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PREFACE

The material contained herein represents the substance of a Short Course
offered at The University of Tennessee Space Institute in March 1985. As
such it constitutes a review of several important areas of research in the
field of numerical approximation to partial differential equations. One of the
concepts involved with the evolution of this course was the need to introduce
the technical community to the latest developments in the numerical analy-
sis of partial differential equations. To this end it seemed desirable to have
the course organized by a mathematician (STH) and an engineer (THM). We
hope that this mix of disciplines will lead to benefits for both.

Many of the example problems selected for discussion herein have. as
their foundation, the equations of continuum mechanics. These equations.
and their physical background. are reviewed in an appendix. Chapter 1
presents a detailed discussion of elliptic differential equations approximated
in the contéxt of the finite element method. Chapter 2 discusses numerical
solution techniques for purely hyperbolic problems while chapter 3 deals with
the problems and numerical treatment for equations of mixed type. Chapter
1 is devoted to a discussion of the non-linear theory of elasticity and the
propagation of slip lines. Chapters 3. 6. 7 and 8 are concentrated reviews
of specific problem areas. Thus. chapter 3 is concerned with the details
of shock capturing in gasdynamic problems. chapter 6 treats topics in the
. theory of absorbing boundary conditions for exterior problems. chapter 7
reviews the theory of spectral methods and discusses their application to
non-linear gasdynamic problems while chapter 8 considers the use of tinite
element methods in the numerical solution of the Navier Stokes equations.

The Short Course Program at UTSI is managed by Ms. S. Shankle
and falls under the general Academic Program of The Institute {directed by
Dr. A. A. Mason. Associate Dean). This publication would not have been
possible without the many long hours of devotion by Linda Hall and Pat
Allen in typsetting using the TEX82 svstem on the UTS] VAX 11 Computer.

To them our greatest thanks.

S. [. Hariharan
T. H. Moulden



SOME STANDARD NOTATION

Vectors and operators are printed in bold face type while sets and
function spaces are denoted by CALIGRAPXIC type. As far as possible.

the following symbols are standard:

strain tensor

mass flux vector
normal vector
stress tensor
displacement vector
dummy variables

€

velocity vector

™

position vectors
vorticity vector
kinematic viscosity

Lamé constants

>

FENr<E S 38353

(v.) will be the components of the vector v in the selected basis.
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CHAPTER 1

NUMERICAL SOLUTION OF ELLIPTIC BOUNDARY
VALUE PROBLEMS )

George J. Fix*

1.1. Overview and Examples

The most frequently encountered elliptic boundary value problem is the
Dirichlet problem for the Poisson equation:

Ap= fin (1.1.1)

@ =g on df] - (1.1.2)
Here f and g are given functions and (2 is a region in R™ having 0 as its
boundary, and A denotes the Laplacian operator. In this chapter attention
will be confined to planar regions (n = 2) and to the three dimensional case
(n = 3). While most of the ideas introduced here can be used for ordinary
differential equations (n = 1), techniques specialized for those equations are
typically more efficient.

The Poisson equation arises in many contexts, and ¢ typically is a po-
tential for a field variable. This for example is the case for incompressible
potential flows where S '
v = grad(p) ' - (L1.3)

is the fluid velocity [!l. In addition to (1.1.2) one can also specify Neumann
conditions '
dp/dn =v, (1.1.4)

n being the outer normal to 2, or a mixture of (1.1.2) and (1.1.4) can be
applied. For equation (1.1.4), compatibility implies

| /nf:/anv. | (1.’{,:',’,’,-

s
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A generalization of (1.1.1) is provided by the nonlinear equation

div [p(grad(p))grad(e)] = f, (1.1.6)

where p(-) is a given function. This equation arises in the theory of potential
compressible flows 2|, when p(-) is the density. In this context Bernoulli’s
equation gives a functional relation between p and the fluid velocity (1.1.3).
This equation is elliptic exactly when

ALGEET (L17)

a condition that is equivalent to the flow being subsonic ‘''.

" An example involving higher order derivatives is provided by the bihar-
monic equation:

Ap=f (1.1.8)
p =9 (1.1.9)
dp/dn=v (1.1.10)

Versions of this equation arise in both solid and fluid mechanics (11.03),

The above are examples of what are called strongly elliptic problems.
This term will be given a precise meaning in Section 1.2.1. Partial Differential
equations of this type are generally thought to be the most tractable of all
as far as numerical approximation is concerned. There are a wide variety of
methods that have been successfully used in practice, and in fact there are
even commercial computer codes for these problems which are advertised as
“black boxes.” Nevertheless, some caution should be given about taking this
point of view too far. In this regard, the following points are relevant:

1. Special properties of the Poisson equation.

2. Complications introduced by a highly curved boundary 911.

3. Complications. introduced by siugularities. These can arise from
“corners” in the boundary 911, or by pathological behavior of the
data (e.g., the functions f and g in (1.1.1)-(1.1.2)).



