it. In this book we have tried to define
all terms before giving formulas, but we may not have succeeded everywhere.

If you’re still having trouble, skip ahead to ezamples. This may contradict
what you have been told—that mathematics is sequential, and that you must
understand each sentence before going on to the next. In reality, although
mathematical writing is necessarily sequential, mathematical understanding is
not: you (and the experts) never understand perfectly up to some point and

1




The Greek Alphabet

Greek letters that look like Ro-
man letters are not used as mathe-
matical symbols; for example, A is
capital a, not capital o. The letter
x is pronounced “kye,” to rhyme
with “sky”; ¢, ¥ and £ may rhyme
with either “sky” or “tea.”

alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
mu

nu

xi
omicron
pi

rho
sigma
tau
upsilon
phi

chi

psi
omega
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In Equation 0.1.3, the symbol
> %=1 says that the sum will have
n terms. Since the expression be-
ing summed is a;kbk,;, each of
those n terms will have the form
ab.
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not at all beyond. The “beyond,” where understanding is only partial, is an
essential part of the motivation and the conceptual background of the “here and
now.” You may often (perhaps usually) find that when you return to something
you left half-understood, it will have become clear in the light of the further
things you have studied, even though the further things are themselves obscure.
Many students are very uncomfortable in this state of partial understanding,
like a beginning rock climber who wants to be in stable equilibrium at all times.
To learn effectively one must be willing to leave the cocoon of equilibrium. So
if you don’t understand something perfectly, go on ahead and then circle back.

In particular, an example will often be easier to follow than a general state-
ment; you can then go back and reconstitute the meaning of the statement in
light of the example. Even if you still have trouble with the general statement,
you will be ahead of the game if you understand the examples. We feel so
strongly about this that we have sometimes flouted mathematical tradition and
given examples before the proper definition.

Read with pencil and paper in hand, making up little examples for yourself
as you go on.

Some of the difficulty in reading mathematics is notational. A pianist who
has to stop and think whether a given note on the staff is A or F' will not be
able to sight-read a Bach prelude or Schubert sonata. The temptation, when
faced with a long, involved equation, may be to give up. You need to take the
time to identify the “notes.”

Learn the names of Greek letters—not just the obvious ones like alpha, beta,
and pi, but the more obscure psi, xi, tau, omega. The authors know a math-
ematician who calls all Greek letters “xi,” (§) except for omega (w), which he
calls “w.” This leads to confusion. Learn not just to recognize these letters, but
how to pronounce them. Even if you are not reading mathematics out loud, it
is hard to think about formulas if £, ¥, 7,w,  are all “squiggles” to you.

Sum and product notation

Sum notation can be confusing at first; we are accustomed to reading in one
dimension, from left to right, but something like

n
Z a,»,kbk,j 0.1.1
k=1

requires what we might call two-dimensional (or even three-dimensional) think-
ing. It may help at first to translate a sum into a linear expression:

o0
dor=2042ty2? 0.1.2
=0
or
n
Cij = Z @i kbk,; = @i 1bj + aigbaj+ - + @i by ;. 0.1.3
k=1




FIGURE 0.1.1.

In the double sum of Equation
0.1.4, each sum has three terms, so
the double sum has nine terms.

When Jacobi complained that
Gauss’s proofs appeared unmoti-
vated, Gauss is said to have an-
swered, You build the building and
remove the scaffolding. Our sym-
pathy is with Jacobi’s reply: he
likened Gauss to the for who
erases his tracks in the sand with
his tail.
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Two Y placed side by side do not denote the product of two sums; one sum
is used to talk about one index, the other about another. The same thing could
be written with one ), with information about both indices underneath. For

example,

3 4
336+ > G+j)

i=1 j=2 i from 1 to 3,
j from 2 to 4
4 4 4
=D 145+ ([ D245 )+ (X 3+ 014
=2 =2 j=2

((1+2)+(1+3)+(1+4))
+(2+2)+(2+3)+(2+4))
+((3+2)+(3+3)+(3+4));

this double sum is illustrated in Figure 0.1.1.
Rules for product notation are analogous to those for sum notation:
n

n
Ha,-:al-ag---an; for example, Hi:n!.
i=1

i=1

Proofs

We said earlier that it is more important to understand a mathematical state-
ment than to understand its proof. We have put some of the harder proofs in
the appendix; these can safely be skipped by a student studying multivariate
calculus for the first time. We urge you, however, to read the proofs in the main
text. By reading many proofs you will learn what a proof is, so that (for one
thing) you will know when you have proved something and when you have not.

In addition, a good proof doesn’t just convince you that something is true;
it tells you why it is true. You presumably don’t lie awake at night worrying
about the truth of the statements in this or any other math textbook. (This
is known as “proof by eminent authority”; you assume the authors know what
they are talking about.) But reading the proofs will help you understand the
material.