In the literature on the numerical solution of elliptic boundary value
problems one often sees an overemphasis on the Poisson equation (or closely
related equations). While strongly elliptic problems are exceptional among
partial differential equations, the Poisson equation is exceptional even within
the class of strongly elliptic equations. It has properties that are not shared
by other strongly elliptic operators. These properties can be expressed in
diﬁereht ways but they all reduce to the existence of a mazimum princi-
ple (81, The reader will recall that if ¢ satisfies the Poisson equation with
homogeneous data

Ap=0in .(1.1.11)

(i.e., @ is harmonic), then the, maximum of ¢ must occur on the boundary
o - ‘

‘ )| < o(z 1.1.12
maxle(@)l < max e (2)] (1.1.12)

A similar result is true for minimum values.

In some numerical approximations the importance of (1.1.12) (and its
discrete analogs) is totally transparent. This for example is the case in finite
difference approximations, where (1.1.12) serves as both a powerful techni-
cal tool in error analysis as well as being responsible for desirable matrix
properties like semi diagonal dominance (. In finite elements approxima-
tions, on the other hand. the role of (1.1.12) is less transparent. With many
higher order elements. for example, the identification of a discrete analog of
(1.1.12) is still an open problem. Moreover, the error analysis for finite ele-
ment approximations does not directly use (1.1.12), and tends to be similar
in structure to the analysis of other strongly elliptic problems. Nevertheless.
if one looks deeply -into finite element approximations of the Poisson equa-
tion - particularly the subtle yet important features of the algebraic systems
produced - the favorable features generated by the existence of a maximum
principle tend to emerge. The point to be made here is the performance of a
particular numerical method when it is applied to the Poisson equation, may
not be a totally accurate picture of how the method will behave for other
strongly elliptic problems.

The second issue raised above concerns éomplicated geometrical regions
{1 that arise in applications. Some methods are especially designed for simple
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regions (e.g., rectangles in R? or cubes in 23),/\ and are extremely efficient
in these contexts. While various gimmicks can be used to extend them
beyond simple regions, their efficiency typically deteriorates in the process.
On the other hand, there are methods which can be applied to very general
regions {), but which are very inefficient when compared to the specialized
methods for problems in simple regions. The point is that the decision on
which approach to use in any given application is not automatic, and requires
numerical analysis.

The third and final issue cited above concerns singularities. As noted
earlier these can arise either through “defects” (e.g. corners) in the region
or through singularities in the data or coefficients in the equations. Not all
'methods can perform efficiently in the presence of singularities. Moreover,
even for those methods which can deal with singularities (by for example grid
refinement or special singular functions) there is the issue of adapting these
techniques to the special features of specific applications. Impressive strides
have been made in automatic self-adapting numerical approximation (6!, but
these are generally built around “global error criteria.” In many applications,
only special functionals of the solution are important, and adapting to these
criteria typically requires additional numerical analysis.

In summary, it is perhaps valid to assert that strongly elliptic bound-
ary value problems are the “easiest” of all problems involving the numerical
approximation of partial differential equation. However, it would be a dis-
tortion to assert that their solution is routine.

Section 1.2 of this chapter is devoted to a survey of strongly elliptic
problems and this is followed in Section 1.3 with a discussion of what are
- sometimes called weakly elliptic problems, The latter will be designated as
elliptic problems of the stationary type for reasons that will be discussed
in the text. The latter can be readily distinguished from strongly elliptic
operators. First. they are generally “hard” from the numerical point of
view. There are “reasonable” approaches which are totally unstable when
applied to these problems This is in striking contrast to the strongly elliptic
case where just about all of the “reasonable” approaches work. There may
be more efficient alternatives, but the results are rarely catastrophic.

6



A second feature of the stationary elliptic case is that most of the tech-
nologically significant applications involving elliptic equations tend to be of
this type. This is particularly true in fluid mechanics, and we end Section
1.1 by citing some specific examples.

- The first example is provided by the Navier-Stokes equation for an in-
" compressible fluid (7):

v -grad(v) — grad(p) = vAv in ( (1.1.13)

div(v) =0 in ) . (1.1.14)
v=VonaQ - (1.1.15)

In' (1.1.13), v > 0 stands for the kinematic viscosity, v is the fluid velocity,
and p is the pressure. The density has been normalized to unity: The bound-
ary condition (1.1.15) is defined in terms of a given boundary velocity V.
These equations stand midway between the strongly elliptic and stationary
cases. For numerical approximations that are capable of working in spaces
of divergent free vector fields, these equations behave like a strongly ellip-
tic system at least for sufficiently small Reynolds numbers (i.e., large v). To
treat (1:1.13) - (1.1.15) directly, on the other hand, leads to a stationary type
of scheme. This can display deleterious instabilities which are unacceptable
in most applications. There is a large literature on this subject which will
be reviewed in Section 1.3.

A second example is provided by the two dimensional stream fumction
- vorticity formulation of the equations of fluid mechanics (8):

J(¥,¢) = vAcin 0 (1.1.16)
Ay =¢in 0 | (1.1.17)
Y =g on 9} (1.1.18)
dY/On = h on N (1.1.19)
" In (1.1.16), J(:,-) is a bilinear form defined by -
' v a9 Y 4
Jbys) = oo - 2L

" 32,0z, 81,01, (1.1.20)

<3



As in (1.1.13), v > 0 denotes the viscosity while ¥ is the stream function
and ¢ is the vorticity. Equations (1.1.17) and (1.1.18) can be combined to
give a fourth order equation

J(, AY) = vA%Y (L1.21)

for the stream function. For sufficiently large v, (1.1.21) is a strongly elliptic
system. However, attempts to deal with (1.1. 16) to (1.1.19) directly leads to
schemes of the stationary type ((9/—{10])

Our final example is drawn from steady inviscid compressible flows. In
standard (nonconservative form) these equations can be written (using the
notation of (1.1.13) to (1.1.15)) '

v - grad(v) — grad(p)/p =0 (1.1.22)
div(pv) =0 (1.1.23)
div(pvE) =0 (1.1.24)
Here : .
E'=I+§v-v (1.1.25)

is the energy with [ being the internal energy. The equation of state gives
the functional relation

p=plp; 1), \ . (L.1.26)

and suitable Boundary conditions must be adjoined to (1.1.22) - (1.1.24).
The sound speed is defined through

c? = 9p/ap, (1.1.27)

and for subsonic flows; i.e.,
c>|v|, . (1.1.28)

this system is elliptic. This is perhaps the most challenging of all elliptic
systems and great care must be taken with numerical approximations as
will be discussed in Section 1.3. One can add viscous terms (8 to (1.1.22)-
(1.1.24), and from the numerical point of view these terms are denizen. In
many applications the conservative form of the equations is preferred. This

8
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is obtained by rewntmg (1.1.22) and using special combinations of (1. 1 23)
(1.1.24) to give a system of the form . .

div(F) =0
for a suitable vector F as in reference [8].

Certain. topics had to be omitted from this chapter in order to keép it
to a reasonable length. One of the most regrettable omissions is the subject
of integral equations, and in particular the boundary integral method. The
reader is referred to the excellent review article in reference [11] as well as
reference [12] for a discussion of these methods.

1.2 Strongly Elliptic Problems

1.2.1 Basic Properties

The philosophical viewpoint adopted throughout the subject of the numer-
ical solution of partial differential equations has been to view the partial
differential equation as an operator equation

Lo=f ; i. (1‘.2,")

The next step is to identify spaces $;, Sz for which the i inverse L1 of L lS
continuous

L7':8, — & (1.2.2)

From this point of view it is taken as an article of faith in numerical analysis .
that continuous operations can be appropriately discretized to yield stable
and convergent approximations.

This point of view gets lost in most treatments of the numerical solution
of elliptic equations due to the ubiquitous nature of B 2 _spaces based on the
inner product :

(so,¢)=/n<p¢ ' - (1.23)

Indeed, for most elliptic problems (both those which are strongly ellietie
as well as those of the stationary type) L2 spaces and their derivatives are



entirely appropriate and satisfy the continuity requirements cited above. Ex-
;cept.ion occur in problems having singularities. In the latter case, weighted
L2 spaces associated with inner products of the form

CX / oo (1.2.4)

for an appropriate weighting function o arise in a natural Way. In the first
part of this chapter attention will be confined ‘to spaces based on equation
(1.2.3). The treatment of weighted spaces will be given in section L.3.

#th order to define what is meant by a strongly elliptic equation one must
first identify the [? -form of the equation along with the associated spaces
of test and trial functions. We do this by the Galerkin process (associated
with £2). Before giving a general definition let us first illustrate the process '
with the following example: '

—div(p grad(p)) =f inQ (1.2.5)
p = 0 on Fl (126)
dp/dn=0 onTl, (1.2.7)

Here the boundary 1 has two parts, namely I'; where a Dirichlet condition
is specified and T'; where a Newmann condition is specified. The function
p depends on grad(y) as in the example in section 1:1. The first step is to
multiply cquation (1.1.5) by a test function ¢ and integrate on (1. (This is
where we arbitrarily introduce the £? space into the problem).

-—/ﬂz/zdiv(p grad(p)) =/Q¢f - (L.2.8)

an integration by parts gives

- f ©pOY /O + / p grad(y)grad(¢) = f pf  (L29)
N Q Q :

The boundary integral on the left consists of two terms: One over '; and
the other over I';. The latter is zero because of (1.2.7), and by requiring

. |/; = (0 on Fl, . (12.10)
10