If you get discouraged, keep in mind that the content of this book represents
a cleaned-up version of many false starts. For example, John Hubbard started
by trying to prove Fubini’s theorem in the form presented in Equation 4.5.1.
When he failed, he realized (something he had known and forgotten) that the
statement was in fact false. He then went through a stack of scrap paper before
coming up with a correct proof. Other statements in the book represent the
efforts of some of the world’s best mathematicians over many years.
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0.2 HOW TO NEGATE MATHEMATICAL STATEMENTS

Statements that to the ordi-
nary mortal are false or meaning-
less are thus accepted as true by
mathematicians; if you object, the
mathematician will retort, “find
me a counter-example.”

Even professional mathematicians have to be careful not to get confused

when negating a complicated mathematical statement. The rules to follow are:

(1) The opposite of
(For all , P(z) is true]
is [There exists z for which P(z) is not true].

0.2.1

Above, P stands for “property.” Symbolically the same sentence is written:
The opposite of Vz,P(z) is 3z| not P(z). 0.2.2
Instead of using the bar | to mean “such that” we could write the last line
(3z)(not P(x)). Sometimes (not in this book) the symbols ~ and — are used
to mean “not.”
(2) The opposite of
[There exists « for which R(z) is true]

is [For all z, R(z) is not true].

0.2.3

Symbolically the same sentence is written:
The opposite of (3z)(P(z)) is (V) not P(z). 0.24

These rules may seem reasonable and simple. Clearly the opposite of the
(false) statement, “All rational numbers equal 1,” is the statement, “There
exists a rational number that does not equal 1.”

However, by the same rules, the statement, “All seven-legged alligators are
orange with blue spots” is true, since if it were false, then there would exist a
seven-legged alligator that is not orange with blue spots. The statement, “All
seven-legged alligators are black with white stripes” is equally true.

In addition, mathematical statements are rarely as simple as “All rational
numbers equal 1.” Often there are many quantifiers and even the experts have
to watch out. At a lecture attended by one of the authors, it was not clear to
the audience in what order the lecturer was taking the quantifiers; when he was
forced to write down a precise statement, he discovered that he didn’t know
what he meant and the lecture fell apart.

Here is an example where the order of quantifiers really counts: in the defi-
nitions of continuity and uniform continuity. A function f is continuous if for
all z, and for all € > 0, there exists & > 0 such that for all y, if |z —y| < 8, then
|£(z) — f(y)] < e. That is, f is continuous if

(Vz)(Ye > 0)(36 > 0)(Vy) (le —y) < 6 = |f(x) - f(¥)| <€). 025
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A function f is uniformly continuous if for all € > 0, there exists § > 0 for
all z and all y such that if |z — y| < 4, then |f(z) — f(y)] < e. That is, f is
uniformly continuous if

(Ve > 0)(36 > 0)(Va)(Vy) (jz —y| < § => |f(x) — fw)| <e).  0.26

For the continuous function, we can choose different § for different x; for the
uniformly continuous function, we start with € and have to find a single & that
works for all z.

For example, the function f(z) = z? is continuous but not uniformly con-
tinuous: as you choose bigger and bigger z, you will need a smaller J if you
want the statement |z —y| < é to imply |f(z) — f(y)| < ¢, because the function
keeps climbing more and more steeply. But sinz is uniformly continuous; you
can find one ¢ that works for all z and all y.

0.3 SET THEORY

There is nothing new about
the concept of “set” denoted by
{alp(a)}. Euclid spoke of geo-
metric loci, a locus being the set
of points defined by some prop-
erty. (The Latin word locus means
“place”; its plural is loci.)

At the level at which we are working, set theory is a language, with a vocab-
ulary consisting of seven words. In the late 1960’s and early 1970’s, under the
sway of the “New Math,” they were a standard part of the elementary school
curriculum, and set theory was taught as a subject in its own right. This was a
resounding failure, possibly because many teachers, understandably not know-
ing why set theory was being taught at all, made mountains out of molehills. As
a result the schools (elementary, middle, high) have often gone to the opposite
extreme, and some have dropped the subject altogether.

The seven vocabulary words are
“is an element of”

€
{alp(a)} “the set of a such that p(a) is true”
C “is a subset of” (or equals, when 4 C A)

N “intersect”: A N B is the set of elements of both A and B.
U “union”: AU B is the set of elements of either A or B
or both.
X “cross”: A x B is the set of pairs (a,b) with a € 4 and
be B.
- “complement”: A — B is the set of elements in A that
are not in B.

One set has a standard name: the empty set b, which has no elements.
There are also sets of numbers that have standard names; they are written in
black-board bold, a font we use only for these sets. Throughout this book and
most other mathematics books (with the exception of N, as noted in the margin
below), they have exactly the same meaning:




